ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.23
Committed: Wed Jul 24 13:07:48 1996 UTC (27 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.22: +21 -16 lines
Log Message:
added check for flat triangles with normals

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Convert MGF (Materials and Geometry Format) to Radiance
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <string.h>
14 #include "mgflib/parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17
18 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19
20 #define invert (xf_context != NULL && xf_context->rev)
21
22 double glowdist = FHUGE; /* glow test distance */
23
24 double emult = 1.; /* emitter multiplier */
25
26 FILE *matfp = stdout; /* material output file */
27
28 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29 char *material(), *object(), *addarg();
30
31
32 main(argc, argv) /* convert files to stdout */
33 int argc;
34 char *argv[];
35 {
36 int i;
37 /* print out parser version */
38 printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
39 /* initialize dispatch table */
40 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
41 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
42 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
43 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
44 mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
45 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
46 mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
47 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
48 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
49 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
50 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
51 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
52 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
53 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
54 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
55 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
56 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
57 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
58 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
59 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
60 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
61 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
62 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
63 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
64 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
65 mg_init(); /* initialize the parser */
66 /* get our options & print header */
67 printf("## %s", argv[0]);
68 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
69 printf(" %s", argv[i]);
70 switch (argv[i][1]) {
71 case 'g': /* glow distance (meters) */
72 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
73 goto userr;
74 glowdist = atof(argv[++i]);
75 printf(" %s", argv[i]);
76 break;
77 case 'e': /* emitter multiplier */
78 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
79 goto userr;
80 emult = atof(argv[++i]);
81 printf(" %s", argv[i]);
82 break;
83 case 'm': /* materials file */
84 matfp = fopen(argv[++i], "a");
85 if (matfp == NULL) {
86 fprintf(stderr, "%s: cannot append\n", argv[i]);
87 exit(1);
88 }
89 printf(" %s", argv[i]);
90 break;
91 default:
92 goto userr;
93 }
94 }
95 putchar('\n');
96 if (i == argc) { /* convert stdin */
97 if (mg_load(NULL) != MG_OK)
98 exit(1);
99 if (mg_nunknown)
100 printf("## %s: %u unknown entities\n",
101 argv[0], mg_nunknown);
102 } else /* convert each file */
103 for ( ; i < argc; i++) {
104 printf("## %s %s ##############################\n",
105 argv[0], argv[i]);
106 if (mg_load(argv[i]) != MG_OK)
107 exit(1);
108 if (mg_nunknown) {
109 printf("## %s %s: %u unknown entities\n",
110 argv[0], argv[i], mg_nunknown);
111 mg_nunknown = 0;
112 }
113 }
114 exit(0);
115 userr:
116 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
117 argv[0]);
118 exit(1);
119 }
120
121
122 int
123 r_comment(ac, av) /* repeat a comment verbatim */
124 register int ac;
125 register char **av;
126 {
127 putchar('#'); /* use Radiance comment character */
128 while (--ac) { /* pass through verbatim */
129 putchar(' ');
130 fputs(*++av, stdout);
131 }
132 putchar('\n');
133 return(MG_OK);
134 }
135
136
137 int
138 r_cone(ac, av) /* put out a cone */
139 int ac;
140 char **av;
141 {
142 static int ncones;
143 char *mat;
144 double r1, r2;
145 C_VERTEX *cv1, *cv2;
146 FVECT p1, p2;
147 int inv;
148 /* check argument count and type */
149 if (ac != 5)
150 return(MG_EARGC);
151 if (!isflt(av[2]) || !isflt(av[4]))
152 return(MG_ETYPE);
153 /* get the endpoint vertices */
154 if ((cv1 = c_getvert(av[1])) == NULL ||
155 (cv2 = c_getvert(av[3])) == NULL)
156 return(MG_EUNDEF);
157 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
158 xf_xfmpoint(p2, cv2->p);
159 r1 = xf_scale(atof(av[2])); /* scale radii */
160 r2 = xf_scale(atof(av[4]));
161 inv = r1 < 0.; /* check for inverted cone */
162 if (r1 == 0.) { /* check for illegal radii */
163 if (r2 == 0.)
164 return(MG_EILL);
165 inv = r2 < 0.;
166 } else if (r2 != 0. && inv ^ r2 < 0.)
167 return(MG_EILL);
168 if (inv) {
169 r1 = -r1;
170 r2 = -r2;
171 }
172 if ((mat = material()) == NULL) /* get material */
173 return(MG_EBADMAT);
174 /* spit the sucker out */
175 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
176 object(), ++ncones);
177 printf("0\n0\n8\n");
178 putv(p1);
179 putv(p2);
180 printf("%18.12g %18.12g\n", r1, r2);
181 return(MG_OK);
182 }
183
184
185 int
186 r_cyl(ac, av) /* put out a cylinder */
187 int ac;
188 char **av;
189 {
190 static int ncyls;
191 char *mat;
192 double rad;
193 C_VERTEX *cv1, *cv2;
194 FVECT p1, p2;
195 int inv;
196 /* check argument count and type */
197 if (ac != 4)
198 return(MG_EARGC);
199 if (!isflt(av[2]))
200 return(MG_ETYPE);
201 /* get the endpoint vertices */
202 if ((cv1 = c_getvert(av[1])) == NULL ||
203 (cv2 = c_getvert(av[3])) == NULL)
204 return(MG_EUNDEF);
205 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
206 xf_xfmpoint(p2, cv2->p);
207 rad = xf_scale(atof(av[2])); /* scale radius */
208 if ((inv = rad < 0.)) /* check for inverted cylinder */
209 rad = -rad;
210 if ((mat = material()) == NULL) /* get material */
211 return(MG_EBADMAT);
212 /* spit out the primitive */
213 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
214 object(), ++ncyls);
215 printf("0\n0\n7\n");
216 putv(p1);
217 putv(p2);
218 printf("%18.12g\n", rad);
219 return(MG_OK);
220 }
221
222
223 int
224 r_sph(ac, av) /* put out a sphere */
225 int ac;
226 char **av;
227 {
228 static int nsphs;
229 char *mat;
230 double rad;
231 C_VERTEX *cv;
232 FVECT cent;
233 int inv;
234 /* check argument count and type */
235 if (ac != 3)
236 return(MG_EARGC);
237 if (!isflt(av[2]))
238 return(MG_ETYPE);
239 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
240 return(MG_EUNDEF);
241 xf_xfmpoint(cent, cv->p); /* transform center */
242 rad = xf_scale(atof(av[2])); /* scale radius */
243 if ((inv = rad < 0.)) /* check for inversion */
244 rad = -rad;
245 if ((mat = material()) == NULL) /* get material */
246 return(MG_EBADMAT);
247 /* spit out primitive */
248 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
249 object(), ++nsphs);
250 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
251 cent[0], cent[1], cent[2], rad);
252 return(MG_OK);
253 }
254
255
256 int
257 r_ring(ac, av) /* put out a ring */
258 int ac;
259 char **av;
260 {
261 static int nrings;
262 char *mat;
263 double r1, r2;
264 C_VERTEX *cv;
265 FVECT cent, norm;
266 /* check argument count and type */
267 if (ac != 4)
268 return(MG_EARGC);
269 if (!isflt(av[2]) || !isflt(av[3]))
270 return(MG_ETYPE);
271 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
272 return(MG_EUNDEF);
273 if (is0vect(cv->n)) /* make sure we have normal */
274 return(MG_EILL);
275 xf_xfmpoint(cent, cv->p); /* transform center */
276 xf_rotvect(norm, cv->n); /* rotate normal */
277 r1 = xf_scale(atof(av[2])); /* scale radii */
278 r2 = xf_scale(atof(av[3]));
279 if (r1 < 0. | r2 <= r1)
280 return(MG_EILL);
281 if ((mat = material()) == NULL) /* get material */
282 return(MG_EBADMAT);
283 /* spit out primitive */
284 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
285 printf("0\n0\n8\n");
286 putv(cent);
287 putv(norm);
288 printf("%18.12g %18.12g\n", r1, r2);
289 return(MG_OK);
290 }
291
292
293 int
294 r_face(ac, av) /* convert a face */
295 int ac;
296 char **av;
297 {
298 static int nfaces;
299 char *mat;
300 register int i;
301 register C_VERTEX *cv;
302 FVECT v;
303 int rv;
304 /* check argument count and type */
305 if (ac < 4)
306 return(MG_EARGC);
307 if ((mat = material()) == NULL) /* get material */
308 return(MG_EBADMAT);
309 if (ac <= 5) { /* check for smoothing */
310 C_VERTEX *cva[5];
311 for (i = 1; i < ac; i++) {
312 if ((cva[i-1] = c_getvert(av[i])) == NULL)
313 return(MG_EUNDEF);
314 if (is0vect(cva[i-1]->n))
315 break;
316 }
317 if (i == ac) {
318 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
319 cva[0]->n, cva[1]->n, cva[2]->n);
320 if (i < 0)
321 return(MG_OK); /* degenerate (error?) */
322 }
323 if (!i) { /* smoothed triangles */
324 do_tri(mat, cva[0], cva[1], cva[2]);
325 if (ac == 5)
326 do_tri(mat, cva[2], cva[3], cva[0]);
327 return(MG_OK);
328 }
329 }
330 /* spit out unsmoothed primitive */
331 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
332 printf("0\n0\n%d\n", 3*(ac-1));
333 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
334 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
335 return(MG_EUNDEF);
336 xf_xfmpoint(v, cv->p);
337 putv(v);
338 }
339 return(MG_OK);
340 }
341
342
343 int
344 r_ies(ac, av) /* convert an IES luminaire file */
345 int ac;
346 char **av;
347 {
348 int xa0 = 2;
349 char combuf[128];
350 char fname[48];
351 char *oname;
352 register char *op;
353 register int i;
354 /* check argument count */
355 if (ac < 2)
356 return(MG_EARGC);
357 /* construct output file name */
358 if ((op = strrchr(av[1], '/')) != NULL)
359 op++;
360 else
361 op = av[1];
362 (void)strcpy(fname, op);
363 if ((op = strrchr(fname, '.')) == NULL)
364 op = fname + strlen(fname);
365 (void)strcpy(op, ".rad");
366 /* see if we need to run ies2rad */
367 if (access(fname, 0) == -1) {
368 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
369 op = combuf + 7; /* get -m option (first) */
370 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
371 if (!isflt(av[xa0+1]))
372 return(MG_ETYPE);
373 op = addarg(addarg(op, "-m"), av[xa0+1]);
374 xa0 += 2;
375 }
376 *op++ = ' '; /* build IES filename */
377 i = 0;
378 if (mg_file != NULL &&
379 (oname = strrchr(mg_file->fname,'/')) != NULL) {
380 i = oname - mg_file->fname + 1;
381 (void)strcpy(op, mg_file->fname);
382 }
383 (void)strcpy(op+i, av[1]);
384 if (access(op, 0) == -1) /* check for file existence */
385 return(MG_ENOFILE);
386 system(combuf); /* run ies2rad */
387 if (access(fname, 0) == -1) /* check success */
388 return(MG_EINCL);
389 }
390 printf("\n!xform"); /* put out xform command */
391 oname = object();
392 if (*oname) {
393 printf(" -n ");
394 for (op = oname; op[1]; op++) /* remove trailing separator */
395 putchar(*op);
396 }
397 for (i = xa0; i < ac; i++)
398 printf(" %s", av[i]);
399 if (ac > xa0 && xf_argc > 0)
400 printf(" -i 1");
401 for (i = 0; i < xf_argc; i++)
402 printf(" %s", xf_argv[i]);
403 printf(" %s\n", fname);
404 return(MG_OK);
405 }
406
407
408 do_tri(mat, cv1, cv2, cv3) /* put out smoothed triangle */
409 char *mat;
410 C_VERTEX *cv1, *cv2, *cv3;
411 {
412 static int ntris;
413 BARYCCM bvecs;
414 FLOAT bcoor[3][3];
415 C_VERTEX *cvt;
416 FVECT v1, v2, v3;
417 FVECT n1, n2, n3;
418 register int i;
419
420 if (invert) { /* swap vertex order if inverted */
421 cvt = cv1;
422 cv1 = cv3;
423 cv3 = cvt;
424 }
425 xf_xfmpoint(v1, cv1->p);
426 xf_xfmpoint(v2, cv2->p);
427 xf_xfmpoint(v3, cv3->p);
428 /* compute barycentric coords. */
429 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
430 return; /* degenerate triangle! */
431 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
432 printf("4 dx dy dz %s\n0\n", TCALNAME);
433 xf_rotvect(n1, cv1->n);
434 xf_rotvect(n2, cv2->n);
435 xf_rotvect(n3, cv3->n);
436 for (i = 0; i < 3; i++) {
437 bcoor[i][0] = n1[i];
438 bcoor[i][1] = n2[i];
439 bcoor[i][2] = n3[i];
440 }
441 put_baryc(&bvecs, bcoor, 3);
442 /* put out triangle */
443 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
444 printf("0\n0\n9\n");
445 putv(v1);
446 putv(v2);
447 putv(v3);
448 }
449
450
451 char *
452 material() /* get (and print) current material */
453 {
454 char *mname = "mat";
455 COLOR radrgb, c2;
456 double d;
457 register int i;
458
459 if (c_cmname != NULL)
460 mname = c_cmname;
461 if (!c_cmaterial->clock)
462 return(mname); /* already current */
463 /* else update output */
464 c_cmaterial->clock = 0;
465 if (c_cmaterial->ed > .1) { /* emitter */
466 cvtcolor(radrgb, &c_cmaterial->ed_c,
467 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
468 if (glowdist < FHUGE) { /* do a glow */
469 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
470 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
471 colval(radrgb,GRN),
472 colval(radrgb,BLU), glowdist);
473 } else {
474 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
475 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
476 colval(radrgb,GRN),
477 colval(radrgb,BLU));
478 }
479 return(mname);
480 }
481 d = c_cmaterial->rd + c_cmaterial->td +
482 c_cmaterial->rs + c_cmaterial->ts;
483 if (d < 0. | d > 1.)
484 return(NULL);
485 /* check for glass/dielectric */
486 if (c_cmaterial->nr > 1.1 &&
487 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
488 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
489 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
490 cvtcolor(radrgb, &c_cmaterial->ts_c,
491 c_cmaterial->ts + c_cmaterial->rs);
492 if (c_cmaterial->sided) { /* dielectric */
493 colval(radrgb,RED) = pow(colval(radrgb,RED),
494 1./C_1SIDEDTHICK);
495 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
496 1./C_1SIDEDTHICK);
497 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
498 1./C_1SIDEDTHICK);
499 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
500 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
501 colval(radrgb,GRN), colval(radrgb,BLU),
502 c_cmaterial->nr);
503 return(mname);
504 }
505 /* glass */
506 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
507 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
508 colval(radrgb,GRN), colval(radrgb,BLU),
509 c_cmaterial->nr);
510 return(mname);
511 }
512 /* check for trans */
513 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
514 double ts, a5, a6;
515
516 if (c_cmaterial->sided) {
517 ts = sqrt(c_cmaterial->ts); /* approximate */
518 a5 = .5;
519 } else {
520 ts = c_cmaterial->ts;
521 a5 = 1.;
522 }
523 /* average colors */
524 d = c_cmaterial->rd + c_cmaterial->td + ts;
525 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
526 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
527 addcolor(radrgb, c2);
528 cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
529 addcolor(radrgb, c2);
530 if (c_cmaterial->rs + ts > .0001)
531 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
532 ts*a5*c_cmaterial->ts_a) /
533 (c_cmaterial->rs + ts);
534 a6 = (c_cmaterial->td + ts) /
535 (c_cmaterial->rd + c_cmaterial->td + ts);
536 if (a6 < .999)
537 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
538 else
539 d = c_cmaterial->td + ts;
540 scalecolor(radrgb, d);
541 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
542 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
543 colval(radrgb,GRN), colval(radrgb,BLU));
544 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
545 ts/(ts + c_cmaterial->td));
546 return(mname);
547 }
548 /* check for plastic */
549 if (c_cmaterial->rs < .1) {
550 cvtcolor(radrgb, &c_cmaterial->rd_c,
551 c_cmaterial->rd/(1.-c_cmaterial->rs));
552 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
553 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
554 colval(radrgb,GRN), colval(radrgb,BLU),
555 c_cmaterial->rs, c_cmaterial->rs_a);
556 return(mname);
557 }
558 /* else it's metal */
559 /* average colors */
560 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
561 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
562 addcolor(radrgb, c2);
563 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
564 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
565 colval(radrgb,GRN), colval(radrgb,BLU),
566 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
567 c_cmaterial->rs_a);
568 return(mname);
569 }
570
571
572 cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
573 COLOR radrgb;
574 register C_COLOR *ciec;
575 double intensity;
576 {
577 static COLOR ciexyz;
578
579 c_ccvt(ciec, C_CSXY); /* get xy representation */
580 ciexyz[1] = intensity;
581 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
582 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
583 cie_rgb(radrgb, ciexyz);
584 }
585
586
587 char *
588 object() /* return current object name */
589 {
590 static char objbuf[64];
591 register int i;
592 register char *cp;
593 int len;
594 /* tracked by obj_handler */
595 i = obj_nnames - sizeof(objbuf)/16;
596 if (i < 0)
597 i = 0;
598 for (cp = objbuf; i < obj_nnames &&
599 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
600 i++, *cp++ = '.') {
601 strcpy(cp, obj_name[i]);
602 cp += len;
603 }
604 *cp = '\0';
605 return(objbuf);
606 }
607
608
609 char *
610 addarg(op, arg) /* add argument and advance pointer */
611 register char *op, *arg;
612 {
613 *op = ' ';
614 while (*++op = *arg++)
615 ;
616 return(op);
617 }