#ifndef lint static const char RCSid[] = "$Id: mgf2rad.c,v 2.28 2003/11/15 17:54:06 schorsch Exp $"; #endif /* * Convert MGF (Materials and Geometry Format) to Radiance */ #include #include #include #include #include "platform.h" #include "mgflib/parser.h" #include "color.h" #include "tmesh.h" #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2]) #define invert (xf_context != NULL && xf_context->rev) double glowdist = FHUGE; /* glow test distance */ double emult = 1.; /* emitter multiplier */ FILE *matfp; /* material output file */ int r_comment(int ac, char **av); int r_cone(int ac, char **av); int r_cyl(int ac, char **av); int r_sph(int ac, char **av); int r_ring(int ac, char **av); int r_face(int ac, char **av); int r_ies(int ac, char **av); char * material(void); char * object(void); char * addarg(char *op, char *arg); void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv); void cvtcolor(COLOR radrgb, register C_COLOR *ciec, double intensity); int main( int argc, char *argv[] ) { int i; matfp = stdout; /* print out parser version */ printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR); /* initialize dispatch table */ mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */ mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */ mg_ehand[MG_E_CONE] = r_cone; /* we do cones */ mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */ mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */ mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */ mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */ mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */ mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */ mg_ehand[MG_E_FACE] = r_face; /* we do faces */ mg_ehand[MG_E_IES] = r_ies; /* we do IES files */ mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */ mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */ mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */ mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */ mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */ mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */ mg_ehand[MG_E_RING] = r_ring; /* we do rings */ mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */ mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */ mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */ mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */ mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */ mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */ mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */ mg_init(); /* initialize the parser */ /* get our options & print header */ printf("## %s", argv[0]); for (i = 1; i < argc && argv[i][0] == '-'; i++) { printf(" %s", argv[i]); switch (argv[i][1]) { case 'g': /* glow distance (meters) */ if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f")) goto userr; glowdist = atof(argv[++i]); printf(" %s", argv[i]); break; case 'e': /* emitter multiplier */ if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f")) goto userr; emult = atof(argv[++i]); printf(" %s", argv[i]); break; case 'm': /* materials file */ matfp = fopen(argv[++i], "a"); if (matfp == NULL) { fprintf(stderr, "%s: cannot append\n", argv[i]); exit(1); } printf(" %s", argv[i]); break; default: goto userr; } } putchar('\n'); if (i == argc) { /* convert stdin */ if (mg_load(NULL) != MG_OK) exit(1); if (mg_nunknown) printf("## %s: %u unknown entities\n", argv[0], mg_nunknown); } else /* convert each file */ for ( ; i < argc; i++) { printf("## %s %s ##############################\n", argv[0], argv[i]); if (mg_load(argv[i]) != MG_OK) exit(1); if (mg_nunknown) { printf("## %s %s: %u unknown entities\n", argv[0], argv[i], mg_nunknown); mg_nunknown = 0; } } exit(0); userr: fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n", argv[0]); exit(1); } int r_comment( /* repeat a comment verbatim */ register int ac, register char **av ) { putchar('#'); /* use Radiance comment character */ while (--ac) { /* pass through verbatim */ putchar(' '); fputs(*++av, stdout); } putchar('\n'); return(MG_OK); } int r_cone( /* put out a cone */ int ac, char **av ) { static int ncones; char *mat; double r1, r2; C_VERTEX *cv1, *cv2; FVECT p1, p2; int inv; /* check argument count and type */ if (ac != 5) return(MG_EARGC); if (!isflt(av[2]) || !isflt(av[4])) return(MG_ETYPE); /* get the endpoint vertices */ if ((cv1 = c_getvert(av[1])) == NULL || (cv2 = c_getvert(av[3])) == NULL) return(MG_EUNDEF); xf_xfmpoint(p1, cv1->p); /* transform endpoints */ xf_xfmpoint(p2, cv2->p); r1 = xf_scale(atof(av[2])); /* scale radii */ r2 = xf_scale(atof(av[4])); inv = r1 < 0.; /* check for inverted cone */ if (r1 == 0.) { /* check for illegal radii */ if (r2 == 0.) return(MG_EILL); inv = r2 < 0.; } else if (r2 != 0. && inv ^ (r2 < 0.)) return(MG_EILL); if (inv) { r1 = -r1; r2 = -r2; } if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); /* spit the sucker out */ printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone", object(), ++ncones); printf("0\n0\n8\n"); putv(p1); putv(p2); printf("%18.12g %18.12g\n", r1, r2); return(MG_OK); } int r_cyl( /* put out a cylinder */ int ac, char **av ) { static int ncyls; char *mat; double rad; C_VERTEX *cv1, *cv2; FVECT p1, p2; int inv; /* check argument count and type */ if (ac != 4) return(MG_EARGC); if (!isflt(av[2])) return(MG_ETYPE); /* get the endpoint vertices */ if ((cv1 = c_getvert(av[1])) == NULL || (cv2 = c_getvert(av[3])) == NULL) return(MG_EUNDEF); xf_xfmpoint(p1, cv1->p); /* transform endpoints */ xf_xfmpoint(p2, cv2->p); rad = xf_scale(atof(av[2])); /* scale radius */ if ((inv = rad < 0.)) /* check for inverted cylinder */ rad = -rad; if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); /* spit out the primitive */ printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder", object(), ++ncyls); printf("0\n0\n7\n"); putv(p1); putv(p2); printf("%18.12g\n", rad); return(MG_OK); } int r_sph( /* put out a sphere */ int ac, char **av ) { static int nsphs; char *mat; double rad; C_VERTEX *cv; FVECT cent; int inv; /* check argument count and type */ if (ac != 3) return(MG_EARGC); if (!isflt(av[2])) return(MG_ETYPE); if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */ return(MG_EUNDEF); xf_xfmpoint(cent, cv->p); /* transform center */ rad = xf_scale(atof(av[2])); /* scale radius */ if ((inv = rad < 0.)) /* check for inversion */ rad = -rad; if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); /* spit out primitive */ printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere", object(), ++nsphs); printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n", cent[0], cent[1], cent[2], rad); return(MG_OK); } int r_ring( /* put out a ring */ int ac, char **av ) { static int nrings; char *mat; double r1, r2; C_VERTEX *cv; FVECT cent, norm; /* check argument count and type */ if (ac != 4) return(MG_EARGC); if (!isflt(av[2]) || !isflt(av[3])) return(MG_ETYPE); if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */ return(MG_EUNDEF); if (is0vect(cv->n)) /* make sure we have normal */ return(MG_EILL); xf_xfmpoint(cent, cv->p); /* transform center */ xf_rotvect(norm, cv->n); /* rotate normal */ r1 = xf_scale(atof(av[2])); /* scale radii */ r2 = xf_scale(atof(av[3])); if ((r1 < 0.) | (r2 <= r1)) return(MG_EILL); if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); /* spit out primitive */ printf("\n%s ring %sr%d\n", mat, object(), ++nrings); printf("0\n0\n8\n"); putv(cent); putv(norm); printf("%18.12g %18.12g\n", r1, r2); return(MG_OK); } int r_face( /* convert a face */ int ac, char **av ) { static int nfaces; int myi = invert; char *mat; register int i; register C_VERTEX *cv; FVECT v; /* check argument count and type */ if (ac < 4) return(MG_EARGC); if ((mat = material()) == NULL) /* get material */ return(MG_EBADMAT); if (ac <= 5) { /* check for smoothing */ C_VERTEX *cva[5]; for (i = 1; i < ac; i++) { if ((cva[i-1] = c_getvert(av[i])) == NULL) return(MG_EUNDEF); if (is0vect(cva[i-1]->n)) break; } if (i < ac) i = ISFLAT; else i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p, cva[0]->n, cva[1]->n, cva[2]->n); if (i == DEGEN) return(MG_OK); /* degenerate (error?) */ if (i == RVBENT) { myi = !myi; i = ISBENT; } else if (i == RVFLAT) { myi = !myi; i = ISFLAT; } if (i == ISBENT) { /* smoothed triangles */ do_tri(mat, cva[0], cva[1], cva[2], myi); if (ac == 5) do_tri(mat, cva[2], cva[3], cva[0], myi); return(MG_OK); } } /* spit out unsmoothed primitive */ printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces); printf("0\n0\n%d\n", 3*(ac-1)); for (i = 1; i < ac; i++) { /* get, transform, print each vertex */ if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL) return(MG_EUNDEF); xf_xfmpoint(v, cv->p); putv(v); } return(MG_OK); } int r_ies( /* convert an IES luminaire file */ int ac, char **av ) { int xa0 = 2; char combuf[128]; char fname[48]; char *oname; register char *op; register int i; /* check argument count */ if (ac < 2) return(MG_EARGC); /* construct output file name */ if ((op = strrchr(av[1], '/')) != NULL) op++; else op = av[1]; (void)strcpy(fname, op); if ((op = strrchr(fname, '.')) == NULL) op = fname + strlen(fname); (void)strcpy(op, ".rad"); /* see if we need to run ies2rad */ if (access(fname, 0) == -1) { (void)strcpy(combuf, "ies2rad");/* build ies2rad command */ op = combuf + 7; /* get -m option (first) */ if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) { if (!isflt(av[xa0+1])) return(MG_ETYPE); op = addarg(addarg(op, "-m"), av[xa0+1]); xa0 += 2; } *op++ = ' '; /* build IES filename */ i = 0; if (mg_file != NULL && (oname = strrchr(mg_file->fname,'/')) != NULL) { i = oname - mg_file->fname + 1; (void)strcpy(op, mg_file->fname); } (void)strcpy(op+i, av[1]); if (access(op, 0) == -1) /* check for file existence */ return(MG_ENOFILE); system(combuf); /* run ies2rad */ if (access(fname, 0) == -1) /* check success */ return(MG_EINCL); } printf("\n!xform"); /* put out xform command */ oname = object(); if (*oname) { printf(" -n "); for (op = oname; op[1]; op++) /* remove trailing separator */ putchar(*op); } for (i = xa0; i < ac; i++) printf(" %s", av[i]); if (ac > xa0 && xf_argc > 0) printf(" -i 1"); for (i = 0; i < xf_argc; i++) printf(" %s", xf_argv[i]); printf(" %s\n", fname); return(MG_OK); } void do_tri( /* put out smoothed triangle */ char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv ) { static int ntris; BARYCCM bvecs; RREAL bcoor[3][3]; C_VERTEX *cvt; FVECT v1, v2, v3; FVECT n1, n2, n3; register int i; if (iv) { /* swap vertex order if inverted */ cvt = cv1; cv1 = cv3; cv3 = cvt; } xf_xfmpoint(v1, cv1->p); xf_xfmpoint(v2, cv2->p); xf_xfmpoint(v3, cv3->p); /* compute barycentric coords. */ if (comp_baryc(&bvecs, v1, v2, v3) < 0) return; /* degenerate triangle! */ printf("\n%s texfunc T-nor\n", mat); /* put out texture */ printf("4 dx dy dz %s\n0\n", TCALNAME); xf_rotvect(n1, cv1->n); xf_rotvect(n2, cv2->n); xf_rotvect(n3, cv3->n); for (i = 0; i < 3; i++) { bcoor[i][0] = n1[i]; bcoor[i][1] = n2[i]; bcoor[i][2] = n3[i]; } put_baryc(&bvecs, bcoor, 3); /* put out triangle */ printf("\nT-nor polygon %st%d\n", object(), ++ntris); printf("0\n0\n9\n"); putv(v1); putv(v2); putv(v3); } char * material(void) /* get (and print) current material */ { char *mname = "mat"; COLOR radrgb, c2; double d; if (c_cmname != NULL) mname = c_cmname; if (!c_cmaterial->clock) return(mname); /* already current */ /* else update output */ c_cmaterial->clock = 0; if (c_cmaterial->ed > .1) { /* emitter */ cvtcolor(radrgb, &c_cmaterial->ed_c, emult*c_cmaterial->ed/(PI*WHTEFFICACY)); if (glowdist < FHUGE) { /* do a glow */ fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname); fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), glowdist); } else { fprintf(matfp, "\nvoid light %s\n0\n0\n", mname); fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU)); } return(mname); } d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->rs + c_cmaterial->ts; if ((d < 0.) | (d > 1.)) return(NULL); /* check for glass/dielectric */ if (c_cmaterial->nr > 1.1 && c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 && c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 && c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) { cvtcolor(radrgb, &c_cmaterial->ts_c, c_cmaterial->ts + c_cmaterial->rs); if (c_cmaterial->sided) { /* dielectric */ colval(radrgb,RED) = pow(colval(radrgb,RED), 1./C_1SIDEDTHICK); colval(radrgb,GRN) = pow(colval(radrgb,GRN), 1./C_1SIDEDTHICK); colval(radrgb,BLU) = pow(colval(radrgb,BLU), 1./C_1SIDEDTHICK); fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname); fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), c_cmaterial->nr); return(mname); } /* glass */ fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname); fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), c_cmaterial->nr); return(mname); } /* check for trans */ if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) { double ts, a5, a6; if (c_cmaterial->sided) { ts = sqrt(c_cmaterial->ts); /* approximate */ a5 = .5; } else { ts = c_cmaterial->ts; a5 = 1.; } /* average colors */ d = c_cmaterial->rd + c_cmaterial->td + ts; cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d); cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d); addcolor(radrgb, c2); cvtcolor(c2, &c_cmaterial->ts_c, ts/d); addcolor(radrgb, c2); if (c_cmaterial->rs + ts > .0001) a5 = (c_cmaterial->rs*c_cmaterial->rs_a + ts*a5*c_cmaterial->ts_a) / (c_cmaterial->rs + ts); a6 = (c_cmaterial->td + ts) / (c_cmaterial->rd + c_cmaterial->td + ts); if (a6 < .999) d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6); else d = c_cmaterial->td + ts; scalecolor(radrgb, d); fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname); fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU)); fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6, ts/(ts + c_cmaterial->td)); return(mname); } /* check for plastic */ if (c_cmaterial->rs < .1) { cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/(1.-c_cmaterial->rs)); fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname); fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), c_cmaterial->rs, c_cmaterial->rs_a); return(mname); } /* else it's metal */ /* average colors */ cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd); cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs); addcolor(radrgb, c2); fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname); fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED), colval(radrgb,GRN), colval(radrgb,BLU), c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs), c_cmaterial->rs_a); return(mname); } void cvtcolor( /* convert a CIE XYZ color to RGB */ COLOR radrgb, register C_COLOR *ciec, double intensity ) { static COLOR ciexyz; c_ccvt(ciec, C_CSXY); /* get xy representation */ ciexyz[1] = intensity; ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1]; ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0]; cie_rgb(radrgb, ciexyz); } char * object(void) /* return current object name */ { static char objbuf[64]; register int i; register char *cp; int len; /* tracked by obj_handler */ i = obj_nnames - sizeof(objbuf)/16; if (i < 0) i = 0; for (cp = objbuf; i < obj_nnames && cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1; i++, *cp++ = '.') { strcpy(cp, obj_name[i]); cp += len; } *cp = '\0'; return(objbuf); } char * addarg( /* add argument and advance pointer */ register char *op, register char *arg ) { *op = ' '; while ( (*++op = *arg++) ) ; return(op); }