ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.24
Committed: Wed Jun 9 14:06:00 1999 UTC (24 years, 10 months ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 2.23: +3 -1 lines
Log Message:
moved output file initialization into main for Linux non-constant stdout

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Convert MGF (Materials and Geometry Format) to Radiance
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <string.h>
14 #include "mgflib/parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17
18 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19
20 #define invert (xf_context != NULL && xf_context->rev)
21
22 double glowdist = FHUGE; /* glow test distance */
23
24 double emult = 1.; /* emitter multiplier */
25
26 FILE *matfp; /* material output file */
27
28 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29 char *material(), *object(), *addarg();
30
31
32 main(argc, argv) /* convert files to stdout */
33 int argc;
34 char *argv[];
35 {
36 int i;
37
38 matfp = stdout;
39 /* print out parser version */
40 printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
41 /* initialize dispatch table */
42 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
43 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
44 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
45 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
46 mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
47 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
48 mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
49 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
50 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
51 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
52 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
53 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
54 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
55 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
56 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
57 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
58 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
59 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
60 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
61 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
62 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
63 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
64 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
65 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
66 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
67 mg_init(); /* initialize the parser */
68 /* get our options & print header */
69 printf("## %s", argv[0]);
70 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
71 printf(" %s", argv[i]);
72 switch (argv[i][1]) {
73 case 'g': /* glow distance (meters) */
74 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
75 goto userr;
76 glowdist = atof(argv[++i]);
77 printf(" %s", argv[i]);
78 break;
79 case 'e': /* emitter multiplier */
80 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
81 goto userr;
82 emult = atof(argv[++i]);
83 printf(" %s", argv[i]);
84 break;
85 case 'm': /* materials file */
86 matfp = fopen(argv[++i], "a");
87 if (matfp == NULL) {
88 fprintf(stderr, "%s: cannot append\n", argv[i]);
89 exit(1);
90 }
91 printf(" %s", argv[i]);
92 break;
93 default:
94 goto userr;
95 }
96 }
97 putchar('\n');
98 if (i == argc) { /* convert stdin */
99 if (mg_load(NULL) != MG_OK)
100 exit(1);
101 if (mg_nunknown)
102 printf("## %s: %u unknown entities\n",
103 argv[0], mg_nunknown);
104 } else /* convert each file */
105 for ( ; i < argc; i++) {
106 printf("## %s %s ##############################\n",
107 argv[0], argv[i]);
108 if (mg_load(argv[i]) != MG_OK)
109 exit(1);
110 if (mg_nunknown) {
111 printf("## %s %s: %u unknown entities\n",
112 argv[0], argv[i], mg_nunknown);
113 mg_nunknown = 0;
114 }
115 }
116 exit(0);
117 userr:
118 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
119 argv[0]);
120 exit(1);
121 }
122
123
124 int
125 r_comment(ac, av) /* repeat a comment verbatim */
126 register int ac;
127 register char **av;
128 {
129 putchar('#'); /* use Radiance comment character */
130 while (--ac) { /* pass through verbatim */
131 putchar(' ');
132 fputs(*++av, stdout);
133 }
134 putchar('\n');
135 return(MG_OK);
136 }
137
138
139 int
140 r_cone(ac, av) /* put out a cone */
141 int ac;
142 char **av;
143 {
144 static int ncones;
145 char *mat;
146 double r1, r2;
147 C_VERTEX *cv1, *cv2;
148 FVECT p1, p2;
149 int inv;
150 /* check argument count and type */
151 if (ac != 5)
152 return(MG_EARGC);
153 if (!isflt(av[2]) || !isflt(av[4]))
154 return(MG_ETYPE);
155 /* get the endpoint vertices */
156 if ((cv1 = c_getvert(av[1])) == NULL ||
157 (cv2 = c_getvert(av[3])) == NULL)
158 return(MG_EUNDEF);
159 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
160 xf_xfmpoint(p2, cv2->p);
161 r1 = xf_scale(atof(av[2])); /* scale radii */
162 r2 = xf_scale(atof(av[4]));
163 inv = r1 < 0.; /* check for inverted cone */
164 if (r1 == 0.) { /* check for illegal radii */
165 if (r2 == 0.)
166 return(MG_EILL);
167 inv = r2 < 0.;
168 } else if (r2 != 0. && inv ^ r2 < 0.)
169 return(MG_EILL);
170 if (inv) {
171 r1 = -r1;
172 r2 = -r2;
173 }
174 if ((mat = material()) == NULL) /* get material */
175 return(MG_EBADMAT);
176 /* spit the sucker out */
177 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
178 object(), ++ncones);
179 printf("0\n0\n8\n");
180 putv(p1);
181 putv(p2);
182 printf("%18.12g %18.12g\n", r1, r2);
183 return(MG_OK);
184 }
185
186
187 int
188 r_cyl(ac, av) /* put out a cylinder */
189 int ac;
190 char **av;
191 {
192 static int ncyls;
193 char *mat;
194 double rad;
195 C_VERTEX *cv1, *cv2;
196 FVECT p1, p2;
197 int inv;
198 /* check argument count and type */
199 if (ac != 4)
200 return(MG_EARGC);
201 if (!isflt(av[2]))
202 return(MG_ETYPE);
203 /* get the endpoint vertices */
204 if ((cv1 = c_getvert(av[1])) == NULL ||
205 (cv2 = c_getvert(av[3])) == NULL)
206 return(MG_EUNDEF);
207 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
208 xf_xfmpoint(p2, cv2->p);
209 rad = xf_scale(atof(av[2])); /* scale radius */
210 if ((inv = rad < 0.)) /* check for inverted cylinder */
211 rad = -rad;
212 if ((mat = material()) == NULL) /* get material */
213 return(MG_EBADMAT);
214 /* spit out the primitive */
215 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
216 object(), ++ncyls);
217 printf("0\n0\n7\n");
218 putv(p1);
219 putv(p2);
220 printf("%18.12g\n", rad);
221 return(MG_OK);
222 }
223
224
225 int
226 r_sph(ac, av) /* put out a sphere */
227 int ac;
228 char **av;
229 {
230 static int nsphs;
231 char *mat;
232 double rad;
233 C_VERTEX *cv;
234 FVECT cent;
235 int inv;
236 /* check argument count and type */
237 if (ac != 3)
238 return(MG_EARGC);
239 if (!isflt(av[2]))
240 return(MG_ETYPE);
241 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
242 return(MG_EUNDEF);
243 xf_xfmpoint(cent, cv->p); /* transform center */
244 rad = xf_scale(atof(av[2])); /* scale radius */
245 if ((inv = rad < 0.)) /* check for inversion */
246 rad = -rad;
247 if ((mat = material()) == NULL) /* get material */
248 return(MG_EBADMAT);
249 /* spit out primitive */
250 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
251 object(), ++nsphs);
252 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
253 cent[0], cent[1], cent[2], rad);
254 return(MG_OK);
255 }
256
257
258 int
259 r_ring(ac, av) /* put out a ring */
260 int ac;
261 char **av;
262 {
263 static int nrings;
264 char *mat;
265 double r1, r2;
266 C_VERTEX *cv;
267 FVECT cent, norm;
268 /* check argument count and type */
269 if (ac != 4)
270 return(MG_EARGC);
271 if (!isflt(av[2]) || !isflt(av[3]))
272 return(MG_ETYPE);
273 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
274 return(MG_EUNDEF);
275 if (is0vect(cv->n)) /* make sure we have normal */
276 return(MG_EILL);
277 xf_xfmpoint(cent, cv->p); /* transform center */
278 xf_rotvect(norm, cv->n); /* rotate normal */
279 r1 = xf_scale(atof(av[2])); /* scale radii */
280 r2 = xf_scale(atof(av[3]));
281 if (r1 < 0. | r2 <= r1)
282 return(MG_EILL);
283 if ((mat = material()) == NULL) /* get material */
284 return(MG_EBADMAT);
285 /* spit out primitive */
286 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
287 printf("0\n0\n8\n");
288 putv(cent);
289 putv(norm);
290 printf("%18.12g %18.12g\n", r1, r2);
291 return(MG_OK);
292 }
293
294
295 int
296 r_face(ac, av) /* convert a face */
297 int ac;
298 char **av;
299 {
300 static int nfaces;
301 char *mat;
302 register int i;
303 register C_VERTEX *cv;
304 FVECT v;
305 int rv;
306 /* check argument count and type */
307 if (ac < 4)
308 return(MG_EARGC);
309 if ((mat = material()) == NULL) /* get material */
310 return(MG_EBADMAT);
311 if (ac <= 5) { /* check for smoothing */
312 C_VERTEX *cva[5];
313 for (i = 1; i < ac; i++) {
314 if ((cva[i-1] = c_getvert(av[i])) == NULL)
315 return(MG_EUNDEF);
316 if (is0vect(cva[i-1]->n))
317 break;
318 }
319 if (i == ac) {
320 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
321 cva[0]->n, cva[1]->n, cva[2]->n);
322 if (i < 0)
323 return(MG_OK); /* degenerate (error?) */
324 }
325 if (!i) { /* smoothed triangles */
326 do_tri(mat, cva[0], cva[1], cva[2]);
327 if (ac == 5)
328 do_tri(mat, cva[2], cva[3], cva[0]);
329 return(MG_OK);
330 }
331 }
332 /* spit out unsmoothed primitive */
333 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
334 printf("0\n0\n%d\n", 3*(ac-1));
335 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
336 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
337 return(MG_EUNDEF);
338 xf_xfmpoint(v, cv->p);
339 putv(v);
340 }
341 return(MG_OK);
342 }
343
344
345 int
346 r_ies(ac, av) /* convert an IES luminaire file */
347 int ac;
348 char **av;
349 {
350 int xa0 = 2;
351 char combuf[128];
352 char fname[48];
353 char *oname;
354 register char *op;
355 register int i;
356 /* check argument count */
357 if (ac < 2)
358 return(MG_EARGC);
359 /* construct output file name */
360 if ((op = strrchr(av[1], '/')) != NULL)
361 op++;
362 else
363 op = av[1];
364 (void)strcpy(fname, op);
365 if ((op = strrchr(fname, '.')) == NULL)
366 op = fname + strlen(fname);
367 (void)strcpy(op, ".rad");
368 /* see if we need to run ies2rad */
369 if (access(fname, 0) == -1) {
370 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
371 op = combuf + 7; /* get -m option (first) */
372 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
373 if (!isflt(av[xa0+1]))
374 return(MG_ETYPE);
375 op = addarg(addarg(op, "-m"), av[xa0+1]);
376 xa0 += 2;
377 }
378 *op++ = ' '; /* build IES filename */
379 i = 0;
380 if (mg_file != NULL &&
381 (oname = strrchr(mg_file->fname,'/')) != NULL) {
382 i = oname - mg_file->fname + 1;
383 (void)strcpy(op, mg_file->fname);
384 }
385 (void)strcpy(op+i, av[1]);
386 if (access(op, 0) == -1) /* check for file existence */
387 return(MG_ENOFILE);
388 system(combuf); /* run ies2rad */
389 if (access(fname, 0) == -1) /* check success */
390 return(MG_EINCL);
391 }
392 printf("\n!xform"); /* put out xform command */
393 oname = object();
394 if (*oname) {
395 printf(" -n ");
396 for (op = oname; op[1]; op++) /* remove trailing separator */
397 putchar(*op);
398 }
399 for (i = xa0; i < ac; i++)
400 printf(" %s", av[i]);
401 if (ac > xa0 && xf_argc > 0)
402 printf(" -i 1");
403 for (i = 0; i < xf_argc; i++)
404 printf(" %s", xf_argv[i]);
405 printf(" %s\n", fname);
406 return(MG_OK);
407 }
408
409
410 do_tri(mat, cv1, cv2, cv3) /* put out smoothed triangle */
411 char *mat;
412 C_VERTEX *cv1, *cv2, *cv3;
413 {
414 static int ntris;
415 BARYCCM bvecs;
416 FLOAT bcoor[3][3];
417 C_VERTEX *cvt;
418 FVECT v1, v2, v3;
419 FVECT n1, n2, n3;
420 register int i;
421
422 if (invert) { /* swap vertex order if inverted */
423 cvt = cv1;
424 cv1 = cv3;
425 cv3 = cvt;
426 }
427 xf_xfmpoint(v1, cv1->p);
428 xf_xfmpoint(v2, cv2->p);
429 xf_xfmpoint(v3, cv3->p);
430 /* compute barycentric coords. */
431 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
432 return; /* degenerate triangle! */
433 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
434 printf("4 dx dy dz %s\n0\n", TCALNAME);
435 xf_rotvect(n1, cv1->n);
436 xf_rotvect(n2, cv2->n);
437 xf_rotvect(n3, cv3->n);
438 for (i = 0; i < 3; i++) {
439 bcoor[i][0] = n1[i];
440 bcoor[i][1] = n2[i];
441 bcoor[i][2] = n3[i];
442 }
443 put_baryc(&bvecs, bcoor, 3);
444 /* put out triangle */
445 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
446 printf("0\n0\n9\n");
447 putv(v1);
448 putv(v2);
449 putv(v3);
450 }
451
452
453 char *
454 material() /* get (and print) current material */
455 {
456 char *mname = "mat";
457 COLOR radrgb, c2;
458 double d;
459 register int i;
460
461 if (c_cmname != NULL)
462 mname = c_cmname;
463 if (!c_cmaterial->clock)
464 return(mname); /* already current */
465 /* else update output */
466 c_cmaterial->clock = 0;
467 if (c_cmaterial->ed > .1) { /* emitter */
468 cvtcolor(radrgb, &c_cmaterial->ed_c,
469 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
470 if (glowdist < FHUGE) { /* do a glow */
471 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
472 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
473 colval(radrgb,GRN),
474 colval(radrgb,BLU), glowdist);
475 } else {
476 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
477 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
478 colval(radrgb,GRN),
479 colval(radrgb,BLU));
480 }
481 return(mname);
482 }
483 d = c_cmaterial->rd + c_cmaterial->td +
484 c_cmaterial->rs + c_cmaterial->ts;
485 if (d < 0. | d > 1.)
486 return(NULL);
487 /* check for glass/dielectric */
488 if (c_cmaterial->nr > 1.1 &&
489 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
490 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
491 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
492 cvtcolor(radrgb, &c_cmaterial->ts_c,
493 c_cmaterial->ts + c_cmaterial->rs);
494 if (c_cmaterial->sided) { /* dielectric */
495 colval(radrgb,RED) = pow(colval(radrgb,RED),
496 1./C_1SIDEDTHICK);
497 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
498 1./C_1SIDEDTHICK);
499 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
500 1./C_1SIDEDTHICK);
501 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
502 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
503 colval(radrgb,GRN), colval(radrgb,BLU),
504 c_cmaterial->nr);
505 return(mname);
506 }
507 /* glass */
508 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
509 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
510 colval(radrgb,GRN), colval(radrgb,BLU),
511 c_cmaterial->nr);
512 return(mname);
513 }
514 /* check for trans */
515 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
516 double ts, a5, a6;
517
518 if (c_cmaterial->sided) {
519 ts = sqrt(c_cmaterial->ts); /* approximate */
520 a5 = .5;
521 } else {
522 ts = c_cmaterial->ts;
523 a5 = 1.;
524 }
525 /* average colors */
526 d = c_cmaterial->rd + c_cmaterial->td + ts;
527 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
528 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
529 addcolor(radrgb, c2);
530 cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
531 addcolor(radrgb, c2);
532 if (c_cmaterial->rs + ts > .0001)
533 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
534 ts*a5*c_cmaterial->ts_a) /
535 (c_cmaterial->rs + ts);
536 a6 = (c_cmaterial->td + ts) /
537 (c_cmaterial->rd + c_cmaterial->td + ts);
538 if (a6 < .999)
539 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
540 else
541 d = c_cmaterial->td + ts;
542 scalecolor(radrgb, d);
543 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
544 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
545 colval(radrgb,GRN), colval(radrgb,BLU));
546 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
547 ts/(ts + c_cmaterial->td));
548 return(mname);
549 }
550 /* check for plastic */
551 if (c_cmaterial->rs < .1) {
552 cvtcolor(radrgb, &c_cmaterial->rd_c,
553 c_cmaterial->rd/(1.-c_cmaterial->rs));
554 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
555 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
556 colval(radrgb,GRN), colval(radrgb,BLU),
557 c_cmaterial->rs, c_cmaterial->rs_a);
558 return(mname);
559 }
560 /* else it's metal */
561 /* average colors */
562 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
563 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
564 addcolor(radrgb, c2);
565 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
566 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
567 colval(radrgb,GRN), colval(radrgb,BLU),
568 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
569 c_cmaterial->rs_a);
570 return(mname);
571 }
572
573
574 cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
575 COLOR radrgb;
576 register C_COLOR *ciec;
577 double intensity;
578 {
579 static COLOR ciexyz;
580
581 c_ccvt(ciec, C_CSXY); /* get xy representation */
582 ciexyz[1] = intensity;
583 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
584 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
585 cie_rgb(radrgb, ciexyz);
586 }
587
588
589 char *
590 object() /* return current object name */
591 {
592 static char objbuf[64];
593 register int i;
594 register char *cp;
595 int len;
596 /* tracked by obj_handler */
597 i = obj_nnames - sizeof(objbuf)/16;
598 if (i < 0)
599 i = 0;
600 for (cp = objbuf; i < obj_nnames &&
601 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
602 i++, *cp++ = '.') {
603 strcpy(cp, obj_name[i]);
604 cp += len;
605 }
606 *cp = '\0';
607 return(objbuf);
608 }
609
610
611 char *
612 addarg(op, arg) /* add argument and advance pointer */
613 register char *op, *arg;
614 {
615 *op = ' ';
616 while (*++op = *arg++)
617 ;
618 return(op);
619 }