ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.30
Committed: Sat Jan 25 18:02:06 2014 UTC (10 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad5R0, rad4R2, rad4R2P1
Changes since 2.29: +38 -31 lines
Log Message:
Made one-sided materials really work using mixfunc

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.30 static const char RCSid[] = "$Id: mgf2rad.c,v 2.29 2011/02/22 16:45:12 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Convert MGF (Materials and Geometry Format) to Radiance
6     */
7    
8     #include <stdio.h>
9 greg 2.25 #include <stdlib.h>
10 greg 2.1 #include <math.h>
11     #include <string.h>
12 schorsch 2.28
13     #include "platform.h"
14 greg 2.29 #include "mgf_parser.h"
15 greg 2.1 #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 gwlarson 2.24 FILE *matfp; /* material output file */
27 greg 2.11
28 schorsch 2.28
29 greg 2.30 extern int r_comment(int ac, char **av);
30     extern int r_cone(int ac, char **av);
31     extern int r_cyl(int ac, char **av);
32     extern int r_sph(int ac, char **av);
33     extern int r_ring(int ac, char **av);
34     extern int r_face(int ac, char **av);
35     extern int r_ies(int ac, char **av);
36     extern void putsided(char *mname);
37     extern char * material(void);
38     extern char * object(void);
39     extern char * addarg(char *op, char *arg);
40     extern void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv);
41     extern void cvtcolor(COLOR radrgb, register C_COLOR *ciec, double intensity);
42 greg 2.1
43    
44 schorsch 2.28 int
45     main(
46     int argc,
47     char *argv[]
48     )
49 greg 2.1 {
50 greg 2.20 int i;
51 gwlarson 2.24
52     matfp = stdout;
53 greg 2.19 /* print out parser version */
54     printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
55 greg 2.1 /* initialize dispatch table */
56 greg 2.16 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
57     mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
58     mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
59     mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
60     mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
61     mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
62     mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
63     mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
64     mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
65     mg_ehand[MG_E_FACE] = r_face; /* we do faces */
66     mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
67     mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
68     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
69     mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
70     mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
71     mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
72     mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
73     mg_ehand[MG_E_RING] = r_ring; /* we do rings */
74     mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
75     mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
76     mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
77     mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
78     mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
79     mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
80     mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
81 greg 2.1 mg_init(); /* initialize the parser */
82 greg 2.16 /* get our options & print header */
83 greg 2.1 printf("## %s", argv[0]);
84     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
85     printf(" %s", argv[i]);
86     switch (argv[i][1]) {
87     case 'g': /* glow distance (meters) */
88 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
89 greg 2.1 goto userr;
90     glowdist = atof(argv[++i]);
91     printf(" %s", argv[i]);
92     break;
93     case 'e': /* emitter multiplier */
94 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
95 greg 2.1 goto userr;
96     emult = atof(argv[++i]);
97     printf(" %s", argv[i]);
98     break;
99 greg 2.11 case 'm': /* materials file */
100     matfp = fopen(argv[++i], "a");
101     if (matfp == NULL) {
102     fprintf(stderr, "%s: cannot append\n", argv[i]);
103     exit(1);
104     }
105     printf(" %s", argv[i]);
106     break;
107 greg 2.1 default:
108     goto userr;
109     }
110     }
111     putchar('\n');
112     if (i == argc) { /* convert stdin */
113 greg 2.20 if (mg_load(NULL) != MG_OK)
114 greg 2.1 exit(1);
115 greg 2.18 if (mg_nunknown)
116     printf("## %s: %u unknown entities\n",
117     argv[0], mg_nunknown);
118 greg 2.1 } else /* convert each file */
119     for ( ; i < argc; i++) {
120     printf("## %s %s ##############################\n",
121     argv[0], argv[i]);
122 greg 2.20 if (mg_load(argv[i]) != MG_OK)
123 greg 2.1 exit(1);
124 greg 2.18 if (mg_nunknown) {
125     printf("## %s %s: %u unknown entities\n",
126     argv[0], argv[i], mg_nunknown);
127     mg_nunknown = 0;
128     }
129 greg 2.1 }
130     exit(0);
131     userr:
132 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
133 greg 2.1 argv[0]);
134     exit(1);
135     }
136    
137    
138     int
139 schorsch 2.28 r_comment( /* repeat a comment verbatim */
140     register int ac,
141     register char **av
142     )
143 greg 2.1 {
144 greg 2.7 putchar('#'); /* use Radiance comment character */
145 greg 2.16 while (--ac) { /* pass through verbatim */
146 greg 2.1 putchar(' ');
147     fputs(*++av, stdout);
148     }
149     putchar('\n');
150     return(MG_OK);
151     }
152    
153    
154     int
155 schorsch 2.28 r_cone( /* put out a cone */
156     int ac,
157     char **av
158     )
159 greg 2.1 {
160     static int ncones;
161     char *mat;
162     double r1, r2;
163     C_VERTEX *cv1, *cv2;
164     FVECT p1, p2;
165     int inv;
166 greg 2.16 /* check argument count and type */
167 greg 2.1 if (ac != 5)
168     return(MG_EARGC);
169     if (!isflt(av[2]) || !isflt(av[4]))
170     return(MG_ETYPE);
171 greg 2.16 /* get the endpoint vertices */
172 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
173     (cv2 = c_getvert(av[3])) == NULL)
174     return(MG_EUNDEF);
175 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
176 greg 2.1 xf_xfmpoint(p2, cv2->p);
177 greg 2.16 r1 = xf_scale(atof(av[2])); /* scale radii */
178 greg 2.1 r2 = xf_scale(atof(av[4]));
179 greg 2.16 inv = r1 < 0.; /* check for inverted cone */
180     if (r1 == 0.) { /* check for illegal radii */
181 greg 2.1 if (r2 == 0.)
182     return(MG_EILL);
183     inv = r2 < 0.;
184 schorsch 2.27 } else if (r2 != 0. && inv ^ (r2 < 0.))
185 greg 2.1 return(MG_EILL);
186     if (inv) {
187     r1 = -r1;
188     r2 = -r2;
189     }
190 greg 2.16 if ((mat = material()) == NULL) /* get material */
191 greg 2.1 return(MG_EBADMAT);
192 greg 2.16 /* spit the sucker out */
193 greg 2.1 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
194     object(), ++ncones);
195     printf("0\n0\n8\n");
196     putv(p1);
197     putv(p2);
198     printf("%18.12g %18.12g\n", r1, r2);
199     return(MG_OK);
200     }
201    
202    
203     int
204 schorsch 2.28 r_cyl( /* put out a cylinder */
205     int ac,
206     char **av
207     )
208 greg 2.1 {
209     static int ncyls;
210     char *mat;
211     double rad;
212     C_VERTEX *cv1, *cv2;
213     FVECT p1, p2;
214     int inv;
215 greg 2.16 /* check argument count and type */
216 greg 2.1 if (ac != 4)
217     return(MG_EARGC);
218     if (!isflt(av[2]))
219     return(MG_ETYPE);
220 greg 2.16 /* get the endpoint vertices */
221 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
222     (cv2 = c_getvert(av[3])) == NULL)
223     return(MG_EUNDEF);
224 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
225 greg 2.1 xf_xfmpoint(p2, cv2->p);
226 greg 2.16 rad = xf_scale(atof(av[2])); /* scale radius */
227     if ((inv = rad < 0.)) /* check for inverted cylinder */
228 greg 2.1 rad = -rad;
229 greg 2.16 if ((mat = material()) == NULL) /* get material */
230 greg 2.1 return(MG_EBADMAT);
231 greg 2.16 /* spit out the primitive */
232 greg 2.1 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
233     object(), ++ncyls);
234     printf("0\n0\n7\n");
235     putv(p1);
236     putv(p2);
237     printf("%18.12g\n", rad);
238     return(MG_OK);
239     }
240    
241    
242     int
243 schorsch 2.28 r_sph( /* put out a sphere */
244     int ac,
245     char **av
246     )
247 greg 2.1 {
248     static int nsphs;
249     char *mat;
250     double rad;
251     C_VERTEX *cv;
252     FVECT cent;
253     int inv;
254 greg 2.16 /* check argument count and type */
255 greg 2.1 if (ac != 3)
256     return(MG_EARGC);
257     if (!isflt(av[2]))
258     return(MG_ETYPE);
259 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
260 greg 2.1 return(MG_EUNDEF);
261 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
262     rad = xf_scale(atof(av[2])); /* scale radius */
263     if ((inv = rad < 0.)) /* check for inversion */
264 greg 2.1 rad = -rad;
265 greg 2.16 if ((mat = material()) == NULL) /* get material */
266 greg 2.1 return(MG_EBADMAT);
267 greg 2.16 /* spit out primitive */
268 greg 2.1 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
269     object(), ++nsphs);
270     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
271     cent[0], cent[1], cent[2], rad);
272     return(MG_OK);
273     }
274    
275    
276     int
277 schorsch 2.28 r_ring( /* put out a ring */
278     int ac,
279     char **av
280     )
281 greg 2.1 {
282     static int nrings;
283     char *mat;
284     double r1, r2;
285     C_VERTEX *cv;
286     FVECT cent, norm;
287 greg 2.16 /* check argument count and type */
288 greg 2.1 if (ac != 4)
289     return(MG_EARGC);
290     if (!isflt(av[2]) || !isflt(av[3]))
291     return(MG_ETYPE);
292 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
293 greg 2.1 return(MG_EUNDEF);
294 greg 2.16 if (is0vect(cv->n)) /* make sure we have normal */
295 greg 2.1 return(MG_EILL);
296 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
297     xf_rotvect(norm, cv->n); /* rotate normal */
298     r1 = xf_scale(atof(av[2])); /* scale radii */
299 greg 2.1 r2 = xf_scale(atof(av[3]));
300 schorsch 2.27 if ((r1 < 0.) | (r2 <= r1))
301 greg 2.1 return(MG_EILL);
302 greg 2.16 if ((mat = material()) == NULL) /* get material */
303 greg 2.1 return(MG_EBADMAT);
304 greg 2.16 /* spit out primitive */
305 greg 2.1 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
306     printf("0\n0\n8\n");
307     putv(cent);
308     putv(norm);
309     printf("%18.12g %18.12g\n", r1, r2);
310     return(MG_OK);
311     }
312    
313    
314     int
315 schorsch 2.28 r_face( /* convert a face */
316     int ac,
317     char **av
318     )
319 greg 2.1 {
320     static int nfaces;
321 greg 2.25 int myi = invert;
322 greg 2.1 char *mat;
323     register int i;
324     register C_VERTEX *cv;
325     FVECT v;
326 schorsch 2.28
327 greg 2.16 /* check argument count and type */
328 greg 2.1 if (ac < 4)
329     return(MG_EARGC);
330 greg 2.16 if ((mat = material()) == NULL) /* get material */
331 greg 2.1 return(MG_EBADMAT);
332 greg 2.16 if (ac <= 5) { /* check for smoothing */
333 greg 2.23 C_VERTEX *cva[5];
334 greg 2.1 for (i = 1; i < ac; i++) {
335 greg 2.23 if ((cva[i-1] = c_getvert(av[i])) == NULL)
336 greg 2.1 return(MG_EUNDEF);
337 greg 2.23 if (is0vect(cva[i-1]->n))
338 greg 2.1 break;
339     }
340 greg 2.25 if (i < ac)
341     i = ISFLAT;
342     else
343 greg 2.23 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
344     cva[0]->n, cva[1]->n, cva[2]->n);
345 greg 2.25 if (i == DEGEN)
346     return(MG_OK); /* degenerate (error?) */
347     if (i == RVBENT) {
348     myi = !myi;
349     i = ISBENT;
350     } else if (i == RVFLAT) {
351     myi = !myi;
352     i = ISFLAT;
353 greg 2.23 }
354 greg 2.25 if (i == ISBENT) { /* smoothed triangles */
355     do_tri(mat, cva[0], cva[1], cva[2], myi);
356 greg 2.1 if (ac == 5)
357 greg 2.25 do_tri(mat, cva[2], cva[3], cva[0], myi);
358 greg 2.1 return(MG_OK);
359     }
360     }
361 greg 2.16 /* spit out unsmoothed primitive */
362 greg 2.1 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
363     printf("0\n0\n%d\n", 3*(ac-1));
364 greg 2.16 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
365 greg 2.25 if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
366 greg 2.1 return(MG_EUNDEF);
367     xf_xfmpoint(v, cv->p);
368     putv(v);
369     }
370     return(MG_OK);
371     }
372    
373    
374 greg 2.15 int
375 schorsch 2.28 r_ies( /* convert an IES luminaire file */
376     int ac,
377     char **av
378     )
379 greg 2.1 {
380     int xa0 = 2;
381 greg 2.15 char combuf[128];
382 greg 2.1 char fname[48];
383     char *oname;
384     register char *op;
385     register int i;
386 greg 2.16 /* check argument count */
387 greg 2.1 if (ac < 2)
388     return(MG_EARGC);
389 greg 2.16 /* construct output file name */
390 greg 2.22 if ((op = strrchr(av[1], '/')) != NULL)
391     op++;
392     else
393 greg 2.1 op = av[1];
394     (void)strcpy(fname, op);
395     if ((op = strrchr(fname, '.')) == NULL)
396     op = fname + strlen(fname);
397     (void)strcpy(op, ".rad");
398 greg 2.16 /* see if we need to run ies2rad */
399 greg 2.17 if (access(fname, 0) == -1) {
400 greg 2.16 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
401     op = combuf + 7; /* get -m option (first) */
402     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
403     if (!isflt(av[xa0+1]))
404     return(MG_ETYPE);
405     op = addarg(addarg(op, "-m"), av[xa0+1]);
406     xa0 += 2;
407     }
408     *op++ = ' '; /* build IES filename */
409     i = 0;
410     if (mg_file != NULL &&
411     (oname = strrchr(mg_file->fname,'/')) != NULL) {
412     i = oname - mg_file->fname + 1;
413     (void)strcpy(op, mg_file->fname);
414     }
415     (void)strcpy(op+i, av[1]);
416     if (access(op, 0) == -1) /* check for file existence */
417     return(MG_ENOFILE);
418     system(combuf); /* run ies2rad */
419     if (access(fname, 0) == -1) /* check success */
420     return(MG_EINCL);
421     }
422     printf("\n!xform"); /* put out xform command */
423 greg 2.1 oname = object();
424 greg 2.4 if (*oname) {
425     printf(" -n ");
426     for (op = oname; op[1]; op++) /* remove trailing separator */
427     putchar(*op);
428     }
429 greg 2.1 for (i = xa0; i < ac; i++)
430     printf(" %s", av[i]);
431     if (ac > xa0 && xf_argc > 0)
432     printf(" -i 1");
433     for (i = 0; i < xf_argc; i++)
434     printf(" %s", xf_argv[i]);
435     printf(" %s\n", fname);
436     return(MG_OK);
437     }
438    
439    
440 schorsch 2.28 void
441     do_tri( /* put out smoothed triangle */
442     char *mat,
443     C_VERTEX *cv1,
444     C_VERTEX *cv2,
445     C_VERTEX *cv3,
446     int iv
447     )
448 greg 2.1 {
449     static int ntris;
450     BARYCCM bvecs;
451 schorsch 2.26 RREAL bcoor[3][3];
452 greg 2.23 C_VERTEX *cvt;
453 greg 2.1 FVECT v1, v2, v3;
454     FVECT n1, n2, n3;
455     register int i;
456 greg 2.23
457 greg 2.25 if (iv) { /* swap vertex order if inverted */
458 greg 2.23 cvt = cv1;
459     cv1 = cv3;
460     cv3 = cvt;
461 greg 2.9 }
462 greg 2.1 xf_xfmpoint(v1, cv1->p);
463     xf_xfmpoint(v2, cv2->p);
464     xf_xfmpoint(v3, cv3->p);
465 greg 2.16 /* compute barycentric coords. */
466 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
467     return; /* degenerate triangle! */
468 greg 2.16 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
469 greg 2.2 printf("4 dx dy dz %s\n0\n", TCALNAME);
470     xf_rotvect(n1, cv1->n);
471     xf_rotvect(n2, cv2->n);
472     xf_rotvect(n3, cv3->n);
473     for (i = 0; i < 3; i++) {
474     bcoor[i][0] = n1[i];
475     bcoor[i][1] = n2[i];
476     bcoor[i][2] = n3[i];
477 greg 2.1 }
478 greg 2.2 put_baryc(&bvecs, bcoor, 3);
479 greg 2.16 /* put out triangle */
480 greg 2.2 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
481 greg 2.1 printf("0\n0\n9\n");
482     putv(v1);
483     putv(v2);
484     putv(v3);
485     }
486    
487    
488 greg 2.30 void
489     putsided(char *mname) /* print out mixfunc for sided material */
490     {
491     fprintf(matfp, "\nvoid mixfunc %s\n", mname);
492     fprintf(matfp, "4 %s void if(Rdot,1,0) .\n0\n0\n", mname);
493     }
494    
495    
496 greg 2.1 char *
497 schorsch 2.28 material(void) /* get (and print) current material */
498 greg 2.1 {
499     char *mname = "mat";
500     COLOR radrgb, c2;
501     double d;
502    
503 greg 2.5 if (c_cmname != NULL)
504     mname = c_cmname;
505 greg 2.1 if (!c_cmaterial->clock)
506     return(mname); /* already current */
507     /* else update output */
508     c_cmaterial->clock = 0;
509     if (c_cmaterial->ed > .1) { /* emitter */
510     cvtcolor(radrgb, &c_cmaterial->ed_c,
511 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
512 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
513 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
514     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
515 greg 2.1 colval(radrgb,GRN),
516     colval(radrgb,BLU), glowdist);
517     } else {
518 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
519     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
520 greg 2.1 colval(radrgb,GRN),
521     colval(radrgb,BLU));
522     }
523     return(mname);
524     }
525     d = c_cmaterial->rd + c_cmaterial->td +
526     c_cmaterial->rs + c_cmaterial->ts;
527 schorsch 2.27 if ((d < 0.) | (d > 1.))
528 greg 2.1 return(NULL);
529 greg 2.14 /* check for glass/dielectric */
530     if (c_cmaterial->nr > 1.1 &&
531     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
532     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
533     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
534     cvtcolor(radrgb, &c_cmaterial->ts_c,
535     c_cmaterial->ts + c_cmaterial->rs);
536     if (c_cmaterial->sided) { /* dielectric */
537     colval(radrgb,RED) = pow(colval(radrgb,RED),
538     1./C_1SIDEDTHICK);
539     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
540     1./C_1SIDEDTHICK);
541     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
542     1./C_1SIDEDTHICK);
543     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
544     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
545     colval(radrgb,GRN), colval(radrgb,BLU),
546     c_cmaterial->nr);
547     return(mname);
548     }
549     /* glass */
550     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
551     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
552     colval(radrgb,GRN), colval(radrgb,BLU),
553     c_cmaterial->nr);
554     return(mname);
555     }
556 greg 2.3 /* check for trans */
557     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
558 greg 2.30 double a5, a6;
559 greg 2.1 /* average colors */
560 greg 2.30 d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts;
561 greg 2.1 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
562     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
563     addcolor(radrgb, c2);
564 greg 2.30 cvtcolor(c2, &c_cmaterial->ts_c, c_cmaterial->ts/d);
565 greg 2.1 addcolor(radrgb, c2);
566 greg 2.30 if (c_cmaterial->rs + c_cmaterial->ts > .0001)
567 greg 2.1 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
568 greg 2.30 c_cmaterial->ts*c_cmaterial->ts_a) /
569     (c_cmaterial->rs + c_cmaterial->ts);
570     a6 = (c_cmaterial->td + c_cmaterial->ts) /
571     (c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts);
572 greg 2.7 if (a6 < .999)
573 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
574 greg 2.7 else
575 greg 2.30 d = c_cmaterial->td + c_cmaterial->ts;
576 greg 2.7 scalecolor(radrgb, d);
577 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
578     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
579 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
580 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
581 greg 2.30 c_cmaterial->ts/(c_cmaterial->ts + c_cmaterial->td));
582     if (c_cmaterial->sided)
583     putsided(mname);
584 greg 2.1 return(mname);
585     }
586 greg 2.3 /* check for plastic */
587 greg 2.21 if (c_cmaterial->rs < .1) {
588 greg 2.7 cvtcolor(radrgb, &c_cmaterial->rd_c,
589 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
590 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
591     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
592 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
593     c_cmaterial->rs, c_cmaterial->rs_a);
594 greg 2.30 if (c_cmaterial->sided)
595     putsided(mname);
596 greg 2.1 return(mname);
597     }
598     /* else it's metal */
599 greg 2.7 /* average colors */
600     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
601     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
602 greg 2.1 addcolor(radrgb, c2);
603 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
604     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
605 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
606 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
607     c_cmaterial->rs_a);
608 greg 2.30 if (c_cmaterial->sided)
609     putsided(mname);
610 greg 2.1 return(mname);
611     }
612    
613    
614 schorsch 2.28 void
615     cvtcolor( /* convert a CIE XYZ color to RGB */
616     COLOR radrgb,
617     register C_COLOR *ciec,
618     double intensity
619     )
620 greg 2.1 {
621     static COLOR ciexyz;
622    
623 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
624 greg 2.1 ciexyz[1] = intensity;
625     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
626     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
627     cie_rgb(radrgb, ciexyz);
628     }
629    
630    
631     char *
632 schorsch 2.28 object(void) /* return current object name */
633 greg 2.1 {
634     static char objbuf[64];
635     register int i;
636     register char *cp;
637     int len;
638 greg 2.16 /* tracked by obj_handler */
639 greg 2.1 i = obj_nnames - sizeof(objbuf)/16;
640     if (i < 0)
641     i = 0;
642     for (cp = objbuf; i < obj_nnames &&
643     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
644     i++, *cp++ = '.') {
645     strcpy(cp, obj_name[i]);
646     cp += len;
647     }
648     *cp = '\0';
649     return(objbuf);
650     }
651    
652    
653     char *
654 schorsch 2.28 addarg( /* add argument and advance pointer */
655     register char *op,
656     register char *arg
657     )
658 greg 2.1 {
659     *op = ' ';
660 schorsch 2.27 while ( (*++op = *arg++) )
661 greg 2.1 ;
662     return(op);
663     }