1 |
/* Copyright (c) 1994 Regents of the University of California */ |
2 |
|
3 |
#ifndef lint |
4 |
static char SCCSid[] = "$SunId$ LBL"; |
5 |
#endif |
6 |
|
7 |
/* |
8 |
* Convert MGF (Materials and Geometry Format) to Radiance |
9 |
*/ |
10 |
|
11 |
#include <stdio.h> |
12 |
#include <math.h> |
13 |
#include <string.h> |
14 |
#include "mgflib/parser.h" |
15 |
#include "color.h" |
16 |
#include "tmesh.h" |
17 |
|
18 |
#define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2]) |
19 |
|
20 |
#define invert (xf_context != NULL && xf_context->rev) |
21 |
|
22 |
double glowdist = FHUGE; /* glow test distance */ |
23 |
|
24 |
double emult = 1.; /* emitter multiplier */ |
25 |
|
26 |
FILE *matfp = stdout; /* material output file */ |
27 |
|
28 |
int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph(); |
29 |
char *material(), *object(), *addarg(); |
30 |
|
31 |
|
32 |
main(argc, argv) /* convert files to stdout */ |
33 |
int argc; |
34 |
char *argv[]; |
35 |
{ |
36 |
int i, rv; |
37 |
/* initialize dispatch table */ |
38 |
mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */ |
39 |
mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */ |
40 |
mg_ehand[MG_E_CONE] = r_cone; /* we do cones */ |
41 |
mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */ |
42 |
mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */ |
43 |
mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */ |
44 |
mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */ |
45 |
mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */ |
46 |
mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */ |
47 |
mg_ehand[MG_E_FACE] = r_face; /* we do faces */ |
48 |
mg_ehand[MG_E_IES] = r_ies; /* we do IES files */ |
49 |
mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */ |
50 |
mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */ |
51 |
mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */ |
52 |
mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */ |
53 |
mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */ |
54 |
mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */ |
55 |
mg_ehand[MG_E_RING] = r_ring; /* we do rings */ |
56 |
mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */ |
57 |
mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */ |
58 |
mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */ |
59 |
mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */ |
60 |
mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */ |
61 |
mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */ |
62 |
mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */ |
63 |
mg_init(); /* initialize the parser */ |
64 |
/* get our options & print header */ |
65 |
printf("## %s", argv[0]); |
66 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
67 |
printf(" %s", argv[i]); |
68 |
switch (argv[i][1]) { |
69 |
case 'g': /* glow distance (meters) */ |
70 |
if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f")) |
71 |
goto userr; |
72 |
glowdist = atof(argv[++i]); |
73 |
printf(" %s", argv[i]); |
74 |
break; |
75 |
case 'e': /* emitter multiplier */ |
76 |
if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f")) |
77 |
goto userr; |
78 |
emult = atof(argv[++i]); |
79 |
printf(" %s", argv[i]); |
80 |
break; |
81 |
case 'm': /* materials file */ |
82 |
matfp = fopen(argv[++i], "a"); |
83 |
if (matfp == NULL) { |
84 |
fprintf(stderr, "%s: cannot append\n", argv[i]); |
85 |
exit(1); |
86 |
} |
87 |
printf(" %s", argv[i]); |
88 |
break; |
89 |
default: |
90 |
goto userr; |
91 |
} |
92 |
} |
93 |
putchar('\n'); |
94 |
if (i == argc) { /* convert stdin */ |
95 |
if ((rv = mg_load(NULL)) != MG_OK) |
96 |
exit(1); |
97 |
} else /* convert each file */ |
98 |
for ( ; i < argc; i++) { |
99 |
printf("## %s %s ##############################\n", |
100 |
argv[0], argv[i]); |
101 |
if ((rv = mg_load(argv[i])) != MG_OK) |
102 |
exit(1); |
103 |
} |
104 |
exit(0); |
105 |
userr: |
106 |
fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n", |
107 |
argv[0]); |
108 |
exit(1); |
109 |
} |
110 |
|
111 |
|
112 |
int |
113 |
r_comment(ac, av) /* repeat a comment verbatim */ |
114 |
register int ac; |
115 |
register char **av; |
116 |
{ |
117 |
putchar('#'); /* use Radiance comment character */ |
118 |
while (--ac) { /* pass through verbatim */ |
119 |
putchar(' '); |
120 |
fputs(*++av, stdout); |
121 |
} |
122 |
putchar('\n'); |
123 |
return(MG_OK); |
124 |
} |
125 |
|
126 |
|
127 |
int |
128 |
r_cone(ac, av) /* put out a cone */ |
129 |
int ac; |
130 |
char **av; |
131 |
{ |
132 |
static int ncones; |
133 |
char *mat; |
134 |
double r1, r2; |
135 |
C_VERTEX *cv1, *cv2; |
136 |
FVECT p1, p2; |
137 |
int inv; |
138 |
/* check argument count and type */ |
139 |
if (ac != 5) |
140 |
return(MG_EARGC); |
141 |
if (!isflt(av[2]) || !isflt(av[4])) |
142 |
return(MG_ETYPE); |
143 |
/* get the endpoint vertices */ |
144 |
if ((cv1 = c_getvert(av[1])) == NULL || |
145 |
(cv2 = c_getvert(av[3])) == NULL) |
146 |
return(MG_EUNDEF); |
147 |
xf_xfmpoint(p1, cv1->p); /* transform endpoints */ |
148 |
xf_xfmpoint(p2, cv2->p); |
149 |
r1 = xf_scale(atof(av[2])); /* scale radii */ |
150 |
r2 = xf_scale(atof(av[4])); |
151 |
inv = r1 < 0.; /* check for inverted cone */ |
152 |
if (r1 == 0.) { /* check for illegal radii */ |
153 |
if (r2 == 0.) |
154 |
return(MG_EILL); |
155 |
inv = r2 < 0.; |
156 |
} else if (r2 != 0. && inv ^ r2 < 0.) |
157 |
return(MG_EILL); |
158 |
if (inv) { |
159 |
r1 = -r1; |
160 |
r2 = -r2; |
161 |
} |
162 |
if ((mat = material()) == NULL) /* get material */ |
163 |
return(MG_EBADMAT); |
164 |
/* spit the sucker out */ |
165 |
printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone", |
166 |
object(), ++ncones); |
167 |
printf("0\n0\n8\n"); |
168 |
putv(p1); |
169 |
putv(p2); |
170 |
printf("%18.12g %18.12g\n", r1, r2); |
171 |
return(MG_OK); |
172 |
} |
173 |
|
174 |
|
175 |
int |
176 |
r_cyl(ac, av) /* put out a cylinder */ |
177 |
int ac; |
178 |
char **av; |
179 |
{ |
180 |
static int ncyls; |
181 |
char *mat; |
182 |
double rad; |
183 |
C_VERTEX *cv1, *cv2; |
184 |
FVECT p1, p2; |
185 |
int inv; |
186 |
/* check argument count and type */ |
187 |
if (ac != 4) |
188 |
return(MG_EARGC); |
189 |
if (!isflt(av[2])) |
190 |
return(MG_ETYPE); |
191 |
/* get the endpoint vertices */ |
192 |
if ((cv1 = c_getvert(av[1])) == NULL || |
193 |
(cv2 = c_getvert(av[3])) == NULL) |
194 |
return(MG_EUNDEF); |
195 |
xf_xfmpoint(p1, cv1->p); /* transform endpoints */ |
196 |
xf_xfmpoint(p2, cv2->p); |
197 |
rad = xf_scale(atof(av[2])); /* scale radius */ |
198 |
if ((inv = rad < 0.)) /* check for inverted cylinder */ |
199 |
rad = -rad; |
200 |
if ((mat = material()) == NULL) /* get material */ |
201 |
return(MG_EBADMAT); |
202 |
/* spit out the primitive */ |
203 |
printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder", |
204 |
object(), ++ncyls); |
205 |
printf("0\n0\n7\n"); |
206 |
putv(p1); |
207 |
putv(p2); |
208 |
printf("%18.12g\n", rad); |
209 |
return(MG_OK); |
210 |
} |
211 |
|
212 |
|
213 |
int |
214 |
r_sph(ac, av) /* put out a sphere */ |
215 |
int ac; |
216 |
char **av; |
217 |
{ |
218 |
static int nsphs; |
219 |
char *mat; |
220 |
double rad; |
221 |
C_VERTEX *cv; |
222 |
FVECT cent; |
223 |
int inv; |
224 |
/* check argument count and type */ |
225 |
if (ac != 3) |
226 |
return(MG_EARGC); |
227 |
if (!isflt(av[2])) |
228 |
return(MG_ETYPE); |
229 |
if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */ |
230 |
return(MG_EUNDEF); |
231 |
xf_xfmpoint(cent, cv->p); /* transform center */ |
232 |
rad = xf_scale(atof(av[2])); /* scale radius */ |
233 |
if ((inv = rad < 0.)) /* check for inversion */ |
234 |
rad = -rad; |
235 |
if ((mat = material()) == NULL) /* get material */ |
236 |
return(MG_EBADMAT); |
237 |
/* spit out primitive */ |
238 |
printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere", |
239 |
object(), ++nsphs); |
240 |
printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n", |
241 |
cent[0], cent[1], cent[2], rad); |
242 |
return(MG_OK); |
243 |
} |
244 |
|
245 |
|
246 |
int |
247 |
r_ring(ac, av) /* put out a ring */ |
248 |
int ac; |
249 |
char **av; |
250 |
{ |
251 |
static int nrings; |
252 |
char *mat; |
253 |
double r1, r2; |
254 |
C_VERTEX *cv; |
255 |
FVECT cent, norm; |
256 |
/* check argument count and type */ |
257 |
if (ac != 4) |
258 |
return(MG_EARGC); |
259 |
if (!isflt(av[2]) || !isflt(av[3])) |
260 |
return(MG_ETYPE); |
261 |
if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */ |
262 |
return(MG_EUNDEF); |
263 |
if (is0vect(cv->n)) /* make sure we have normal */ |
264 |
return(MG_EILL); |
265 |
xf_xfmpoint(cent, cv->p); /* transform center */ |
266 |
xf_rotvect(norm, cv->n); /* rotate normal */ |
267 |
r1 = xf_scale(atof(av[2])); /* scale radii */ |
268 |
r2 = xf_scale(atof(av[3])); |
269 |
if (r1 < 0. | r2 <= r1) |
270 |
return(MG_EILL); |
271 |
if ((mat = material()) == NULL) /* get material */ |
272 |
return(MG_EBADMAT); |
273 |
/* spit out primitive */ |
274 |
printf("\n%s ring %sr%d\n", mat, object(), ++nrings); |
275 |
printf("0\n0\n8\n"); |
276 |
putv(cent); |
277 |
putv(norm); |
278 |
printf("%18.12g %18.12g\n", r1, r2); |
279 |
return(MG_OK); |
280 |
} |
281 |
|
282 |
|
283 |
int |
284 |
r_face(ac, av) /* convert a face */ |
285 |
int ac; |
286 |
char **av; |
287 |
{ |
288 |
static int nfaces; |
289 |
char *mat; |
290 |
register int i; |
291 |
register C_VERTEX *cv; |
292 |
FVECT v; |
293 |
int rv; |
294 |
/* check argument count and type */ |
295 |
if (ac < 4) |
296 |
return(MG_EARGC); |
297 |
if ((mat = material()) == NULL) /* get material */ |
298 |
return(MG_EBADMAT); |
299 |
if (ac <= 5) { /* check for smoothing */ |
300 |
for (i = 1; i < ac; i++) { |
301 |
if ((cv = c_getvert(av[i])) == NULL) |
302 |
return(MG_EUNDEF); |
303 |
if (is0vect(cv->n)) |
304 |
break; |
305 |
} |
306 |
if (i == ac) { /* break into triangles */ |
307 |
do_tri(mat, av[1], av[2], av[3]); |
308 |
if (ac == 5) |
309 |
do_tri(mat, av[3], av[4], av[1]); |
310 |
return(MG_OK); |
311 |
} |
312 |
} |
313 |
/* spit out unsmoothed primitive */ |
314 |
printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces); |
315 |
printf("0\n0\n%d\n", 3*(ac-1)); |
316 |
for (i = 1; i < ac; i++) { /* get, transform, print each vertex */ |
317 |
if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL) |
318 |
return(MG_EUNDEF); |
319 |
xf_xfmpoint(v, cv->p); |
320 |
putv(v); |
321 |
} |
322 |
return(MG_OK); |
323 |
} |
324 |
|
325 |
|
326 |
int |
327 |
r_ies(ac, av) /* convert an IES luminaire file */ |
328 |
int ac; |
329 |
char **av; |
330 |
{ |
331 |
int xa0 = 2; |
332 |
char combuf[128]; |
333 |
char fname[48]; |
334 |
char *oname; |
335 |
register char *op; |
336 |
register int i; |
337 |
/* check argument count */ |
338 |
if (ac < 2) |
339 |
return(MG_EARGC); |
340 |
/* construct output file name */ |
341 |
if ((op = strrchr(av[1], '/')) == NULL) |
342 |
op = av[1]; |
343 |
(void)strcpy(fname, op); |
344 |
if ((op = strrchr(fname, '.')) == NULL) |
345 |
op = fname + strlen(fname); |
346 |
(void)strcpy(op, ".rad"); |
347 |
/* see if we need to run ies2rad */ |
348 |
if (access(fname, 0) == -1) { |
349 |
(void)strcpy(combuf, "ies2rad");/* build ies2rad command */ |
350 |
op = combuf + 7; /* get -m option (first) */ |
351 |
if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) { |
352 |
if (!isflt(av[xa0+1])) |
353 |
return(MG_ETYPE); |
354 |
op = addarg(addarg(op, "-m"), av[xa0+1]); |
355 |
xa0 += 2; |
356 |
} |
357 |
*op++ = ' '; /* build IES filename */ |
358 |
i = 0; |
359 |
if (mg_file != NULL && |
360 |
(oname = strrchr(mg_file->fname,'/')) != NULL) { |
361 |
i = oname - mg_file->fname + 1; |
362 |
(void)strcpy(op, mg_file->fname); |
363 |
} |
364 |
(void)strcpy(op+i, av[1]); |
365 |
if (access(op, 0) == -1) /* check for file existence */ |
366 |
return(MG_ENOFILE); |
367 |
system(combuf); /* run ies2rad */ |
368 |
if (access(fname, 0) == -1) /* check success */ |
369 |
return(MG_EINCL); |
370 |
} |
371 |
printf("\n!xform"); /* put out xform command */ |
372 |
oname = object(); |
373 |
if (*oname) { |
374 |
printf(" -n "); |
375 |
for (op = oname; op[1]; op++) /* remove trailing separator */ |
376 |
putchar(*op); |
377 |
} |
378 |
for (i = xa0; i < ac; i++) |
379 |
printf(" %s", av[i]); |
380 |
if (ac > xa0 && xf_argc > 0) |
381 |
printf(" -i 1"); |
382 |
for (i = 0; i < xf_argc; i++) |
383 |
printf(" %s", xf_argv[i]); |
384 |
printf(" %s\n", fname); |
385 |
return(MG_OK); |
386 |
} |
387 |
|
388 |
|
389 |
do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */ |
390 |
char *mat, *vn1, *vn2, *vn3; |
391 |
{ |
392 |
static int ntris; |
393 |
BARYCCM bvecs; |
394 |
FLOAT bcoor[3][3]; |
395 |
C_VERTEX *cv1, *cv2, *cv3; |
396 |
FVECT v1, v2, v3; |
397 |
FVECT n1, n2, n3; |
398 |
register int i; |
399 |
/* the following is repeat code, so assume it's OK */ |
400 |
cv2 = c_getvert(vn2); |
401 |
if (invert) { |
402 |
cv3 = c_getvert(vn1); |
403 |
cv1 = c_getvert(vn3); |
404 |
} else { |
405 |
cv1 = c_getvert(vn1); |
406 |
cv3 = c_getvert(vn3); |
407 |
} |
408 |
xf_xfmpoint(v1, cv1->p); |
409 |
xf_xfmpoint(v2, cv2->p); |
410 |
xf_xfmpoint(v3, cv3->p); |
411 |
/* compute barycentric coords. */ |
412 |
if (comp_baryc(&bvecs, v1, v2, v3) < 0) |
413 |
return; /* degenerate triangle! */ |
414 |
printf("\n%s texfunc T-nor\n", mat); /* put out texture */ |
415 |
printf("4 dx dy dz %s\n0\n", TCALNAME); |
416 |
xf_rotvect(n1, cv1->n); |
417 |
xf_rotvect(n2, cv2->n); |
418 |
xf_rotvect(n3, cv3->n); |
419 |
for (i = 0; i < 3; i++) { |
420 |
bcoor[i][0] = n1[i]; |
421 |
bcoor[i][1] = n2[i]; |
422 |
bcoor[i][2] = n3[i]; |
423 |
} |
424 |
put_baryc(&bvecs, bcoor, 3); |
425 |
/* put out triangle */ |
426 |
printf("\nT-nor polygon %st%d\n", object(), ++ntris); |
427 |
printf("0\n0\n9\n"); |
428 |
putv(v1); |
429 |
putv(v2); |
430 |
putv(v3); |
431 |
} |
432 |
|
433 |
|
434 |
char * |
435 |
material() /* get (and print) current material */ |
436 |
{ |
437 |
char *mname = "mat"; |
438 |
COLOR radrgb, c2; |
439 |
double d; |
440 |
register int i; |
441 |
|
442 |
if (c_cmname != NULL) |
443 |
mname = c_cmname; |
444 |
if (!c_cmaterial->clock) |
445 |
return(mname); /* already current */ |
446 |
/* else update output */ |
447 |
c_cmaterial->clock = 0; |
448 |
if (c_cmaterial->ed > .1) { /* emitter */ |
449 |
cvtcolor(radrgb, &c_cmaterial->ed_c, |
450 |
emult*c_cmaterial->ed/(PI*WHTEFFICACY)); |
451 |
if (glowdist < FHUGE) { /* do a glow */ |
452 |
fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname); |
453 |
fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED), |
454 |
colval(radrgb,GRN), |
455 |
colval(radrgb,BLU), glowdist); |
456 |
} else { |
457 |
fprintf(matfp, "\nvoid light %s\n0\n0\n", mname); |
458 |
fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED), |
459 |
colval(radrgb,GRN), |
460 |
colval(radrgb,BLU)); |
461 |
} |
462 |
return(mname); |
463 |
} |
464 |
d = c_cmaterial->rd + c_cmaterial->td + |
465 |
c_cmaterial->rs + c_cmaterial->ts; |
466 |
if (d < 0. | d > 1.) |
467 |
return(NULL); |
468 |
/* check for glass/dielectric */ |
469 |
if (c_cmaterial->nr > 1.1 && |
470 |
c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 && |
471 |
c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 && |
472 |
c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) { |
473 |
cvtcolor(radrgb, &c_cmaterial->ts_c, |
474 |
c_cmaterial->ts + c_cmaterial->rs); |
475 |
if (c_cmaterial->sided) { /* dielectric */ |
476 |
colval(radrgb,RED) = pow(colval(radrgb,RED), |
477 |
1./C_1SIDEDTHICK); |
478 |
colval(radrgb,GRN) = pow(colval(radrgb,GRN), |
479 |
1./C_1SIDEDTHICK); |
480 |
colval(radrgb,BLU) = pow(colval(radrgb,BLU), |
481 |
1./C_1SIDEDTHICK); |
482 |
fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname); |
483 |
fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED), |
484 |
colval(radrgb,GRN), colval(radrgb,BLU), |
485 |
c_cmaterial->nr); |
486 |
return(mname); |
487 |
} |
488 |
/* glass */ |
489 |
fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname); |
490 |
fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED), |
491 |
colval(radrgb,GRN), colval(radrgb,BLU), |
492 |
c_cmaterial->nr); |
493 |
return(mname); |
494 |
} |
495 |
/* check for trans */ |
496 |
if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) { |
497 |
double ts, a5, a6; |
498 |
|
499 |
if (c_cmaterial->sided) { |
500 |
ts = sqrt(c_cmaterial->ts); /* approximate */ |
501 |
a5 = .5; |
502 |
} else { |
503 |
ts = c_cmaterial->ts; |
504 |
a5 = 1.; |
505 |
} |
506 |
/* average colors */ |
507 |
d = c_cmaterial->rd + c_cmaterial->td + ts; |
508 |
cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d); |
509 |
cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d); |
510 |
addcolor(radrgb, c2); |
511 |
cvtcolor(c2, &c_cmaterial->ts_c, ts/d); |
512 |
addcolor(radrgb, c2); |
513 |
if (c_cmaterial->rs + ts > .0001) |
514 |
a5 = (c_cmaterial->rs*c_cmaterial->rs_a + |
515 |
ts*a5*c_cmaterial->ts_a) / |
516 |
(c_cmaterial->rs + ts); |
517 |
a6 = (c_cmaterial->td + ts) / |
518 |
(c_cmaterial->rd + c_cmaterial->td + ts); |
519 |
if (a6 < .999) |
520 |
d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6); |
521 |
else |
522 |
d = c_cmaterial->td + ts; |
523 |
scalecolor(radrgb, d); |
524 |
fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname); |
525 |
fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED), |
526 |
colval(radrgb,GRN), colval(radrgb,BLU)); |
527 |
fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6, |
528 |
ts/(ts + c_cmaterial->td)); |
529 |
return(mname); |
530 |
} |
531 |
/* check for plastic */ |
532 |
if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .01 || |
533 |
c_isgrey(&c_cmaterial->rs_c))) { |
534 |
cvtcolor(radrgb, &c_cmaterial->rd_c, |
535 |
c_cmaterial->rd/(1.-c_cmaterial->rs)); |
536 |
fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname); |
537 |
fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED), |
538 |
colval(radrgb,GRN), colval(radrgb,BLU), |
539 |
c_cmaterial->rs, c_cmaterial->rs_a); |
540 |
return(mname); |
541 |
} |
542 |
/* else it's metal */ |
543 |
/* average colors */ |
544 |
cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd); |
545 |
cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs); |
546 |
addcolor(radrgb, c2); |
547 |
fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname); |
548 |
fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED), |
549 |
colval(radrgb,GRN), colval(radrgb,BLU), |
550 |
c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs), |
551 |
c_cmaterial->rs_a); |
552 |
return(mname); |
553 |
} |
554 |
|
555 |
|
556 |
cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */ |
557 |
COLOR radrgb; |
558 |
register C_COLOR *ciec; |
559 |
double intensity; |
560 |
{ |
561 |
static COLOR ciexyz; |
562 |
|
563 |
c_ccvt(ciec, C_CSXY); /* get xy representation */ |
564 |
ciexyz[1] = intensity; |
565 |
ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1]; |
566 |
ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0]; |
567 |
cie_rgb(radrgb, ciexyz); |
568 |
} |
569 |
|
570 |
|
571 |
char * |
572 |
object() /* return current object name */ |
573 |
{ |
574 |
static char objbuf[64]; |
575 |
register int i; |
576 |
register char *cp; |
577 |
int len; |
578 |
/* tracked by obj_handler */ |
579 |
i = obj_nnames - sizeof(objbuf)/16; |
580 |
if (i < 0) |
581 |
i = 0; |
582 |
for (cp = objbuf; i < obj_nnames && |
583 |
cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1; |
584 |
i++, *cp++ = '.') { |
585 |
strcpy(cp, obj_name[i]); |
586 |
cp += len; |
587 |
} |
588 |
*cp = '\0'; |
589 |
return(objbuf); |
590 |
} |
591 |
|
592 |
|
593 |
char * |
594 |
addarg(op, arg) /* add argument and advance pointer */ |
595 |
register char *op, *arg; |
596 |
{ |
597 |
*op = ' '; |
598 |
while (*++op = *arg++) |
599 |
; |
600 |
return(op); |
601 |
} |