ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.30
Committed: Sat Jan 25 18:02:06 2014 UTC (10 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad5R0, rad4R2, rad4R2P1
Changes since 2.29: +38 -31 lines
Log Message:
Made one-sided materials really work using mixfunc

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: mgf2rad.c,v 2.29 2011/02/22 16:45:12 greg Exp $";
3 #endif
4 /*
5 * Convert MGF (Materials and Geometry Format) to Radiance
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <math.h>
11 #include <string.h>
12
13 #include "platform.h"
14 #include "mgf_parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17
18 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19
20 #define invert (xf_context != NULL && xf_context->rev)
21
22 double glowdist = FHUGE; /* glow test distance */
23
24 double emult = 1.; /* emitter multiplier */
25
26 FILE *matfp; /* material output file */
27
28
29 extern int r_comment(int ac, char **av);
30 extern int r_cone(int ac, char **av);
31 extern int r_cyl(int ac, char **av);
32 extern int r_sph(int ac, char **av);
33 extern int r_ring(int ac, char **av);
34 extern int r_face(int ac, char **av);
35 extern int r_ies(int ac, char **av);
36 extern void putsided(char *mname);
37 extern char * material(void);
38 extern char * object(void);
39 extern char * addarg(char *op, char *arg);
40 extern void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv);
41 extern void cvtcolor(COLOR radrgb, register C_COLOR *ciec, double intensity);
42
43
44 int
45 main(
46 int argc,
47 char *argv[]
48 )
49 {
50 int i;
51
52 matfp = stdout;
53 /* print out parser version */
54 printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
55 /* initialize dispatch table */
56 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
57 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
58 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
59 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
60 mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
61 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
62 mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
63 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
64 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
65 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
66 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
67 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
68 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
69 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
70 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
71 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
72 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
73 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
74 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
75 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
76 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
77 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
78 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
79 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
80 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
81 mg_init(); /* initialize the parser */
82 /* get our options & print header */
83 printf("## %s", argv[0]);
84 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
85 printf(" %s", argv[i]);
86 switch (argv[i][1]) {
87 case 'g': /* glow distance (meters) */
88 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
89 goto userr;
90 glowdist = atof(argv[++i]);
91 printf(" %s", argv[i]);
92 break;
93 case 'e': /* emitter multiplier */
94 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
95 goto userr;
96 emult = atof(argv[++i]);
97 printf(" %s", argv[i]);
98 break;
99 case 'm': /* materials file */
100 matfp = fopen(argv[++i], "a");
101 if (matfp == NULL) {
102 fprintf(stderr, "%s: cannot append\n", argv[i]);
103 exit(1);
104 }
105 printf(" %s", argv[i]);
106 break;
107 default:
108 goto userr;
109 }
110 }
111 putchar('\n');
112 if (i == argc) { /* convert stdin */
113 if (mg_load(NULL) != MG_OK)
114 exit(1);
115 if (mg_nunknown)
116 printf("## %s: %u unknown entities\n",
117 argv[0], mg_nunknown);
118 } else /* convert each file */
119 for ( ; i < argc; i++) {
120 printf("## %s %s ##############################\n",
121 argv[0], argv[i]);
122 if (mg_load(argv[i]) != MG_OK)
123 exit(1);
124 if (mg_nunknown) {
125 printf("## %s %s: %u unknown entities\n",
126 argv[0], argv[i], mg_nunknown);
127 mg_nunknown = 0;
128 }
129 }
130 exit(0);
131 userr:
132 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
133 argv[0]);
134 exit(1);
135 }
136
137
138 int
139 r_comment( /* repeat a comment verbatim */
140 register int ac,
141 register char **av
142 )
143 {
144 putchar('#'); /* use Radiance comment character */
145 while (--ac) { /* pass through verbatim */
146 putchar(' ');
147 fputs(*++av, stdout);
148 }
149 putchar('\n');
150 return(MG_OK);
151 }
152
153
154 int
155 r_cone( /* put out a cone */
156 int ac,
157 char **av
158 )
159 {
160 static int ncones;
161 char *mat;
162 double r1, r2;
163 C_VERTEX *cv1, *cv2;
164 FVECT p1, p2;
165 int inv;
166 /* check argument count and type */
167 if (ac != 5)
168 return(MG_EARGC);
169 if (!isflt(av[2]) || !isflt(av[4]))
170 return(MG_ETYPE);
171 /* get the endpoint vertices */
172 if ((cv1 = c_getvert(av[1])) == NULL ||
173 (cv2 = c_getvert(av[3])) == NULL)
174 return(MG_EUNDEF);
175 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
176 xf_xfmpoint(p2, cv2->p);
177 r1 = xf_scale(atof(av[2])); /* scale radii */
178 r2 = xf_scale(atof(av[4]));
179 inv = r1 < 0.; /* check for inverted cone */
180 if (r1 == 0.) { /* check for illegal radii */
181 if (r2 == 0.)
182 return(MG_EILL);
183 inv = r2 < 0.;
184 } else if (r2 != 0. && inv ^ (r2 < 0.))
185 return(MG_EILL);
186 if (inv) {
187 r1 = -r1;
188 r2 = -r2;
189 }
190 if ((mat = material()) == NULL) /* get material */
191 return(MG_EBADMAT);
192 /* spit the sucker out */
193 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
194 object(), ++ncones);
195 printf("0\n0\n8\n");
196 putv(p1);
197 putv(p2);
198 printf("%18.12g %18.12g\n", r1, r2);
199 return(MG_OK);
200 }
201
202
203 int
204 r_cyl( /* put out a cylinder */
205 int ac,
206 char **av
207 )
208 {
209 static int ncyls;
210 char *mat;
211 double rad;
212 C_VERTEX *cv1, *cv2;
213 FVECT p1, p2;
214 int inv;
215 /* check argument count and type */
216 if (ac != 4)
217 return(MG_EARGC);
218 if (!isflt(av[2]))
219 return(MG_ETYPE);
220 /* get the endpoint vertices */
221 if ((cv1 = c_getvert(av[1])) == NULL ||
222 (cv2 = c_getvert(av[3])) == NULL)
223 return(MG_EUNDEF);
224 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
225 xf_xfmpoint(p2, cv2->p);
226 rad = xf_scale(atof(av[2])); /* scale radius */
227 if ((inv = rad < 0.)) /* check for inverted cylinder */
228 rad = -rad;
229 if ((mat = material()) == NULL) /* get material */
230 return(MG_EBADMAT);
231 /* spit out the primitive */
232 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
233 object(), ++ncyls);
234 printf("0\n0\n7\n");
235 putv(p1);
236 putv(p2);
237 printf("%18.12g\n", rad);
238 return(MG_OK);
239 }
240
241
242 int
243 r_sph( /* put out a sphere */
244 int ac,
245 char **av
246 )
247 {
248 static int nsphs;
249 char *mat;
250 double rad;
251 C_VERTEX *cv;
252 FVECT cent;
253 int inv;
254 /* check argument count and type */
255 if (ac != 3)
256 return(MG_EARGC);
257 if (!isflt(av[2]))
258 return(MG_ETYPE);
259 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
260 return(MG_EUNDEF);
261 xf_xfmpoint(cent, cv->p); /* transform center */
262 rad = xf_scale(atof(av[2])); /* scale radius */
263 if ((inv = rad < 0.)) /* check for inversion */
264 rad = -rad;
265 if ((mat = material()) == NULL) /* get material */
266 return(MG_EBADMAT);
267 /* spit out primitive */
268 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
269 object(), ++nsphs);
270 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
271 cent[0], cent[1], cent[2], rad);
272 return(MG_OK);
273 }
274
275
276 int
277 r_ring( /* put out a ring */
278 int ac,
279 char **av
280 )
281 {
282 static int nrings;
283 char *mat;
284 double r1, r2;
285 C_VERTEX *cv;
286 FVECT cent, norm;
287 /* check argument count and type */
288 if (ac != 4)
289 return(MG_EARGC);
290 if (!isflt(av[2]) || !isflt(av[3]))
291 return(MG_ETYPE);
292 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
293 return(MG_EUNDEF);
294 if (is0vect(cv->n)) /* make sure we have normal */
295 return(MG_EILL);
296 xf_xfmpoint(cent, cv->p); /* transform center */
297 xf_rotvect(norm, cv->n); /* rotate normal */
298 r1 = xf_scale(atof(av[2])); /* scale radii */
299 r2 = xf_scale(atof(av[3]));
300 if ((r1 < 0.) | (r2 <= r1))
301 return(MG_EILL);
302 if ((mat = material()) == NULL) /* get material */
303 return(MG_EBADMAT);
304 /* spit out primitive */
305 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
306 printf("0\n0\n8\n");
307 putv(cent);
308 putv(norm);
309 printf("%18.12g %18.12g\n", r1, r2);
310 return(MG_OK);
311 }
312
313
314 int
315 r_face( /* convert a face */
316 int ac,
317 char **av
318 )
319 {
320 static int nfaces;
321 int myi = invert;
322 char *mat;
323 register int i;
324 register C_VERTEX *cv;
325 FVECT v;
326
327 /* check argument count and type */
328 if (ac < 4)
329 return(MG_EARGC);
330 if ((mat = material()) == NULL) /* get material */
331 return(MG_EBADMAT);
332 if (ac <= 5) { /* check for smoothing */
333 C_VERTEX *cva[5];
334 for (i = 1; i < ac; i++) {
335 if ((cva[i-1] = c_getvert(av[i])) == NULL)
336 return(MG_EUNDEF);
337 if (is0vect(cva[i-1]->n))
338 break;
339 }
340 if (i < ac)
341 i = ISFLAT;
342 else
343 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
344 cva[0]->n, cva[1]->n, cva[2]->n);
345 if (i == DEGEN)
346 return(MG_OK); /* degenerate (error?) */
347 if (i == RVBENT) {
348 myi = !myi;
349 i = ISBENT;
350 } else if (i == RVFLAT) {
351 myi = !myi;
352 i = ISFLAT;
353 }
354 if (i == ISBENT) { /* smoothed triangles */
355 do_tri(mat, cva[0], cva[1], cva[2], myi);
356 if (ac == 5)
357 do_tri(mat, cva[2], cva[3], cva[0], myi);
358 return(MG_OK);
359 }
360 }
361 /* spit out unsmoothed primitive */
362 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
363 printf("0\n0\n%d\n", 3*(ac-1));
364 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
365 if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
366 return(MG_EUNDEF);
367 xf_xfmpoint(v, cv->p);
368 putv(v);
369 }
370 return(MG_OK);
371 }
372
373
374 int
375 r_ies( /* convert an IES luminaire file */
376 int ac,
377 char **av
378 )
379 {
380 int xa0 = 2;
381 char combuf[128];
382 char fname[48];
383 char *oname;
384 register char *op;
385 register int i;
386 /* check argument count */
387 if (ac < 2)
388 return(MG_EARGC);
389 /* construct output file name */
390 if ((op = strrchr(av[1], '/')) != NULL)
391 op++;
392 else
393 op = av[1];
394 (void)strcpy(fname, op);
395 if ((op = strrchr(fname, '.')) == NULL)
396 op = fname + strlen(fname);
397 (void)strcpy(op, ".rad");
398 /* see if we need to run ies2rad */
399 if (access(fname, 0) == -1) {
400 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
401 op = combuf + 7; /* get -m option (first) */
402 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
403 if (!isflt(av[xa0+1]))
404 return(MG_ETYPE);
405 op = addarg(addarg(op, "-m"), av[xa0+1]);
406 xa0 += 2;
407 }
408 *op++ = ' '; /* build IES filename */
409 i = 0;
410 if (mg_file != NULL &&
411 (oname = strrchr(mg_file->fname,'/')) != NULL) {
412 i = oname - mg_file->fname + 1;
413 (void)strcpy(op, mg_file->fname);
414 }
415 (void)strcpy(op+i, av[1]);
416 if (access(op, 0) == -1) /* check for file existence */
417 return(MG_ENOFILE);
418 system(combuf); /* run ies2rad */
419 if (access(fname, 0) == -1) /* check success */
420 return(MG_EINCL);
421 }
422 printf("\n!xform"); /* put out xform command */
423 oname = object();
424 if (*oname) {
425 printf(" -n ");
426 for (op = oname; op[1]; op++) /* remove trailing separator */
427 putchar(*op);
428 }
429 for (i = xa0; i < ac; i++)
430 printf(" %s", av[i]);
431 if (ac > xa0 && xf_argc > 0)
432 printf(" -i 1");
433 for (i = 0; i < xf_argc; i++)
434 printf(" %s", xf_argv[i]);
435 printf(" %s\n", fname);
436 return(MG_OK);
437 }
438
439
440 void
441 do_tri( /* put out smoothed triangle */
442 char *mat,
443 C_VERTEX *cv1,
444 C_VERTEX *cv2,
445 C_VERTEX *cv3,
446 int iv
447 )
448 {
449 static int ntris;
450 BARYCCM bvecs;
451 RREAL bcoor[3][3];
452 C_VERTEX *cvt;
453 FVECT v1, v2, v3;
454 FVECT n1, n2, n3;
455 register int i;
456
457 if (iv) { /* swap vertex order if inverted */
458 cvt = cv1;
459 cv1 = cv3;
460 cv3 = cvt;
461 }
462 xf_xfmpoint(v1, cv1->p);
463 xf_xfmpoint(v2, cv2->p);
464 xf_xfmpoint(v3, cv3->p);
465 /* compute barycentric coords. */
466 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
467 return; /* degenerate triangle! */
468 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
469 printf("4 dx dy dz %s\n0\n", TCALNAME);
470 xf_rotvect(n1, cv1->n);
471 xf_rotvect(n2, cv2->n);
472 xf_rotvect(n3, cv3->n);
473 for (i = 0; i < 3; i++) {
474 bcoor[i][0] = n1[i];
475 bcoor[i][1] = n2[i];
476 bcoor[i][2] = n3[i];
477 }
478 put_baryc(&bvecs, bcoor, 3);
479 /* put out triangle */
480 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
481 printf("0\n0\n9\n");
482 putv(v1);
483 putv(v2);
484 putv(v3);
485 }
486
487
488 void
489 putsided(char *mname) /* print out mixfunc for sided material */
490 {
491 fprintf(matfp, "\nvoid mixfunc %s\n", mname);
492 fprintf(matfp, "4 %s void if(Rdot,1,0) .\n0\n0\n", mname);
493 }
494
495
496 char *
497 material(void) /* get (and print) current material */
498 {
499 char *mname = "mat";
500 COLOR radrgb, c2;
501 double d;
502
503 if (c_cmname != NULL)
504 mname = c_cmname;
505 if (!c_cmaterial->clock)
506 return(mname); /* already current */
507 /* else update output */
508 c_cmaterial->clock = 0;
509 if (c_cmaterial->ed > .1) { /* emitter */
510 cvtcolor(radrgb, &c_cmaterial->ed_c,
511 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
512 if (glowdist < FHUGE) { /* do a glow */
513 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
514 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
515 colval(radrgb,GRN),
516 colval(radrgb,BLU), glowdist);
517 } else {
518 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
519 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
520 colval(radrgb,GRN),
521 colval(radrgb,BLU));
522 }
523 return(mname);
524 }
525 d = c_cmaterial->rd + c_cmaterial->td +
526 c_cmaterial->rs + c_cmaterial->ts;
527 if ((d < 0.) | (d > 1.))
528 return(NULL);
529 /* check for glass/dielectric */
530 if (c_cmaterial->nr > 1.1 &&
531 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
532 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
533 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
534 cvtcolor(radrgb, &c_cmaterial->ts_c,
535 c_cmaterial->ts + c_cmaterial->rs);
536 if (c_cmaterial->sided) { /* dielectric */
537 colval(radrgb,RED) = pow(colval(radrgb,RED),
538 1./C_1SIDEDTHICK);
539 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
540 1./C_1SIDEDTHICK);
541 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
542 1./C_1SIDEDTHICK);
543 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
544 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
545 colval(radrgb,GRN), colval(radrgb,BLU),
546 c_cmaterial->nr);
547 return(mname);
548 }
549 /* glass */
550 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
551 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
552 colval(radrgb,GRN), colval(radrgb,BLU),
553 c_cmaterial->nr);
554 return(mname);
555 }
556 /* check for trans */
557 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
558 double a5, a6;
559 /* average colors */
560 d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts;
561 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
562 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
563 addcolor(radrgb, c2);
564 cvtcolor(c2, &c_cmaterial->ts_c, c_cmaterial->ts/d);
565 addcolor(radrgb, c2);
566 if (c_cmaterial->rs + c_cmaterial->ts > .0001)
567 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
568 c_cmaterial->ts*c_cmaterial->ts_a) /
569 (c_cmaterial->rs + c_cmaterial->ts);
570 a6 = (c_cmaterial->td + c_cmaterial->ts) /
571 (c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts);
572 if (a6 < .999)
573 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
574 else
575 d = c_cmaterial->td + c_cmaterial->ts;
576 scalecolor(radrgb, d);
577 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
578 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
579 colval(radrgb,GRN), colval(radrgb,BLU));
580 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
581 c_cmaterial->ts/(c_cmaterial->ts + c_cmaterial->td));
582 if (c_cmaterial->sided)
583 putsided(mname);
584 return(mname);
585 }
586 /* check for plastic */
587 if (c_cmaterial->rs < .1) {
588 cvtcolor(radrgb, &c_cmaterial->rd_c,
589 c_cmaterial->rd/(1.-c_cmaterial->rs));
590 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
591 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
592 colval(radrgb,GRN), colval(radrgb,BLU),
593 c_cmaterial->rs, c_cmaterial->rs_a);
594 if (c_cmaterial->sided)
595 putsided(mname);
596 return(mname);
597 }
598 /* else it's metal */
599 /* average colors */
600 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
601 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
602 addcolor(radrgb, c2);
603 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
604 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
605 colval(radrgb,GRN), colval(radrgb,BLU),
606 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
607 c_cmaterial->rs_a);
608 if (c_cmaterial->sided)
609 putsided(mname);
610 return(mname);
611 }
612
613
614 void
615 cvtcolor( /* convert a CIE XYZ color to RGB */
616 COLOR radrgb,
617 register C_COLOR *ciec,
618 double intensity
619 )
620 {
621 static COLOR ciexyz;
622
623 c_ccvt(ciec, C_CSXY); /* get xy representation */
624 ciexyz[1] = intensity;
625 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
626 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
627 cie_rgb(radrgb, ciexyz);
628 }
629
630
631 char *
632 object(void) /* return current object name */
633 {
634 static char objbuf[64];
635 register int i;
636 register char *cp;
637 int len;
638 /* tracked by obj_handler */
639 i = obj_nnames - sizeof(objbuf)/16;
640 if (i < 0)
641 i = 0;
642 for (cp = objbuf; i < obj_nnames &&
643 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
644 i++, *cp++ = '.') {
645 strcpy(cp, obj_name[i]);
646 cp += len;
647 }
648 *cp = '\0';
649 return(objbuf);
650 }
651
652
653 char *
654 addarg( /* add argument and advance pointer */
655 register char *op,
656 register char *arg
657 )
658 {
659 *op = ' ';
660 while ( (*++op = *arg++) )
661 ;
662 return(op);
663 }