ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.36
Committed: Fri May 23 17:02:07 2025 UTC (6 days, 17 hours ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.35: +141 -6 lines
Log Message:
feat(mgf2rad): Added support of WGMDfunc material for different spectral components

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: mgf2rad.c,v 2.35 2024/01/17 00:43:45 greg Exp $";
3 #endif
4 /*
5 * Convert MGF (Materials and Geometry Format) to Radiance
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <math.h>
11 #include <string.h>
12
13 #include "platform.h"
14 #include "mgf_parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17 #include "lookup.h"
18
19 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
20
21 #define invert (xf_context != NULL && xf_context->rev)
22
23 #define SGEN_DEF "spec*"
24 #define SGEN_RS "rs_spec*"
25 #define SGEN_TD "td_spec*"
26 #define SGEN_TS "ts_spec*"
27
28 char void_str[] = "void"; /* global VOIDID */
29 char sgen_str[16] = SGEN_DEF; /* generic specular */
30
31 double glowdist = FHUGE; /* glow test distance */
32
33 double emult = 1.; /* emitter multiplier */
34
35 FILE *matfp; /* material output file */
36
37 int dospectra = 0; /* output spectral colors? */
38
39
40 extern int r_comment(int ac, char **av);
41 extern int r_color(int ac, char **av);
42 extern int r_cone(int ac, char **av);
43 extern int r_cyl(int ac, char **av);
44 extern int r_sph(int ac, char **av);
45 extern int r_ring(int ac, char **av);
46 extern int r_face(int ac, char **av);
47 extern int r_ies(int ac, char **av);
48 extern void putsided(char *mname);
49 extern char * material(void);
50 extern char * object(void);
51 extern char * addarg(char *op, char *arg);
52 extern void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv);
53 extern void cvtcolor(COLOR radrgb, C_COLOR *ciec, double intensity);
54 extern int color_clash(int e1, int e2);
55 extern int isgrey(COLOR rgb);
56 extern void putrgbpat(char *pnm, COLOR rgb);
57 extern char * specolor(COLOR radrgb, C_COLOR *ciec, double intensity);
58
59
60 int
61 main(
62 int argc,
63 char *argv[]
64 )
65 {
66 int i;
67
68 matfp = stdout;
69 /* print out parser version */
70 printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
71 /* initialize dispatch table */
72 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
73 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
74 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
75 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
76 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
77 mg_ehand[MG_E_CSPEC] = r_color; /* we get spectra */
78 mg_ehand[MG_E_CCT] = r_color; /* we get color temp's */
79 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
80 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
81 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
82 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
83 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
84 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
85 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
86 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
87 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
88 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
89 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
90 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
91 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
92 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
93 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
94 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
95 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
96 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
97 mg_init(); /* initialize the parser */
98 /* get our options & print header */
99 printf("## %s", argv[0]);
100 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
101 printf(" %s", argv[i]);
102 switch (argv[i][1]) {
103 case 'g': /* glow distance (meters) */
104 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
105 goto userr;
106 glowdist = atof(argv[++i]);
107 printf(" %s", argv[i]);
108 break;
109 case 'e': /* emitter multiplier */
110 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
111 goto userr;
112 emult = atof(argv[++i]);
113 printf(" %s", argv[i]);
114 break;
115 case 'm': /* materials file */
116 matfp = fopen(argv[++i], "a");
117 if (matfp == NULL) {
118 fprintf(stderr, "%s: cannot append\n", argv[i]);
119 exit(1);
120 }
121 printf(" %s", argv[i]);
122 break;
123 case 's': /* spectral color output? */
124 dospectra = !dospectra;
125 break;
126 default:
127 goto userr;
128 }
129 }
130 putchar('\n');
131 if (i == argc) { /* convert stdin */
132 if (mg_load(NULL) != MG_OK)
133 exit(1);
134 if (mg_nunknown)
135 printf("## %s: %u unknown entities\n",
136 argv[0], mg_nunknown);
137 } else /* convert each file */
138 for ( ; i < argc; i++) {
139 printf("## %s %s ##############################\n",
140 argv[0], argv[i]);
141 if (mg_load(argv[i]) != MG_OK)
142 exit(1);
143 if (mg_nunknown) {
144 printf("## %s %s: %u unknown entities\n",
145 argv[0], argv[i], mg_nunknown);
146 mg_nunknown = 0;
147 }
148 }
149 exit(0);
150 userr:
151 fprintf(stderr, "Usage: %s [-s][-g dist][-e mult][-m matf] [file.mgf] ..\n",
152 argv[0]);
153 exit(1);
154 }
155
156
157 int
158 r_comment( /* repeat a comment verbatim */
159 int ac,
160 char **av
161 )
162 {
163 putchar('#'); /* use Radiance comment character */
164 while (--ac) { /* pass through verbatim */
165 putchar(' ');
166 fputs(*++av, stdout);
167 }
168 putchar('\n');
169 return(MG_OK);
170 }
171
172
173 int
174 r_color( /* call color handler & remember name */
175 int ac,
176 char **av
177 )
178 {
179 int rval = c_hcolor(ac, av);
180
181 if (rval == MG_OK)
182 c_ccolor->client_data = c_ccname;
183
184 return(rval);
185 }
186
187
188 int
189 r_cone( /* put out a cone */
190 int ac,
191 char **av
192 )
193 {
194 static int ncones;
195 char *mat;
196 double r1, r2;
197 C_VERTEX *cv1, *cv2;
198 FVECT p1, p2;
199 int inv;
200 /* check argument count and type */
201 if (ac != 5)
202 return(MG_EARGC);
203 if (!isflt(av[2]) || !isflt(av[4]))
204 return(MG_ETYPE);
205 /* get the endpoint vertices */
206 if ((cv1 = c_getvert(av[1])) == NULL ||
207 (cv2 = c_getvert(av[3])) == NULL)
208 return(MG_EUNDEF);
209 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
210 xf_xfmpoint(p2, cv2->p);
211 r1 = xf_scale(atof(av[2])); /* scale radii */
212 r2 = xf_scale(atof(av[4]));
213 inv = r1 < 0.; /* check for inverted cone */
214 if (r1 == 0.) { /* check for illegal radii */
215 if (r2 == 0.)
216 return(MG_EILL);
217 inv = r2 < 0.;
218 } else if (r2 != 0. && inv ^ (r2 < 0.))
219 return(MG_EILL);
220 if (inv) {
221 r1 = -r1;
222 r2 = -r2;
223 }
224 if ((mat = material()) == NULL) /* get material */
225 return(MG_EBADMAT);
226 /* spit the sucker out */
227 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
228 object(), ++ncones);
229 printf("0\n0\n8\n");
230 putv(p1);
231 putv(p2);
232 printf("%18.12g %18.12g\n", r1, r2);
233 return(MG_OK);
234 }
235
236
237 int
238 r_cyl( /* put out a cylinder */
239 int ac,
240 char **av
241 )
242 {
243 static int ncyls;
244 char *mat;
245 double rad;
246 C_VERTEX *cv1, *cv2;
247 FVECT p1, p2;
248 int inv;
249 /* check argument count and type */
250 if (ac != 4)
251 return(MG_EARGC);
252 if (!isflt(av[2]))
253 return(MG_ETYPE);
254 /* get the endpoint vertices */
255 if ((cv1 = c_getvert(av[1])) == NULL ||
256 (cv2 = c_getvert(av[3])) == NULL)
257 return(MG_EUNDEF);
258 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
259 xf_xfmpoint(p2, cv2->p);
260 rad = xf_scale(atof(av[2])); /* scale radius */
261 if ((inv = rad < 0.)) /* check for inverted cylinder */
262 rad = -rad;
263 if ((mat = material()) == NULL) /* get material */
264 return(MG_EBADMAT);
265 /* spit out the primitive */
266 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
267 object(), ++ncyls);
268 printf("0\n0\n7\n");
269 putv(p1);
270 putv(p2);
271 printf("%18.12g\n", rad);
272 return(MG_OK);
273 }
274
275
276 int
277 r_sph( /* put out a sphere */
278 int ac,
279 char **av
280 )
281 {
282 static int nsphs;
283 char *mat;
284 double rad;
285 C_VERTEX *cv;
286 FVECT cent;
287 int inv;
288 /* check argument count and type */
289 if (ac != 3)
290 return(MG_EARGC);
291 if (!isflt(av[2]))
292 return(MG_ETYPE);
293 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
294 return(MG_EUNDEF);
295 xf_xfmpoint(cent, cv->p); /* transform center */
296 rad = xf_scale(atof(av[2])); /* scale radius */
297 if ((inv = rad < 0.)) /* check for inversion */
298 rad = -rad;
299 if ((mat = material()) == NULL) /* get material */
300 return(MG_EBADMAT);
301 /* spit out primitive */
302 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
303 object(), ++nsphs);
304 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
305 cent[0], cent[1], cent[2], rad);
306 return(MG_OK);
307 }
308
309
310 int
311 r_ring( /* put out a ring */
312 int ac,
313 char **av
314 )
315 {
316 static int nrings;
317 char *mat;
318 double r1, r2;
319 C_VERTEX *cv;
320 FVECT cent, norm;
321 /* check argument count and type */
322 if (ac != 4)
323 return(MG_EARGC);
324 if (!isflt(av[2]) || !isflt(av[3]))
325 return(MG_ETYPE);
326 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
327 return(MG_EUNDEF);
328 if (is0vect(cv->n)) /* make sure we have normal */
329 return(MG_EILL);
330 xf_xfmpoint(cent, cv->p); /* transform center */
331 xf_rotvect(norm, cv->n); /* rotate normal */
332 r1 = xf_scale(atof(av[2])); /* scale radii */
333 r2 = xf_scale(atof(av[3]));
334 if ((r1 < 0.) | (r2 <= r1))
335 return(MG_EILL);
336 if ((mat = material()) == NULL) /* get material */
337 return(MG_EBADMAT);
338 /* spit out primitive */
339 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
340 printf("0\n0\n8\n");
341 putv(cent);
342 putv(norm);
343 printf("%18.12g %18.12g\n", r1, r2);
344 return(MG_OK);
345 }
346
347
348 int
349 r_face( /* convert a face */
350 int ac,
351 char **av
352 )
353 {
354 static int nfaces;
355 int myi = invert;
356 char *mat;
357 int i;
358 C_VERTEX *cv;
359 FVECT v;
360
361 /* check argument count and type */
362 if (ac < 4)
363 return(MG_EARGC);
364 if ((mat = material()) == NULL) /* get material */
365 return(MG_EBADMAT);
366 if (ac <= 5) { /* check for smoothing */
367 C_VERTEX *cva[5];
368 for (i = 1; i < ac; i++) {
369 if ((cva[i-1] = c_getvert(av[i])) == NULL)
370 return(MG_EUNDEF);
371 if (is0vect(cva[i-1]->n))
372 break;
373 }
374 if (i < ac)
375 i = ISFLAT;
376 else
377 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
378 cva[0]->n, cva[1]->n, cva[2]->n);
379 if (i == DEGEN)
380 return(MG_OK); /* degenerate (error?) */
381 if (i == RVBENT) {
382 myi = !myi;
383 i = ISBENT;
384 } else if (i == RVFLAT) {
385 myi = !myi;
386 i = ISFLAT;
387 }
388 if (i == ISBENT) { /* smoothed triangles */
389 do_tri(mat, cva[0], cva[1], cva[2], myi);
390 if (ac == 5)
391 do_tri(mat, cva[2], cva[3], cva[0], myi);
392 return(MG_OK);
393 }
394 }
395 /* spit out unsmoothed primitive */
396 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
397 printf("0\n0\n%d\n", 3*(ac-1));
398 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
399 if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
400 return(MG_EUNDEF);
401 xf_xfmpoint(v, cv->p);
402 putv(v);
403 }
404 return(MG_OK);
405 }
406
407
408 int
409 r_ies( /* convert an IES luminaire file */
410 int ac,
411 char **av
412 )
413 {
414 int xa0 = 2;
415 char combuf[128];
416 char fname[48];
417 char *oname;
418 char *op;
419 int i;
420 /* check argument count */
421 if (ac < 2)
422 return(MG_EARGC);
423 /* construct output file name */
424 if ((op = strrchr(av[1], '/')) != NULL)
425 op++;
426 else
427 op = av[1];
428 (void)strcpy(fname, op);
429 if ((op = strrchr(fname, '.')) == NULL)
430 op = fname + strlen(fname);
431 (void)strcpy(op, ".rad");
432 /* see if we need to run ies2rad */
433 if (access(fname, 0) == -1) {
434 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
435 op = combuf + 7; /* get -m option (first) */
436 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
437 if (!isflt(av[xa0+1]))
438 return(MG_ETYPE);
439 op = addarg(addarg(op, "-m"), av[xa0+1]);
440 xa0 += 2;
441 }
442 *op++ = ' '; /* build IES filename */
443 i = 0;
444 if (mg_file != NULL &&
445 (oname = strrchr(mg_file->fname,'/')) != NULL) {
446 i = oname - mg_file->fname + 1;
447 (void)strcpy(op, mg_file->fname);
448 }
449 (void)strcpy(op+i, av[1]);
450 if (access(op, 0) == -1) /* check for file existence */
451 return(MG_ENOFILE);
452 system(combuf); /* run ies2rad */
453 if (access(fname, 0) == -1) /* check success */
454 return(MG_EINCL);
455 }
456 printf("\n!xform"); /* put out xform command */
457 oname = object();
458 if (*oname) {
459 printf(" -n ");
460 for (op = oname; op[1]; op++) /* remove trailing separator */
461 putchar(*op);
462 }
463 for (i = xa0; i < ac; i++)
464 printf(" %s", av[i]);
465 if (ac > xa0 && xf_argc > 0)
466 printf(" -i 1");
467 for (i = 0; i < xf_argc; i++)
468 printf(" %s", xf_argv[i]);
469 printf(" %s\n", fname);
470 return(MG_OK);
471 }
472
473
474 void
475 do_tri( /* put out smoothed triangle */
476 char *mat,
477 C_VERTEX *cv1,
478 C_VERTEX *cv2,
479 C_VERTEX *cv3,
480 int iv
481 )
482 {
483 static int ntris;
484 BARYCCM bvecs;
485 RREAL bcoor[3][3];
486 C_VERTEX *cvt;
487 FVECT v1, v2, v3;
488 FVECT n1, n2, n3;
489 int i;
490
491 if (iv) { /* swap vertex order if inverted */
492 cvt = cv1;
493 cv1 = cv3;
494 cv3 = cvt;
495 }
496 xf_xfmpoint(v1, cv1->p);
497 xf_xfmpoint(v2, cv2->p);
498 xf_xfmpoint(v3, cv3->p);
499 /* compute barycentric coords. */
500 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
501 return; /* degenerate triangle! */
502 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
503 printf("4 dx dy dz %s\n0\n", TCALNAME);
504 xf_rotvect(n1, cv1->n);
505 xf_rotvect(n2, cv2->n);
506 xf_rotvect(n3, cv3->n);
507 for (i = 0; i < 3; i++) {
508 bcoor[i][0] = n1[i];
509 bcoor[i][1] = n2[i];
510 bcoor[i][2] = n3[i];
511 }
512 fput_baryc(&bvecs, bcoor, 3, stdout);
513 /* put out triangle */
514 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
515 printf("0\n0\n9\n");
516 putv(v1);
517 putv(v2);
518 putv(v3);
519 }
520
521
522 void
523 putsided(char *mname) /* print out mixfunc for sided material */
524 {
525 fprintf(matfp, "\nvoid mixfunc %s\n", mname);
526 fprintf(matfp, "4 %s void if(Rdot,1,0) .\n0\n0\n", mname);
527 }
528
529
530 char *
531 material(void) /* get (and print) current material */
532 {
533 char *mname = "mat";
534 C_COLOR *refclr = NULL;
535 char *pname;
536 COLOR radrgb, c2;
537 double d;
538
539 if (c_cmname != NULL)
540 mname = c_cmname;
541 if (!c_cmaterial->clock)
542 return(mname); /* already current */
543 /* else update output */
544 c_cmaterial->clock = 0;
545 if (c_cmaterial->ed > .1) { /* emitter */
546 pname = specolor(radrgb, &c_cmaterial->ed_c,
547 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
548 if (glowdist < FHUGE) { /* do a glow */
549 fprintf(matfp, "\n%s glow %s\n0\n0\n", pname, mname);
550 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
551 colval(radrgb,GRN),
552 colval(radrgb,BLU), glowdist);
553 } else {
554 fprintf(matfp, "\n%s light %s\n0\n0\n", pname, mname);
555 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
556 colval(radrgb,GRN),
557 colval(radrgb,BLU));
558 }
559 return(mname);
560 }
561 d = c_cmaterial->rd + c_cmaterial->td +
562 c_cmaterial->rs + c_cmaterial->ts;
563 if ((d < 0.) | (d > 1.))
564 return(NULL);
565 /* check for glass/dielectric */
566 if (c_cmaterial->nr > 1.1 &&
567 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
568 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
569 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
570 cvtcolor(radrgb, &c_cmaterial->ts_c,
571 c_cmaterial->ts + c_cmaterial->rs);
572 if (c_cmaterial->sided) { /* dielectric */
573 colval(radrgb,RED) = pow(colval(radrgb,RED),
574 1./C_1SIDEDTHICK);
575 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
576 1./C_1SIDEDTHICK);
577 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
578 1./C_1SIDEDTHICK);
579 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
580 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
581 colval(radrgb,GRN), colval(radrgb,BLU),
582 c_cmaterial->nr);
583 return(mname);
584 }
585 /* glass */
586 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
587 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
588 colval(radrgb,GRN), colval(radrgb,BLU),
589 c_cmaterial->nr);
590 return(mname);
591 }
592 /* check for WGMDfunc */
593 if (((c_cmaterial->rs > .02) & (c_cmaterial->ts > .02) &&
594 fabs(c_cmaterial->rs_a - c_cmaterial->ts_a) > .02) ||
595 ((c_cmaterial->rs > .05) & (c_cmaterial->rd > .05) &&
596 !c_isgrey(&c_cmaterial->rs_c) &&
597 !c_equiv(&c_cmaterial->rd_c, &c_cmaterial->rs_c)) ||
598 color_clash(MG_E_TS, MG_E_TD) ||
599 color_clash(MG_E_TD, MG_E_RD) ||
600 color_clash(MG_E_RD, MG_E_TS)) {
601 COLOR rs_rgb, ts_rgb, td_rgb; /* separate modifier paths */
602 char rs_pname[128], ts_pname[128], td_pname[128];
603 strcpy(sgen_str, SGEN_RS);
604 strcpy(rs_pname, specolor(rs_rgb, &c_cmaterial->rs_c, c_cmaterial->rs));
605 strcpy(sgen_str, SGEN_TS);
606 strcpy(ts_pname, specolor(ts_rgb, &c_cmaterial->ts_c, c_cmaterial->ts));
607 strcpy(sgen_str, SGEN_TD);
608 strcpy(td_pname, specolor(td_rgb, &c_cmaterial->td_c, c_cmaterial->td));
609 strcpy(sgen_str, SGEN_DEF);
610 pname = specolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
611 if (!strcmp(rs_pname, void_str) && !isgrey(rs_rgb)) {
612 putrgbpat(strcpy(rs_pname,"rs_rgb*"), rs_rgb);
613 colval(rs_rgb,GRN) = 1;
614 }
615 if (!strcmp(ts_pname, void_str) && !isgrey(ts_rgb)) {
616 putrgbpat(strcpy(ts_pname,"ts_rgb*"), ts_rgb);
617 colval(ts_rgb,GRN) = 1;
618 }
619 fprintf(matfp, "\n%s WGMDfunc %s\n", pname, mname);
620 fprintf(matfp, "13\t%s %f %f %f\n", rs_pname, colval(rs_rgb,GRN),
621 c_cmaterial->rs_a, c_cmaterial->rs_a);
622 fprintf(matfp, "\t%s %f %f %f\n", ts_pname, colval(ts_rgb,GRN),
623 c_cmaterial->ts_a, c_cmaterial->ts_a);
624 fprintf(matfp, "\t%s\n\t0 0 1 .\n0\n", td_pname);
625 fprintf(matfp, "9\t%f %f %f\n", colval(radrgb,RED),
626 colval(radrgb,GRN), colval(radrgb,BLU));
627 fprintf(matfp, "\t%f %f %f\n", colval(radrgb,RED),
628 colval(radrgb,GRN), colval(radrgb,BLU));
629 fprintf(matfp, "\t%f %f %f\n", colval(td_rgb,RED),
630 colval(td_rgb,GRN), colval(td_rgb,BLU));
631 if (c_cmaterial->sided)
632 putsided(mname);
633 return(mname);
634 }
635 /* check for trans */
636 if (c_cmaterial->td + c_cmaterial->ts > .01) {
637 double a5, a6;
638 /* average colors */
639 d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts;
640 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
641 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
642 addcolor(radrgb, c2);
643 cvtcolor(c2, &c_cmaterial->ts_c, c_cmaterial->ts/d);
644 addcolor(radrgb, c2);
645 if (c_cmaterial->rs + c_cmaterial->ts > .0001)
646 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
647 c_cmaterial->ts*c_cmaterial->ts_a) /
648 (c_cmaterial->rs + c_cmaterial->ts);
649 a6 = (c_cmaterial->td + c_cmaterial->ts) /
650 (c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts);
651 if (a6 < .999)
652 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
653 else
654 d = c_cmaterial->td + c_cmaterial->ts;
655 scalecolor(radrgb, d);
656 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
657 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
658 colval(radrgb,GRN), colval(radrgb,BLU));
659 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
660 c_cmaterial->ts/(c_cmaterial->ts + c_cmaterial->td));
661 if (c_cmaterial->sided)
662 putsided(mname);
663 return(mname);
664 }
665 /* check for plastic */
666 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .1*c_cmaterial->rd ||
667 c_isgrey(&c_cmaterial->rs_c))) {
668 pname = specolor(radrgb, &c_cmaterial->rd_c,
669 c_cmaterial->rd/(1.-c_cmaterial->rs));
670 fprintf(matfp, "\n%s plastic %s\n0\n0\n", pname, mname);
671 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
672 colval(radrgb,GRN), colval(radrgb,BLU),
673 c_cmaterial->rs, c_cmaterial->rs_a);
674 if (c_cmaterial->sided)
675 putsided(mname);
676 return(mname);
677 }
678 /* else it's metal */
679 /* compute color */
680 if (c_equiv(&c_cmaterial->rd_c, &c_cmaterial->rs_c)) {
681 pname = specolor(radrgb, &c_cmaterial->rs_c, c_cmaterial->rs+c_cmaterial->rd);
682 } else if (c_cmaterial->rd <= .05f) {
683 pname = specolor(radrgb, &c_cmaterial->rs_c, c_cmaterial->rs);
684 cvtcolor(c2, &c_cmaterial->rd_c, c_cmaterial->rd);
685 addcolor(radrgb, c2);
686 } else {
687 pname = "void";
688 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
689 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
690 addcolor(radrgb, c2);
691 }
692 fprintf(matfp, "\n%s metal %s\n0\n0\n", pname, mname);
693 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
694 colval(radrgb,GRN), colval(radrgb,BLU),
695 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
696 c_cmaterial->rs_a);
697 if (c_cmaterial->sided)
698 putsided(mname);
699 return(mname);
700 }
701
702
703 void
704 cvtcolor( /* convert a CIE XYZ color to RGB */
705 COLOR radrgb,
706 C_COLOR *ciec,
707 double intensity
708 )
709 {
710 COLOR ciexyz;
711
712 if (intensity <= 0) {
713 setcolor(radrgb, 0, 0, 0);
714 return;
715 }
716 c_ccvt(ciec, C_CSXY); /* get xy representation */
717 ciexyz[1] = intensity;
718 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
719 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
720 cie_rgb(radrgb, ciexyz);
721 }
722
723
724 int color_clash( /* do non-zero material components clash? */
725 int e1,
726 int e2
727 )
728 {
729 C_COLOR *c1;
730
731 if (e1 == e2)
732 return(0);
733 switch (e1) {
734 case MG_E_RD:
735 if (c_cmaterial->rd <= .01) return(0);
736 c1 = &c_cmaterial->rd_c;
737 break;
738 case MG_E_RS:
739 if (c_cmaterial->rs <= .01) return(0);
740 c1 = &c_cmaterial->rs_c;
741 break;
742 case MG_E_TD:
743 if (c_cmaterial->td <= .01) return(0);
744 c1 = &c_cmaterial->td_c;
745 break;
746 case MG_E_TS:
747 if (c_cmaterial->ts <= .01) return(0);
748 c1 = &c_cmaterial->ts_c;
749 break;
750 default:
751 return(0);
752 }
753 switch (e2) {
754 case MG_E_RD:
755 if (c_cmaterial->rd <= .01) return(0);
756 return(!c_equiv(c1, &c_cmaterial->rd_c));
757 case MG_E_RS:
758 if (c_cmaterial->rs <= .01) return(0);
759 return(!c_equiv(c1, &c_cmaterial->rs_c));
760 case MG_E_TD:
761 if (c_cmaterial->td <= .01) return(0);
762 return(!c_equiv(c1, &c_cmaterial->td_c));
763 case MG_E_TS:
764 if (c_cmaterial->ts <= .01) return(0);
765 return(!c_equiv(c1, &c_cmaterial->ts_c));
766 }
767 return(0);
768 }
769
770
771 static int /* new spectrum definition? */
772 newspecdef(C_COLOR *spc)
773 {
774 static LUTAB spc_tab = LU_SINIT(NULL,free);
775 LUENT *lp = lu_find(&spc_tab, (const char *)spc->client_data);
776
777 if (lp == NULL) /* should never happen */
778 return(1);
779 if (lp->data == NULL) { /* new entry */
780 lp->key = (char *)spc->client_data;
781 lp->data = (char *)malloc(sizeof(C_COLOR));
782 } else if (c_equiv(spc, (C_COLOR *)lp->data))
783 return(0); /* unchanged */
784
785 if (lp->data != NULL) /* else remember if we can */
786 *(C_COLOR *)lp->data = *spc;
787 return(1); /* good as new */
788 }
789
790
791 char *
792 specolor( /* check if color has spectra and output accordingly */
793 COLOR radrgb,
794 C_COLOR *clr,
795 double intensity
796 )
797 {
798 static char spname[128];
799 double mult;
800 int cbeg, cend, i;
801
802 if (!dospectra | !(clr->flags & C_CDSPEC) | (intensity <= FTINY)) {
803 cvtcolor(radrgb, clr, intensity);
804 return(void_str); /* just use RGB */
805 }
806 setcolor(radrgb, intensity, intensity, intensity);
807 for (cbeg = 0; cbeg < C_CNSS; cbeg++) /* trim zeros off beginning */
808 if (clr->ssamp[cbeg])
809 break;
810 if (cbeg >= C_CNSS) /* should never happen! */
811 return(void_str);
812 if (clr->client_data != NULL) { /* get name if available */
813 strcpy(spname, (char *)clr->client_data);
814 strcat(spname, "*"); /* make sure it's special */
815 if (!newspecdef(clr)) /* output already? */
816 return(spname);
817 } else
818 strcpy(spname, sgen_str);
819 c_ccvt(clr, C_CSEFF); /* else output spectrum prim */
820 for (cend = 0; !clr->ssamp[C_CNSS-1-cend]; cend++)
821 ; /* trim zeros off end */
822 fprintf(matfp, "\nvoid spectrum %s\n0\n0\n", spname);
823 fprintf(matfp, "%d %d %d", C_CNSS+2-cbeg-cend,
824 C_CMINWL+cbeg*C_CWLI, C_CMAXWL-cend*C_CWLI);
825 mult = (C_CNSS*c_dfcolor.eff)/(clr->ssum*clr->eff);
826 for (i = cbeg; i < C_CNSS-cend; i++) {
827 if (!((i-cbeg+1)%6)) fputc('\n', matfp);
828 fprintf(matfp, "\t%.5f", clr->ssamp[i]*mult);
829 }
830 fputc('\n', matfp);
831 return(spname);
832 }
833
834
835 int
836 isgrey( /* is RGB close match to grey? */
837 COLOR rgb
838 )
839 {
840 const double yv = bright(rgb);
841 double diff2 = 0;
842 int i;
843
844 for (i = 3; i--; ) {
845 double d = yv - colval(rgb,i);
846 diff2 += d*d;
847 }
848 return(diff2 <= yv*yv*0.0025);
849 }
850
851
852 void
853 putrgbpat( /* put out RGB pattern with given name */
854 char *pnm,
855 COLOR rgb
856 )
857 {
858 fprintf(matfp, "\nvoid colorfunc %s\n", pnm);
859 fprintf(matfp, "4 %f %f %f .\n0\n0\n", colval(rgb,RED),
860 colval(rgb,GRN), colval(rgb,BLU));
861 }
862
863
864 char *
865 object(void) /* return current object name */
866 {
867 static char objbuf[64];
868 int i;
869 char *cp;
870 int len;
871 /* tracked by obj_handler */
872 i = obj_nnames - sizeof(objbuf)/16;
873 if (i < 0)
874 i = 0;
875 for (cp = objbuf; i < obj_nnames &&
876 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
877 i++, *cp++ = '.') {
878 strcpy(cp, obj_name[i]);
879 cp += len;
880 }
881 *cp = '\0';
882 return(objbuf);
883 }
884
885
886 char *
887 addarg( /* add argument and advance pointer */
888 char *op,
889 char *arg
890 )
891 {
892 *op = ' ';
893 while ( (*++op = *arg++) )
894 ;
895 return(op);
896 }