ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.15
Committed: Fri Apr 14 10:47:50 1995 UTC (29 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +12 -5 lines
Log Message:
fixed bug in ies conversion routine for getting file context

File Contents

# Content
1 /* Copyright (c) 1994 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Convert MGF (Materials and Geometry Format) to Radiance
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <string.h>
14 #include "mgflib/parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17
18 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19
20 #define invert (xf_context != NULL && xf_context->rev)
21
22 double glowdist = FHUGE; /* glow test distance */
23
24 double emult = 1.; /* emitter multiplier */
25
26 FILE *matfp = stdout; /* material output file */
27
28 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29 char *material(), *object(), *addarg();
30
31
32 main(argc, argv) /* convert files to stdout */
33 int argc;
34 char *argv[];
35 {
36 int i, rv;
37 /* initialize dispatch table */
38 mg_ehand[MG_E_COMMENT] = r_comment;
39 mg_ehand[MG_E_COLOR] = c_hcolor;
40 mg_ehand[MG_E_CONE] = r_cone;
41 mg_ehand[MG_E_CMIX] = c_hcolor;
42 mg_ehand[MG_E_CSPEC] = c_hcolor;
43 mg_ehand[MG_E_CXY] = c_hcolor;
44 mg_ehand[MG_E_CCT] = c_hcolor;
45 mg_ehand[MG_E_CYL] = r_cyl;
46 mg_ehand[MG_E_ED] = c_hmaterial;
47 mg_ehand[MG_E_FACE] = r_face;
48 mg_ehand[MG_E_IES] = r_ies;
49 mg_ehand[MG_E_IR] = c_hmaterial;
50 mg_ehand[MG_E_MATERIAL] = c_hmaterial;
51 mg_ehand[MG_E_NORMAL] = c_hvertex;
52 mg_ehand[MG_E_OBJECT] = obj_handler;
53 mg_ehand[MG_E_POINT] = c_hvertex;
54 mg_ehand[MG_E_RD] = c_hmaterial;
55 mg_ehand[MG_E_RING] = r_ring;
56 mg_ehand[MG_E_RS] = c_hmaterial;
57 mg_ehand[MG_E_SIDES] = c_hmaterial;
58 mg_ehand[MG_E_SPH] = r_sph;
59 mg_ehand[MG_E_TD] = c_hmaterial;
60 mg_ehand[MG_E_TS] = c_hmaterial;
61 mg_ehand[MG_E_VERTEX] = c_hvertex;
62 mg_ehand[MG_E_XF] = xf_handler;
63 mg_init(); /* initialize the parser */
64 /* get options & print header */
65 printf("## %s", argv[0]);
66 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
67 printf(" %s", argv[i]);
68 switch (argv[i][1]) {
69 case 'g': /* glow distance (meters) */
70 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
71 goto userr;
72 glowdist = atof(argv[++i]);
73 printf(" %s", argv[i]);
74 break;
75 case 'e': /* emitter multiplier */
76 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
77 goto userr;
78 emult = atof(argv[++i]);
79 printf(" %s", argv[i]);
80 break;
81 case 'm': /* materials file */
82 matfp = fopen(argv[++i], "a");
83 if (matfp == NULL) {
84 fprintf(stderr, "%s: cannot append\n", argv[i]);
85 exit(1);
86 }
87 printf(" %s", argv[i]);
88 break;
89 default:
90 goto userr;
91 }
92 }
93 putchar('\n');
94 if (i == argc) { /* convert stdin */
95 if ((rv = mg_load(NULL)) != MG_OK)
96 exit(1);
97 } else /* convert each file */
98 for ( ; i < argc; i++) {
99 printf("## %s %s ##############################\n",
100 argv[0], argv[i]);
101 if ((rv = mg_load(argv[i])) != MG_OK)
102 exit(1);
103 }
104 exit(0);
105 userr:
106 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
107 argv[0]);
108 exit(1);
109 }
110
111
112 int
113 r_comment(ac, av) /* repeat a comment verbatim */
114 register int ac;
115 register char **av;
116 {
117 putchar('#'); /* use Radiance comment character */
118 while (--ac) {
119 putchar(' ');
120 fputs(*++av, stdout);
121 }
122 putchar('\n');
123 return(MG_OK);
124 }
125
126
127 int
128 r_cone(ac, av) /* put out a cone */
129 int ac;
130 char **av;
131 {
132 static int ncones;
133 char *mat;
134 double r1, r2;
135 C_VERTEX *cv1, *cv2;
136 FVECT p1, p2;
137 int inv;
138
139 if (ac != 5)
140 return(MG_EARGC);
141 if (!isflt(av[2]) || !isflt(av[4]))
142 return(MG_ETYPE);
143 if ((cv1 = c_getvert(av[1])) == NULL ||
144 (cv2 = c_getvert(av[3])) == NULL)
145 return(MG_EUNDEF);
146 xf_xfmpoint(p1, cv1->p);
147 xf_xfmpoint(p2, cv2->p);
148 r1 = xf_scale(atof(av[2]));
149 r2 = xf_scale(atof(av[4]));
150 inv = r1 < 0.;
151 if (r1 == 0.) {
152 if (r2 == 0.)
153 return(MG_EILL);
154 inv = r2 < 0.;
155 } else if (r2 != 0. && inv ^ r2 < 0.)
156 return(MG_EILL);
157 if (inv) {
158 r1 = -r1;
159 r2 = -r2;
160 }
161 if ((mat = material()) == NULL)
162 return(MG_EBADMAT);
163 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
164 object(), ++ncones);
165 printf("0\n0\n8\n");
166 putv(p1);
167 putv(p2);
168 printf("%18.12g %18.12g\n", r1, r2);
169 return(MG_OK);
170 }
171
172
173 int
174 r_cyl(ac, av) /* put out a cylinder */
175 int ac;
176 char **av;
177 {
178 static int ncyls;
179 char *mat;
180 double rad;
181 C_VERTEX *cv1, *cv2;
182 FVECT p1, p2;
183 int inv;
184
185 if (ac != 4)
186 return(MG_EARGC);
187 if (!isflt(av[2]))
188 return(MG_ETYPE);
189 if ((cv1 = c_getvert(av[1])) == NULL ||
190 (cv2 = c_getvert(av[3])) == NULL)
191 return(MG_EUNDEF);
192 xf_xfmpoint(p1, cv1->p);
193 xf_xfmpoint(p2, cv2->p);
194 rad = xf_scale(atof(av[2]));
195 if ((inv = rad < 0.))
196 rad = -rad;
197 if ((mat = material()) == NULL)
198 return(MG_EBADMAT);
199 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
200 object(), ++ncyls);
201 printf("0\n0\n7\n");
202 putv(p1);
203 putv(p2);
204 printf("%18.12g\n", rad);
205 return(MG_OK);
206 }
207
208
209 int
210 r_sph(ac, av) /* put out a sphere */
211 int ac;
212 char **av;
213 {
214 static int nsphs;
215 char *mat;
216 double rad;
217 C_VERTEX *cv;
218 FVECT cent;
219 int inv;
220
221 if (ac != 3)
222 return(MG_EARGC);
223 if (!isflt(av[2]))
224 return(MG_ETYPE);
225 if ((cv = c_getvert(av[1])) == NULL)
226 return(MG_EUNDEF);
227 xf_xfmpoint(cent, cv->p);
228 rad = xf_scale(atof(av[2]));
229 if ((inv = rad < 0.))
230 rad = -rad;
231 if ((mat = material()) == NULL)
232 return(MG_EBADMAT);
233 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
234 object(), ++nsphs);
235 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
236 cent[0], cent[1], cent[2], rad);
237 return(MG_OK);
238 }
239
240
241 int
242 r_ring(ac, av) /* put out a ring */
243 int ac;
244 char **av;
245 {
246 static int nrings;
247 char *mat;
248 double r1, r2;
249 C_VERTEX *cv;
250 FVECT cent, norm;
251
252 if (ac != 4)
253 return(MG_EARGC);
254 if (!isflt(av[2]) || !isflt(av[3]))
255 return(MG_ETYPE);
256 if ((cv = c_getvert(av[1])) == NULL)
257 return(MG_EUNDEF);
258 if (is0vect(cv->n))
259 return(MG_EILL);
260 xf_xfmpoint(cent, cv->p);
261 xf_rotvect(norm, cv->n);
262 r1 = xf_scale(atof(av[2]));
263 r2 = xf_scale(atof(av[3]));
264 if (r1 < 0. | r2 <= r1)
265 return(MG_EILL);
266 if ((mat = material()) == NULL)
267 return(MG_EBADMAT);
268 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
269 printf("0\n0\n8\n");
270 putv(cent);
271 putv(norm);
272 printf("%18.12g %18.12g\n", r1, r2);
273 return(MG_OK);
274 }
275
276
277 int
278 r_face(ac, av) /* convert a face */
279 int ac;
280 char **av;
281 {
282 static int nfaces;
283 char *mat;
284 register int i;
285 register C_VERTEX *cv;
286 FVECT v;
287 int rv;
288
289 if (ac < 4)
290 return(MG_EARGC);
291 if ((mat = material()) == NULL)
292 return(MG_EBADMAT);
293 if (ac <= 5) { /* check for surface normals */
294 for (i = 1; i < ac; i++) {
295 if ((cv = c_getvert(av[i])) == NULL)
296 return(MG_EUNDEF);
297 if (is0vect(cv->n))
298 break;
299 }
300 if (i == ac) { /* break into triangles */
301 do_tri(mat, av[1], av[2], av[3]);
302 if (ac == 5)
303 do_tri(mat, av[3], av[4], av[1]);
304 return(MG_OK);
305 }
306 }
307 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
308 printf("0\n0\n%d\n", 3*(ac-1));
309 for (i = 1; i < ac; i++) {
310 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
311 return(MG_EUNDEF);
312 xf_xfmpoint(v, cv->p);
313 putv(v);
314 }
315 return(MG_OK);
316 }
317
318
319 int
320 r_ies(ac, av) /* convert an IES luminaire file */
321 int ac;
322 char **av;
323 {
324 int xa0 = 2;
325 char combuf[128];
326 char fname[48];
327 char *oname;
328 register char *op;
329 register int i;
330
331 if (ac < 2)
332 return(MG_EARGC);
333 (void)strcpy(combuf, "ies2rad");
334 op = combuf + 7; /* get -m option (must be first) */
335 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
336 if (!isflt(av[xa0+1]))
337 return(MG_ETYPE);
338 op = addarg(addarg(op, "-m"), av[xa0+1]);
339 xa0 += 2;
340 }
341 *op++ = ' '; /* build IES filename */
342 i = 0;
343 if (mg_file != NULL &&
344 (oname = strrchr(mg_file->fname, '/')) != NULL) {
345 i = oname - mg_file->fname + 1;
346 (void)strcpy(op, mg_file->fname);
347 }
348 (void)strcpy(op+i, av[1]);
349 if (access(op, 0) == -1)
350 return(MG_ENOFILE);
351 system(combuf); /* run ies2rad */
352 /* now let's find the output file */
353 if ((op = strrchr(av[1], '/')) == NULL)
354 op = av[1];
355 (void)strcpy(fname, op);
356 if ((op = strrchr(fname, '.')) == NULL)
357 op = fname + strlen(fname);
358 (void)strcpy(op, ".rad");
359 if (access(fname, 0) == -1)
360 return(MG_EINCL);
361 /* put out xform command */
362 printf("\n!xform");
363 oname = object();
364 if (*oname) {
365 printf(" -n ");
366 for (op = oname; op[1]; op++) /* remove trailing separator */
367 putchar(*op);
368 }
369 for (i = xa0; i < ac; i++)
370 printf(" %s", av[i]);
371 if (ac > xa0 && xf_argc > 0)
372 printf(" -i 1");
373 for (i = 0; i < xf_argc; i++)
374 printf(" %s", xf_argv[i]);
375 printf(" %s\n", fname);
376 return(MG_OK);
377 }
378
379
380 do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */
381 char *mat, *vn1, *vn2, *vn3;
382 {
383 static int ntris;
384 BARYCCM bvecs;
385 FLOAT bcoor[3][3];
386 C_VERTEX *cv1, *cv2, *cv3;
387 FVECT v1, v2, v3;
388 FVECT n1, n2, n3;
389 register int i;
390 /* the following is repeat code, so assume it's OK */
391 cv2 = c_getvert(vn2);
392 if (invert) {
393 cv3 = c_getvert(vn1);
394 cv1 = c_getvert(vn3);
395 } else {
396 cv1 = c_getvert(vn1);
397 cv3 = c_getvert(vn3);
398 }
399 xf_xfmpoint(v1, cv1->p);
400 xf_xfmpoint(v2, cv2->p);
401 xf_xfmpoint(v3, cv3->p);
402 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
403 return; /* degenerate triangle! */
404 printf("\n%s texfunc T-nor\n", mat);
405 printf("4 dx dy dz %s\n0\n", TCALNAME);
406 xf_rotvect(n1, cv1->n);
407 xf_rotvect(n2, cv2->n);
408 xf_rotvect(n3, cv3->n);
409 for (i = 0; i < 3; i++) {
410 bcoor[i][0] = n1[i];
411 bcoor[i][1] = n2[i];
412 bcoor[i][2] = n3[i];
413 }
414 put_baryc(&bvecs, bcoor, 3);
415 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
416 printf("0\n0\n9\n");
417 putv(v1);
418 putv(v2);
419 putv(v3);
420 }
421
422
423 char *
424 material() /* get (and print) current material */
425 {
426 char *mname = "mat";
427 COLOR radrgb, c2;
428 double d;
429 register int i;
430
431 if (c_cmname != NULL)
432 mname = c_cmname;
433 if (!c_cmaterial->clock)
434 return(mname); /* already current */
435 /* else update output */
436 c_cmaterial->clock = 0;
437 if (c_cmaterial->ed > .1) { /* emitter */
438 cvtcolor(radrgb, &c_cmaterial->ed_c,
439 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
440 if (glowdist < FHUGE) { /* do a glow */
441 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
442 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
443 colval(radrgb,GRN),
444 colval(radrgb,BLU), glowdist);
445 } else {
446 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
447 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
448 colval(radrgb,GRN),
449 colval(radrgb,BLU));
450 }
451 return(mname);
452 }
453 d = c_cmaterial->rd + c_cmaterial->td +
454 c_cmaterial->rs + c_cmaterial->ts;
455 if (d < 0. | d > 1.)
456 return(NULL);
457 /* check for glass/dielectric */
458 if (c_cmaterial->nr > 1.1 &&
459 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
460 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
461 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
462 cvtcolor(radrgb, &c_cmaterial->ts_c,
463 c_cmaterial->ts + c_cmaterial->rs);
464 if (c_cmaterial->sided) { /* dielectric */
465 colval(radrgb,RED) = pow(colval(radrgb,RED),
466 1./C_1SIDEDTHICK);
467 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
468 1./C_1SIDEDTHICK);
469 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
470 1./C_1SIDEDTHICK);
471 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
472 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
473 colval(radrgb,GRN), colval(radrgb,BLU),
474 c_cmaterial->nr);
475 return(mname);
476 }
477 /* glass */
478 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
479 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
480 colval(radrgb,GRN), colval(radrgb,BLU),
481 c_cmaterial->nr);
482 return(mname);
483 }
484 /* check for trans */
485 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
486 double ts, a5, a6;
487
488 if (c_cmaterial->sided) {
489 ts = sqrt(c_cmaterial->ts); /* approximate */
490 a5 = .5;
491 } else {
492 ts = c_cmaterial->ts;
493 a5 = 1.;
494 }
495 /* average colors */
496 d = c_cmaterial->rd + c_cmaterial->td + ts;
497 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
498 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
499 addcolor(radrgb, c2);
500 cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
501 addcolor(radrgb, c2);
502 if (c_cmaterial->rs + ts > .0001)
503 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
504 ts*a5*c_cmaterial->ts_a) /
505 (c_cmaterial->rs + ts);
506 a6 = (c_cmaterial->td + ts) /
507 (c_cmaterial->rd + c_cmaterial->td + ts);
508 if (a6 < .999)
509 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
510 else
511 d = c_cmaterial->td + ts;
512 scalecolor(radrgb, d);
513 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
514 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
515 colval(radrgb,GRN), colval(radrgb,BLU));
516 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
517 ts/(ts + c_cmaterial->td));
518 return(mname);
519 }
520 /* check for plastic */
521 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .01 ||
522 c_isgrey(&c_cmaterial->rs_c))) {
523 cvtcolor(radrgb, &c_cmaterial->rd_c,
524 c_cmaterial->rd/(1.-c_cmaterial->rs));
525 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
526 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
527 colval(radrgb,GRN), colval(radrgb,BLU),
528 c_cmaterial->rs, c_cmaterial->rs_a);
529 return(mname);
530 }
531 /* else it's metal */
532 /* average colors */
533 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
534 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
535 addcolor(radrgb, c2);
536 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
537 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
538 colval(radrgb,GRN), colval(radrgb,BLU),
539 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
540 c_cmaterial->rs_a);
541 return(mname);
542 }
543
544
545 cvtcolor(radrgb, ciec, intensity) /* convert a CIE color to Radiance */
546 COLOR radrgb;
547 register C_COLOR *ciec;
548 double intensity;
549 {
550 static COLOR ciexyz;
551
552 c_ccvt(ciec, C_CSXY); /* get xy representation */
553 ciexyz[1] = intensity;
554 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
555 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
556 cie_rgb(radrgb, ciexyz);
557 }
558
559
560 char *
561 object() /* return current object name */
562 {
563 static char objbuf[64];
564 register int i;
565 register char *cp;
566 int len;
567
568 i = obj_nnames - sizeof(objbuf)/16;
569 if (i < 0)
570 i = 0;
571 for (cp = objbuf; i < obj_nnames &&
572 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
573 i++, *cp++ = '.') {
574 strcpy(cp, obj_name[i]);
575 cp += len;
576 }
577 *cp = '\0';
578 return(objbuf);
579 }
580
581
582 char *
583 addarg(op, arg) /* add argument and advance pointer */
584 register char *op, *arg;
585 {
586 *op = ' ';
587 while (*++op = *arg++)
588 ;
589 return(op);
590 }