ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.18
Committed: Thu May 11 20:17:56 1995 UTC (28 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.17: +9 -1 lines
Log Message:
added default handling of undefined entities

File Contents

# Content
1 /* Copyright (c) 1995 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Convert MGF (Materials and Geometry Format) to Radiance
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <string.h>
14 #include "mgflib/parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17
18 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19
20 #define invert (xf_context != NULL && xf_context->rev)
21
22 double glowdist = FHUGE; /* glow test distance */
23
24 double emult = 1.; /* emitter multiplier */
25
26 FILE *matfp = stdout; /* material output file */
27
28 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29 char *material(), *object(), *addarg();
30
31
32 main(argc, argv) /* convert files to stdout */
33 int argc;
34 char *argv[];
35 {
36 int i, rv;
37 /* initialize dispatch table */
38 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
39 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
40 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
41 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
42 mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
43 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
44 mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
45 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
46 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
47 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
48 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
49 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
50 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
51 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
52 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
53 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
54 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
55 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
56 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
57 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
58 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
59 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
60 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
61 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
62 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
63 mg_init(); /* initialize the parser */
64 /* get our options & print header */
65 printf("## %s", argv[0]);
66 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
67 printf(" %s", argv[i]);
68 switch (argv[i][1]) {
69 case 'g': /* glow distance (meters) */
70 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
71 goto userr;
72 glowdist = atof(argv[++i]);
73 printf(" %s", argv[i]);
74 break;
75 case 'e': /* emitter multiplier */
76 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
77 goto userr;
78 emult = atof(argv[++i]);
79 printf(" %s", argv[i]);
80 break;
81 case 'm': /* materials file */
82 matfp = fopen(argv[++i], "a");
83 if (matfp == NULL) {
84 fprintf(stderr, "%s: cannot append\n", argv[i]);
85 exit(1);
86 }
87 printf(" %s", argv[i]);
88 break;
89 default:
90 goto userr;
91 }
92 }
93 putchar('\n');
94 if (i == argc) { /* convert stdin */
95 if ((rv = mg_load(NULL)) != MG_OK)
96 exit(1);
97 if (mg_nunknown)
98 printf("## %s: %u unknown entities\n",
99 argv[0], mg_nunknown);
100 } else /* convert each file */
101 for ( ; i < argc; i++) {
102 printf("## %s %s ##############################\n",
103 argv[0], argv[i]);
104 if ((rv = mg_load(argv[i])) != MG_OK)
105 exit(1);
106 if (mg_nunknown) {
107 printf("## %s %s: %u unknown entities\n",
108 argv[0], argv[i], mg_nunknown);
109 mg_nunknown = 0;
110 }
111 }
112 exit(0);
113 userr:
114 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
115 argv[0]);
116 exit(1);
117 }
118
119
120 int
121 r_comment(ac, av) /* repeat a comment verbatim */
122 register int ac;
123 register char **av;
124 {
125 putchar('#'); /* use Radiance comment character */
126 while (--ac) { /* pass through verbatim */
127 putchar(' ');
128 fputs(*++av, stdout);
129 }
130 putchar('\n');
131 return(MG_OK);
132 }
133
134
135 int
136 r_cone(ac, av) /* put out a cone */
137 int ac;
138 char **av;
139 {
140 static int ncones;
141 char *mat;
142 double r1, r2;
143 C_VERTEX *cv1, *cv2;
144 FVECT p1, p2;
145 int inv;
146 /* check argument count and type */
147 if (ac != 5)
148 return(MG_EARGC);
149 if (!isflt(av[2]) || !isflt(av[4]))
150 return(MG_ETYPE);
151 /* get the endpoint vertices */
152 if ((cv1 = c_getvert(av[1])) == NULL ||
153 (cv2 = c_getvert(av[3])) == NULL)
154 return(MG_EUNDEF);
155 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
156 xf_xfmpoint(p2, cv2->p);
157 r1 = xf_scale(atof(av[2])); /* scale radii */
158 r2 = xf_scale(atof(av[4]));
159 inv = r1 < 0.; /* check for inverted cone */
160 if (r1 == 0.) { /* check for illegal radii */
161 if (r2 == 0.)
162 return(MG_EILL);
163 inv = r2 < 0.;
164 } else if (r2 != 0. && inv ^ r2 < 0.)
165 return(MG_EILL);
166 if (inv) {
167 r1 = -r1;
168 r2 = -r2;
169 }
170 if ((mat = material()) == NULL) /* get material */
171 return(MG_EBADMAT);
172 /* spit the sucker out */
173 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
174 object(), ++ncones);
175 printf("0\n0\n8\n");
176 putv(p1);
177 putv(p2);
178 printf("%18.12g %18.12g\n", r1, r2);
179 return(MG_OK);
180 }
181
182
183 int
184 r_cyl(ac, av) /* put out a cylinder */
185 int ac;
186 char **av;
187 {
188 static int ncyls;
189 char *mat;
190 double rad;
191 C_VERTEX *cv1, *cv2;
192 FVECT p1, p2;
193 int inv;
194 /* check argument count and type */
195 if (ac != 4)
196 return(MG_EARGC);
197 if (!isflt(av[2]))
198 return(MG_ETYPE);
199 /* get the endpoint vertices */
200 if ((cv1 = c_getvert(av[1])) == NULL ||
201 (cv2 = c_getvert(av[3])) == NULL)
202 return(MG_EUNDEF);
203 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
204 xf_xfmpoint(p2, cv2->p);
205 rad = xf_scale(atof(av[2])); /* scale radius */
206 if ((inv = rad < 0.)) /* check for inverted cylinder */
207 rad = -rad;
208 if ((mat = material()) == NULL) /* get material */
209 return(MG_EBADMAT);
210 /* spit out the primitive */
211 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
212 object(), ++ncyls);
213 printf("0\n0\n7\n");
214 putv(p1);
215 putv(p2);
216 printf("%18.12g\n", rad);
217 return(MG_OK);
218 }
219
220
221 int
222 r_sph(ac, av) /* put out a sphere */
223 int ac;
224 char **av;
225 {
226 static int nsphs;
227 char *mat;
228 double rad;
229 C_VERTEX *cv;
230 FVECT cent;
231 int inv;
232 /* check argument count and type */
233 if (ac != 3)
234 return(MG_EARGC);
235 if (!isflt(av[2]))
236 return(MG_ETYPE);
237 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
238 return(MG_EUNDEF);
239 xf_xfmpoint(cent, cv->p); /* transform center */
240 rad = xf_scale(atof(av[2])); /* scale radius */
241 if ((inv = rad < 0.)) /* check for inversion */
242 rad = -rad;
243 if ((mat = material()) == NULL) /* get material */
244 return(MG_EBADMAT);
245 /* spit out primitive */
246 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
247 object(), ++nsphs);
248 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
249 cent[0], cent[1], cent[2], rad);
250 return(MG_OK);
251 }
252
253
254 int
255 r_ring(ac, av) /* put out a ring */
256 int ac;
257 char **av;
258 {
259 static int nrings;
260 char *mat;
261 double r1, r2;
262 C_VERTEX *cv;
263 FVECT cent, norm;
264 /* check argument count and type */
265 if (ac != 4)
266 return(MG_EARGC);
267 if (!isflt(av[2]) || !isflt(av[3]))
268 return(MG_ETYPE);
269 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
270 return(MG_EUNDEF);
271 if (is0vect(cv->n)) /* make sure we have normal */
272 return(MG_EILL);
273 xf_xfmpoint(cent, cv->p); /* transform center */
274 xf_rotvect(norm, cv->n); /* rotate normal */
275 r1 = xf_scale(atof(av[2])); /* scale radii */
276 r2 = xf_scale(atof(av[3]));
277 if (r1 < 0. | r2 <= r1)
278 return(MG_EILL);
279 if ((mat = material()) == NULL) /* get material */
280 return(MG_EBADMAT);
281 /* spit out primitive */
282 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
283 printf("0\n0\n8\n");
284 putv(cent);
285 putv(norm);
286 printf("%18.12g %18.12g\n", r1, r2);
287 return(MG_OK);
288 }
289
290
291 int
292 r_face(ac, av) /* convert a face */
293 int ac;
294 char **av;
295 {
296 static int nfaces;
297 char *mat;
298 register int i;
299 register C_VERTEX *cv;
300 FVECT v;
301 int rv;
302 /* check argument count and type */
303 if (ac < 4)
304 return(MG_EARGC);
305 if ((mat = material()) == NULL) /* get material */
306 return(MG_EBADMAT);
307 if (ac <= 5) { /* check for smoothing */
308 for (i = 1; i < ac; i++) {
309 if ((cv = c_getvert(av[i])) == NULL)
310 return(MG_EUNDEF);
311 if (is0vect(cv->n))
312 break;
313 }
314 if (i == ac) { /* break into triangles */
315 do_tri(mat, av[1], av[2], av[3]);
316 if (ac == 5)
317 do_tri(mat, av[3], av[4], av[1]);
318 return(MG_OK);
319 }
320 }
321 /* spit out unsmoothed primitive */
322 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
323 printf("0\n0\n%d\n", 3*(ac-1));
324 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
325 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
326 return(MG_EUNDEF);
327 xf_xfmpoint(v, cv->p);
328 putv(v);
329 }
330 return(MG_OK);
331 }
332
333
334 int
335 r_ies(ac, av) /* convert an IES luminaire file */
336 int ac;
337 char **av;
338 {
339 int xa0 = 2;
340 char combuf[128];
341 char fname[48];
342 char *oname;
343 register char *op;
344 register int i;
345 /* check argument count */
346 if (ac < 2)
347 return(MG_EARGC);
348 /* construct output file name */
349 if ((op = strrchr(av[1], '/')) == NULL)
350 op = av[1];
351 (void)strcpy(fname, op);
352 if ((op = strrchr(fname, '.')) == NULL)
353 op = fname + strlen(fname);
354 (void)strcpy(op, ".rad");
355 /* see if we need to run ies2rad */
356 if (access(fname, 0) == -1) {
357 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
358 op = combuf + 7; /* get -m option (first) */
359 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
360 if (!isflt(av[xa0+1]))
361 return(MG_ETYPE);
362 op = addarg(addarg(op, "-m"), av[xa0+1]);
363 xa0 += 2;
364 }
365 *op++ = ' '; /* build IES filename */
366 i = 0;
367 if (mg_file != NULL &&
368 (oname = strrchr(mg_file->fname,'/')) != NULL) {
369 i = oname - mg_file->fname + 1;
370 (void)strcpy(op, mg_file->fname);
371 }
372 (void)strcpy(op+i, av[1]);
373 if (access(op, 0) == -1) /* check for file existence */
374 return(MG_ENOFILE);
375 system(combuf); /* run ies2rad */
376 if (access(fname, 0) == -1) /* check success */
377 return(MG_EINCL);
378 }
379 printf("\n!xform"); /* put out xform command */
380 oname = object();
381 if (*oname) {
382 printf(" -n ");
383 for (op = oname; op[1]; op++) /* remove trailing separator */
384 putchar(*op);
385 }
386 for (i = xa0; i < ac; i++)
387 printf(" %s", av[i]);
388 if (ac > xa0 && xf_argc > 0)
389 printf(" -i 1");
390 for (i = 0; i < xf_argc; i++)
391 printf(" %s", xf_argv[i]);
392 printf(" %s\n", fname);
393 return(MG_OK);
394 }
395
396
397 do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */
398 char *mat, *vn1, *vn2, *vn3;
399 {
400 static int ntris;
401 BARYCCM bvecs;
402 FLOAT bcoor[3][3];
403 C_VERTEX *cv1, *cv2, *cv3;
404 FVECT v1, v2, v3;
405 FVECT n1, n2, n3;
406 register int i;
407 /* the following is repeat code, so assume it's OK */
408 cv2 = c_getvert(vn2);
409 if (invert) {
410 cv3 = c_getvert(vn1);
411 cv1 = c_getvert(vn3);
412 } else {
413 cv1 = c_getvert(vn1);
414 cv3 = c_getvert(vn3);
415 }
416 xf_xfmpoint(v1, cv1->p);
417 xf_xfmpoint(v2, cv2->p);
418 xf_xfmpoint(v3, cv3->p);
419 /* compute barycentric coords. */
420 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
421 return; /* degenerate triangle! */
422 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
423 printf("4 dx dy dz %s\n0\n", TCALNAME);
424 xf_rotvect(n1, cv1->n);
425 xf_rotvect(n2, cv2->n);
426 xf_rotvect(n3, cv3->n);
427 for (i = 0; i < 3; i++) {
428 bcoor[i][0] = n1[i];
429 bcoor[i][1] = n2[i];
430 bcoor[i][2] = n3[i];
431 }
432 put_baryc(&bvecs, bcoor, 3);
433 /* put out triangle */
434 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
435 printf("0\n0\n9\n");
436 putv(v1);
437 putv(v2);
438 putv(v3);
439 }
440
441
442 char *
443 material() /* get (and print) current material */
444 {
445 char *mname = "mat";
446 COLOR radrgb, c2;
447 double d;
448 register int i;
449
450 if (c_cmname != NULL)
451 mname = c_cmname;
452 if (!c_cmaterial->clock)
453 return(mname); /* already current */
454 /* else update output */
455 c_cmaterial->clock = 0;
456 if (c_cmaterial->ed > .1) { /* emitter */
457 cvtcolor(radrgb, &c_cmaterial->ed_c,
458 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
459 if (glowdist < FHUGE) { /* do a glow */
460 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
461 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
462 colval(radrgb,GRN),
463 colval(radrgb,BLU), glowdist);
464 } else {
465 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
466 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
467 colval(radrgb,GRN),
468 colval(radrgb,BLU));
469 }
470 return(mname);
471 }
472 d = c_cmaterial->rd + c_cmaterial->td +
473 c_cmaterial->rs + c_cmaterial->ts;
474 if (d < 0. | d > 1.)
475 return(NULL);
476 /* check for glass/dielectric */
477 if (c_cmaterial->nr > 1.1 &&
478 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
479 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
480 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
481 cvtcolor(radrgb, &c_cmaterial->ts_c,
482 c_cmaterial->ts + c_cmaterial->rs);
483 if (c_cmaterial->sided) { /* dielectric */
484 colval(radrgb,RED) = pow(colval(radrgb,RED),
485 1./C_1SIDEDTHICK);
486 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
487 1./C_1SIDEDTHICK);
488 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
489 1./C_1SIDEDTHICK);
490 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
491 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
492 colval(radrgb,GRN), colval(radrgb,BLU),
493 c_cmaterial->nr);
494 return(mname);
495 }
496 /* glass */
497 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
498 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
499 colval(radrgb,GRN), colval(radrgb,BLU),
500 c_cmaterial->nr);
501 return(mname);
502 }
503 /* check for trans */
504 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
505 double ts, a5, a6;
506
507 if (c_cmaterial->sided) {
508 ts = sqrt(c_cmaterial->ts); /* approximate */
509 a5 = .5;
510 } else {
511 ts = c_cmaterial->ts;
512 a5 = 1.;
513 }
514 /* average colors */
515 d = c_cmaterial->rd + c_cmaterial->td + ts;
516 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
517 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
518 addcolor(radrgb, c2);
519 cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
520 addcolor(radrgb, c2);
521 if (c_cmaterial->rs + ts > .0001)
522 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
523 ts*a5*c_cmaterial->ts_a) /
524 (c_cmaterial->rs + ts);
525 a6 = (c_cmaterial->td + ts) /
526 (c_cmaterial->rd + c_cmaterial->td + ts);
527 if (a6 < .999)
528 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
529 else
530 d = c_cmaterial->td + ts;
531 scalecolor(radrgb, d);
532 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
533 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
534 colval(radrgb,GRN), colval(radrgb,BLU));
535 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
536 ts/(ts + c_cmaterial->td));
537 return(mname);
538 }
539 /* check for plastic */
540 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .01 ||
541 c_isgrey(&c_cmaterial->rs_c))) {
542 cvtcolor(radrgb, &c_cmaterial->rd_c,
543 c_cmaterial->rd/(1.-c_cmaterial->rs));
544 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
545 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
546 colval(radrgb,GRN), colval(radrgb,BLU),
547 c_cmaterial->rs, c_cmaterial->rs_a);
548 return(mname);
549 }
550 /* else it's metal */
551 /* average colors */
552 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
553 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
554 addcolor(radrgb, c2);
555 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
556 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
557 colval(radrgb,GRN), colval(radrgb,BLU),
558 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
559 c_cmaterial->rs_a);
560 return(mname);
561 }
562
563
564 cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
565 COLOR radrgb;
566 register C_COLOR *ciec;
567 double intensity;
568 {
569 static COLOR ciexyz;
570
571 c_ccvt(ciec, C_CSXY); /* get xy representation */
572 ciexyz[1] = intensity;
573 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
574 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
575 cie_rgb(radrgb, ciexyz);
576 }
577
578
579 char *
580 object() /* return current object name */
581 {
582 static char objbuf[64];
583 register int i;
584 register char *cp;
585 int len;
586 /* tracked by obj_handler */
587 i = obj_nnames - sizeof(objbuf)/16;
588 if (i < 0)
589 i = 0;
590 for (cp = objbuf; i < obj_nnames &&
591 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
592 i++, *cp++ = '.') {
593 strcpy(cp, obj_name[i]);
594 cp += len;
595 }
596 *cp = '\0';
597 return(objbuf);
598 }
599
600
601 char *
602 addarg(op, arg) /* add argument and advance pointer */
603 register char *op, *arg;
604 {
605 *op = ' ';
606 while (*++op = *arg++)
607 ;
608 return(op);
609 }