--- ray/src/cv/mgf2rad.c 1994/07/01 10:20:19 2.5 +++ ray/src/cv/mgf2rad.c 1996/07/24 13:07:48 2.23 @@ -1,4 +1,4 @@ -/* Copyright (c) 1994 Regents of the University of California */ +/* Copyright (c) 1996 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; @@ -17,10 +17,14 @@ static char SCCSid[] = "$SunId$ LBL"; #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2]) +#define invert (xf_context != NULL && xf_context->rev) + double glowdist = FHUGE; /* glow test distance */ -double emult = 1.; /* emmitter multiplier */ +double emult = 1.; /* emitter multiplier */ +FILE *matfp = stdout; /* material output file */ + int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph(); char *material(), *object(), *addarg(); @@ -29,66 +33,87 @@ main(argc, argv) /* convert files to stdout */ int argc; char *argv[]; { - int i, rv; + int i; + /* print out parser version */ + printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR); /* initialize dispatch table */ - mg_ehand[MG_E_COMMENT] = r_comment; - mg_ehand[MG_E_COLOR] = c_hcolor; - mg_ehand[MG_E_CONE] = r_cone; - mg_ehand[MG_E_CMIX] = c_hcolor; - mg_ehand[MG_E_CSPEC] = c_hcolor; - mg_ehand[MG_E_CXY] = c_hcolor; - mg_ehand[MG_E_CYL] = r_cyl; - mg_ehand[MG_E_ED] = c_hmaterial; - mg_ehand[MG_E_FACE] = r_face; - mg_ehand[MG_E_IES] = r_ies; - mg_ehand[MG_E_MATERIAL] = c_hmaterial; - mg_ehand[MG_E_NORMAL] = c_hvertex; - mg_ehand[MG_E_OBJECT] = obj_handler; - mg_ehand[MG_E_POINT] = c_hvertex; - mg_ehand[MG_E_RD] = c_hmaterial; - mg_ehand[MG_E_RING] = r_ring; - mg_ehand[MG_E_RS] = c_hmaterial; - mg_ehand[MG_E_SPH] = r_sph; - mg_ehand[MG_E_TD] = c_hmaterial; - mg_ehand[MG_E_TS] = c_hmaterial; - mg_ehand[MG_E_VERTEX] = c_hvertex; - mg_ehand[MG_E_XF] = xf_handler; + mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */ + mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */ + mg_ehand[MG_E_CONE] = r_cone; /* we do cones */ + mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */ + mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */ + mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */ + mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */ + mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */ + mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */ + mg_ehand[MG_E_FACE] = r_face; /* we do faces */ + mg_ehand[MG_E_IES] = r_ies; /* we do IES files */ + mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */ + mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */ + mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */ + mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */ + mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */ + mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */ + mg_ehand[MG_E_RING] = r_ring; /* we do rings */ + mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */ + mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */ + mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */ + mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */ + mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */ + mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */ + mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */ mg_init(); /* initialize the parser */ - /* get options & print header */ + /* get our options & print header */ printf("## %s", argv[0]); for (i = 1; i < argc && argv[i][0] == '-'; i++) { printf(" %s", argv[i]); switch (argv[i][1]) { case 'g': /* glow distance (meters) */ - if (argv[i][2] || badarg(argc-i, argv+i, "f")) + if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f")) goto userr; glowdist = atof(argv[++i]); printf(" %s", argv[i]); break; case 'e': /* emitter multiplier */ - if (argv[i][2] || badarg(argc-i, argv+i, "f")) + if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f")) goto userr; emult = atof(argv[++i]); printf(" %s", argv[i]); break; + case 'm': /* materials file */ + matfp = fopen(argv[++i], "a"); + if (matfp == NULL) { + fprintf(stderr, "%s: cannot append\n", argv[i]); + exit(1); + } + printf(" %s", argv[i]); + break; default: goto userr; } } putchar('\n'); if (i == argc) { /* convert stdin */ - if ((rv = mg_load(NULL)) != MG_OK) + if (mg_load(NULL) != MG_OK) exit(1); + if (mg_nunknown) + printf("## %s: %u unknown entities\n", + argv[0], mg_nunknown); } else /* convert each file */ for ( ; i < argc; i++) { printf("## %s %s ##############################\n", argv[0], argv[i]); - if ((rv = mg_load(argv[i])) != MG_OK) + if (mg_load(argv[i]) != MG_OK) exit(1); + if (mg_nunknown) { + printf("## %s %s: %u unknown entities\n", + argv[0], argv[i], mg_nunknown); + mg_nunknown = 0; + } } exit(0); userr: - fprintf(stderr, "Usage: %s [-g dist][-m mult] [file.mgf] ..\n", + fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n", argv[0]); exit(1); } @@ -99,8 +124,8 @@ r_comment(ac, av) /* repeat a comment verbatim */ register int ac; register char **av; { - fputs("\n#", stdout); /* use Radiance comment character */ - while (--ac) { + putchar('#'); /* use Radiance comment character */ + while (--ac) { /* pass through verbatim */ putchar(' '); fputs(*++av, stdout); } @@ -120,20 +145,21 @@ char **av; C_VERTEX *cv1, *cv2; FVECT p1, p2; int inv; - + /* check argument count and type */ if (ac != 5) return(MG_EARGC); if (!isflt(av[2]) || !isflt(av[4])) return(MG_ETYPE); + /* get the endpoint vertices */ if ((cv1 = c_getvert(av[1])) == NULL || (cv2 = c_getvert(av[3])) == NULL) return(MG_EUNDEF); - xf_xfmpoint(p1, cv1->p); + xf_xfmpoint(p1, cv1->p); /* transform endpoints */ xf_xfmpoint(p2, cv2->p); - r1 = xf_scale(atof(av[2])); + r1 = xf_scale(atof(av[2])); /* scale radii */ r2 = xf_scale(atof(av[4])); - inv = r1 < 0.; - if (r1 == 0.) { + inv = r1 < 0.; /* check for inverted cone */ + if (r1 == 0.) { /* check for illegal radii */ if (r2 == 0.) return(MG_EILL); inv = r2 < 0.; @@ -143,8 +169,9 @@ char **av; r1 = -r1; r2 = -r2; } - if ((mat = material()) == NULL) + if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); + /* spit the sucker out */ printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone", object(), ++ncones); printf("0\n0\n8\n"); @@ -166,21 +193,23 @@ char **av; C_VERTEX *cv1, *cv2; FVECT p1, p2; int inv; - + /* check argument count and type */ if (ac != 4) return(MG_EARGC); if (!isflt(av[2])) return(MG_ETYPE); + /* get the endpoint vertices */ if ((cv1 = c_getvert(av[1])) == NULL || (cv2 = c_getvert(av[3])) == NULL) return(MG_EUNDEF); - xf_xfmpoint(p1, cv1->p); + xf_xfmpoint(p1, cv1->p); /* transform endpoints */ xf_xfmpoint(p2, cv2->p); - rad = xf_scale(atof(av[2])); - if ((inv = rad < 0.)) + rad = xf_scale(atof(av[2])); /* scale radius */ + if ((inv = rad < 0.)) /* check for inverted cylinder */ rad = -rad; - if ((mat = material()) == NULL) + if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); + /* spit out the primitive */ printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder", object(), ++ncyls); printf("0\n0\n7\n"); @@ -202,19 +231,20 @@ char **av; C_VERTEX *cv; FVECT cent; int inv; - + /* check argument count and type */ if (ac != 3) return(MG_EARGC); if (!isflt(av[2])) return(MG_ETYPE); - if ((cv = c_getvert(av[1])) == NULL) + if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */ return(MG_EUNDEF); - xf_xfmpoint(cent, cv->p); - rad = xf_scale(atof(av[2])); - if ((inv = rad < 0.)) + xf_xfmpoint(cent, cv->p); /* transform center */ + rad = xf_scale(atof(av[2])); /* scale radius */ + if ((inv = rad < 0.)) /* check for inversion */ rad = -rad; - if ((mat = material()) == NULL) + if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); + /* spit out primitive */ printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere", object(), ++nsphs); printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n", @@ -233,23 +263,24 @@ char **av; double r1, r2; C_VERTEX *cv; FVECT cent, norm; - + /* check argument count and type */ if (ac != 4) return(MG_EARGC); if (!isflt(av[2]) || !isflt(av[3])) return(MG_ETYPE); - if ((cv = c_getvert(av[1])) == NULL) + if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */ return(MG_EUNDEF); - if (is0vect(cv->n)) + if (is0vect(cv->n)) /* make sure we have normal */ return(MG_EILL); - xf_xfmpoint(cent, cv->p); - xf_rotvect(norm, cv->n); - r1 = xf_scale(atof(av[2])); + xf_xfmpoint(cent, cv->p); /* transform center */ + xf_rotvect(norm, cv->n); /* rotate normal */ + r1 = xf_scale(atof(av[2])); /* scale radii */ r2 = xf_scale(atof(av[3])); if (r1 < 0. | r2 <= r1) return(MG_EILL); - if ((mat = material()) == NULL) + if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); + /* spit out primitive */ printf("\n%s ring %sr%d\n", mat, object(), ++nrings); printf("0\n0\n8\n"); putv(cent); @@ -270,29 +301,37 @@ char **av; register C_VERTEX *cv; FVECT v; int rv; - + /* check argument count and type */ if (ac < 4) return(MG_EARGC); - if ((mat = material()) == NULL) + if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); - if (ac <= 5) { /* check for surface normals */ + if (ac <= 5) { /* check for smoothing */ + C_VERTEX *cva[5]; for (i = 1; i < ac; i++) { - if ((cv = c_getvert(av[i])) == NULL) + if ((cva[i-1] = c_getvert(av[i])) == NULL) return(MG_EUNDEF); - if (is0vect(cv->n)) + if (is0vect(cva[i-1]->n)) break; } - if (i == ac) { /* break into triangles */ - do_tri(mat, av[1], av[2], av[3]); + if (i == ac) { + i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p, + cva[0]->n, cva[1]->n, cva[2]->n); + if (i < 0) + return(MG_OK); /* degenerate (error?) */ + } + if (!i) { /* smoothed triangles */ + do_tri(mat, cva[0], cva[1], cva[2]); if (ac == 5) - do_tri(mat, av[3], av[4], av[1]); + do_tri(mat, cva[2], cva[3], cva[0]); return(MG_OK); } } + /* spit out unsmoothed primitive */ printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces); printf("0\n0\n%d\n", 3*(ac-1)); - for (i = 1; i < ac; i++) { - if ((cv = c_getvert(av[i])) == NULL) + for (i = 1; i < ac; i++) { /* get, transform, print each vertex */ + if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL) return(MG_EUNDEF); xf_xfmpoint(v, cv->p); putv(v); @@ -301,43 +340,54 @@ char **av; } +int r_ies(ac, av) /* convert an IES luminaire file */ int ac; char **av; { int xa0 = 2; - char combuf[72]; + char combuf[128]; char fname[48]; char *oname; register char *op; register int i; - + /* check argument count */ if (ac < 2) return(MG_EARGC); - (void)strcpy(combuf, "ies2rad"); - op = combuf + 7; - if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) { - if (!isflt(av[xa0+1])) - return(MG_ETYPE); - op = addarg(addarg(op, "-m"), av[xa0+1]); - xa0 += 2; - } - if (access(av[1], 0) == -1) - return(MG_ENOFILE); - *op++ = ' '; /* IES filename goes last */ - (void)strcpy(op, av[1]); - system(combuf); /* run ies2rad */ - /* now let's find the output file */ - if ((op = strrchr(av[1], '/')) == NULL) + /* construct output file name */ + if ((op = strrchr(av[1], '/')) != NULL) + op++; + else op = av[1]; (void)strcpy(fname, op); if ((op = strrchr(fname, '.')) == NULL) op = fname + strlen(fname); (void)strcpy(op, ".rad"); - if (access(fname, 0) == -1) - return(MG_EINCL); - /* put out xform command */ - printf("\n!xform"); + /* see if we need to run ies2rad */ + if (access(fname, 0) == -1) { + (void)strcpy(combuf, "ies2rad");/* build ies2rad command */ + op = combuf + 7; /* get -m option (first) */ + if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) { + if (!isflt(av[xa0+1])) + return(MG_ETYPE); + op = addarg(addarg(op, "-m"), av[xa0+1]); + xa0 += 2; + } + *op++ = ' '; /* build IES filename */ + i = 0; + if (mg_file != NULL && + (oname = strrchr(mg_file->fname,'/')) != NULL) { + i = oname - mg_file->fname + 1; + (void)strcpy(op, mg_file->fname); + } + (void)strcpy(op+i, av[1]); + if (access(op, 0) == -1) /* check for file existence */ + return(MG_ENOFILE); + system(combuf); /* run ies2rad */ + if (access(fname, 0) == -1) /* check success */ + return(MG_EINCL); + } + printf("\n!xform"); /* put out xform command */ oname = object(); if (*oname) { printf(" -n "); @@ -355,26 +405,30 @@ char **av; } -do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */ -char *mat, *vn1, *vn2, *vn3; +do_tri(mat, cv1, cv2, cv3) /* put out smoothed triangle */ +char *mat; +C_VERTEX *cv1, *cv2, *cv3; { static int ntris; BARYCCM bvecs; FLOAT bcoor[3][3]; - C_VERTEX *cv1, *cv2, *cv3; + C_VERTEX *cvt; FVECT v1, v2, v3; FVECT n1, n2, n3; register int i; - /* the following is repeat code, so assume it's OK */ - cv1 = c_getvert(vn1); - cv2 = c_getvert(vn2); - cv3 = c_getvert(vn3); + + if (invert) { /* swap vertex order if inverted */ + cvt = cv1; + cv1 = cv3; + cv3 = cvt; + } xf_xfmpoint(v1, cv1->p); xf_xfmpoint(v2, cv2->p); xf_xfmpoint(v3, cv3->p); + /* compute barycentric coords. */ if (comp_baryc(&bvecs, v1, v2, v3) < 0) return; /* degenerate triangle! */ - printf("\n%s texfunc T-nor\n", mat); + printf("\n%s texfunc T-nor\n", mat); /* put out texture */ printf("4 dx dy dz %s\n0\n", TCALNAME); xf_rotvect(n1, cv1->n); xf_rotvect(n2, cv2->n); @@ -385,6 +439,7 @@ char *mat, *vn1, *vn2, *vn3; bcoor[i][2] = n3[i]; } put_baryc(&bvecs, bcoor, 3); + /* put out triangle */ printf("\nT-nor polygon %st%d\n", object(), ++ntris); printf("0\n0\n9\n"); putv(v1); @@ -409,15 +464,15 @@ material() /* get (and print) current material */ c_cmaterial->clock = 0; if (c_cmaterial->ed > .1) { /* emitter */ cvtcolor(radrgb, &c_cmaterial->ed_c, - emult*c_cmaterial->ed/WHTEFFICACY); + emult*c_cmaterial->ed/(PI*WHTEFFICACY)); if (glowdist < FHUGE) { /* do a glow */ - printf("\nvoid glow %s\n0\n0\n", mname); - printf("4 %f %f %f %f\n", colval(radrgb,RED), + fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname); + fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), glowdist); } else { - printf("\nvoid light %s\n0\n0\n", mname); - printf("3 %f %f %f\n", colval(radrgb,RED), + fprintf(matfp, "\nvoid light %s\n0\n0\n", mname); + fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU)); } @@ -425,13 +480,46 @@ material() /* get (and print) current material */ } d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->rs + c_cmaterial->ts; - if (d <= 0. | d >= 1.) + if (d < 0. | d > 1.) return(NULL); + /* check for glass/dielectric */ + if (c_cmaterial->nr > 1.1 && + c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 && + c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 && + c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) { + cvtcolor(radrgb, &c_cmaterial->ts_c, + c_cmaterial->ts + c_cmaterial->rs); + if (c_cmaterial->sided) { /* dielectric */ + colval(radrgb,RED) = pow(colval(radrgb,RED), + 1./C_1SIDEDTHICK); + colval(radrgb,GRN) = pow(colval(radrgb,GRN), + 1./C_1SIDEDTHICK); + colval(radrgb,BLU) = pow(colval(radrgb,BLU), + 1./C_1SIDEDTHICK); + fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname); + fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED), + colval(radrgb,GRN), colval(radrgb,BLU), + c_cmaterial->nr); + return(mname); + } + /* glass */ + fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname); + fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED), + colval(radrgb,GRN), colval(radrgb,BLU), + c_cmaterial->nr); + return(mname); + } /* check for trans */ if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) { double ts, a5, a6; - ts = sqrt(c_cmaterial->ts); /* because we use 2 sides */ + if (c_cmaterial->sided) { + ts = sqrt(c_cmaterial->ts); /* approximate */ + a5 = .5; + } else { + ts = c_cmaterial->ts; + a5 = 1.; + } /* average colors */ d = c_cmaterial->rd + c_cmaterial->td + ts; cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d); @@ -441,52 +529,47 @@ material() /* get (and print) current material */ addcolor(radrgb, c2); if (c_cmaterial->rs + ts > .0001) a5 = (c_cmaterial->rs*c_cmaterial->rs_a + - ts*.5*c_cmaterial->ts_a) / + ts*a5*c_cmaterial->ts_a) / (c_cmaterial->rs + ts); a6 = (c_cmaterial->td + ts) / (c_cmaterial->rd + c_cmaterial->td + ts); - if (a6 < .999) { + if (a6 < .999) d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6); - scalecolor(radrgb, d); - } - printf("\nvoid trans %s\n0\n0\n", mname); - printf("7 %f %f %f\n", colval(radrgb,RED), + else + d = c_cmaterial->td + ts; + scalecolor(radrgb, d); + fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname); + fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU)); - printf("\t%f %f %f %f\n", c_cmaterial->rs, a5, a6, + fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6, ts/(ts + c_cmaterial->td)); return(mname); } /* check for plastic */ - if (c_cmaterial->rs < .01 || c_isgrey(&c_cmaterial->rs_c)) { - if (c_cmaterial->rs > .999) - cvtcolor(radrgb, &c_cmaterial->rd_c, 1.); - else - cvtcolor(radrgb, &c_cmaterial->rd_c, + if (c_cmaterial->rs < .1) { + cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/(1.-c_cmaterial->rs)); - printf("\nvoid plastic %s\n0\n0\n", mname); - printf("5 %f %f %f %f %f\n", colval(radrgb,RED), + fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname); + fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), c_cmaterial->rs, c_cmaterial->rs_a); return(mname); } /* else it's metal */ - d = c_cmaterial->rd + c_cmaterial->rs; /* average colors */ - cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d); - cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs/d); + /* average colors */ + cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd); + cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs); addcolor(radrgb, c2); - if (c_cmaterial->rs < .999) { - d = c_cmaterial->rd/(1. - c_cmaterial->rs); - scalecolor(radrgb, d); - } - printf("\nvoid metal %s\n0\n0\n", mname); - printf("5 %f %f %f %f %f\n", colval(radrgb,RED), + fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname); + fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), - c_cmaterial->rs, c_cmaterial->rs_a); + c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs), + c_cmaterial->rs_a); return(mname); } -cvtcolor(radrgb, ciec, intensity) /* convert a CIE color to Radiance */ +cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */ COLOR radrgb; register C_COLOR *ciec; double intensity; @@ -508,7 +591,7 @@ object() /* return current object name */ register int i; register char *cp; int len; - + /* tracked by obj_handler */ i = obj_nnames - sizeof(objbuf)/16; if (i < 0) i = 0;