ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.28
Committed: Sat Nov 15 17:54:06 2003 UTC (20 years, 5 months ago) by schorsch
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad4R0, rad3R6, rad3R6P1, rad3R8, rad3R9
Changes since 2.27: +70 -41 lines
Log Message:
Continued ANSIfication and reduced compile warnings.

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 schorsch 2.28 static const char RCSid[] = "$Id: mgf2rad.c,v 2.27 2003/07/27 22:12:01 schorsch Exp $";
3 greg 2.1 #endif
4     /*
5     * Convert MGF (Materials and Geometry Format) to Radiance
6     */
7    
8     #include <stdio.h>
9 greg 2.25 #include <stdlib.h>
10 greg 2.1 #include <math.h>
11     #include <string.h>
12 schorsch 2.28
13     #include "platform.h"
14 greg 2.1 #include "mgflib/parser.h"
15     #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 gwlarson 2.24 FILE *matfp; /* material output file */
27 greg 2.11
28 schorsch 2.28
29     int r_comment(int ac, char **av);
30     int r_cone(int ac, char **av);
31     int r_cyl(int ac, char **av);
32     int r_sph(int ac, char **av);
33     int r_ring(int ac, char **av);
34     int r_face(int ac, char **av);
35     int r_ies(int ac, char **av);
36     char * material(void);
37     char * object(void);
38     char * addarg(char *op, char *arg);
39     void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv);
40     void cvtcolor(COLOR radrgb, register C_COLOR *ciec, double intensity);
41 greg 2.1
42    
43 schorsch 2.28 int
44     main(
45     int argc,
46     char *argv[]
47     )
48 greg 2.1 {
49 greg 2.20 int i;
50 gwlarson 2.24
51     matfp = stdout;
52 greg 2.19 /* print out parser version */
53     printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
54 greg 2.1 /* initialize dispatch table */
55 greg 2.16 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
56     mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
57     mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
58     mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
59     mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
60     mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
61     mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
62     mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
63     mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
64     mg_ehand[MG_E_FACE] = r_face; /* we do faces */
65     mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
66     mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
67     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
68     mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
69     mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
70     mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
71     mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
72     mg_ehand[MG_E_RING] = r_ring; /* we do rings */
73     mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
74     mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
75     mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
76     mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
77     mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
78     mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
79     mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
80 greg 2.1 mg_init(); /* initialize the parser */
81 greg 2.16 /* get our options & print header */
82 greg 2.1 printf("## %s", argv[0]);
83     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
84     printf(" %s", argv[i]);
85     switch (argv[i][1]) {
86     case 'g': /* glow distance (meters) */
87 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
88 greg 2.1 goto userr;
89     glowdist = atof(argv[++i]);
90     printf(" %s", argv[i]);
91     break;
92     case 'e': /* emitter multiplier */
93 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
94 greg 2.1 goto userr;
95     emult = atof(argv[++i]);
96     printf(" %s", argv[i]);
97     break;
98 greg 2.11 case 'm': /* materials file */
99     matfp = fopen(argv[++i], "a");
100     if (matfp == NULL) {
101     fprintf(stderr, "%s: cannot append\n", argv[i]);
102     exit(1);
103     }
104     printf(" %s", argv[i]);
105     break;
106 greg 2.1 default:
107     goto userr;
108     }
109     }
110     putchar('\n');
111     if (i == argc) { /* convert stdin */
112 greg 2.20 if (mg_load(NULL) != MG_OK)
113 greg 2.1 exit(1);
114 greg 2.18 if (mg_nunknown)
115     printf("## %s: %u unknown entities\n",
116     argv[0], mg_nunknown);
117 greg 2.1 } else /* convert each file */
118     for ( ; i < argc; i++) {
119     printf("## %s %s ##############################\n",
120     argv[0], argv[i]);
121 greg 2.20 if (mg_load(argv[i]) != MG_OK)
122 greg 2.1 exit(1);
123 greg 2.18 if (mg_nunknown) {
124     printf("## %s %s: %u unknown entities\n",
125     argv[0], argv[i], mg_nunknown);
126     mg_nunknown = 0;
127     }
128 greg 2.1 }
129     exit(0);
130     userr:
131 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
132 greg 2.1 argv[0]);
133     exit(1);
134     }
135    
136    
137     int
138 schorsch 2.28 r_comment( /* repeat a comment verbatim */
139     register int ac,
140     register char **av
141     )
142 greg 2.1 {
143 greg 2.7 putchar('#'); /* use Radiance comment character */
144 greg 2.16 while (--ac) { /* pass through verbatim */
145 greg 2.1 putchar(' ');
146     fputs(*++av, stdout);
147     }
148     putchar('\n');
149     return(MG_OK);
150     }
151    
152    
153     int
154 schorsch 2.28 r_cone( /* put out a cone */
155     int ac,
156     char **av
157     )
158 greg 2.1 {
159     static int ncones;
160     char *mat;
161     double r1, r2;
162     C_VERTEX *cv1, *cv2;
163     FVECT p1, p2;
164     int inv;
165 greg 2.16 /* check argument count and type */
166 greg 2.1 if (ac != 5)
167     return(MG_EARGC);
168     if (!isflt(av[2]) || !isflt(av[4]))
169     return(MG_ETYPE);
170 greg 2.16 /* get the endpoint vertices */
171 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
172     (cv2 = c_getvert(av[3])) == NULL)
173     return(MG_EUNDEF);
174 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
175 greg 2.1 xf_xfmpoint(p2, cv2->p);
176 greg 2.16 r1 = xf_scale(atof(av[2])); /* scale radii */
177 greg 2.1 r2 = xf_scale(atof(av[4]));
178 greg 2.16 inv = r1 < 0.; /* check for inverted cone */
179     if (r1 == 0.) { /* check for illegal radii */
180 greg 2.1 if (r2 == 0.)
181     return(MG_EILL);
182     inv = r2 < 0.;
183 schorsch 2.27 } else if (r2 != 0. && inv ^ (r2 < 0.))
184 greg 2.1 return(MG_EILL);
185     if (inv) {
186     r1 = -r1;
187     r2 = -r2;
188     }
189 greg 2.16 if ((mat = material()) == NULL) /* get material */
190 greg 2.1 return(MG_EBADMAT);
191 greg 2.16 /* spit the sucker out */
192 greg 2.1 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
193     object(), ++ncones);
194     printf("0\n0\n8\n");
195     putv(p1);
196     putv(p2);
197     printf("%18.12g %18.12g\n", r1, r2);
198     return(MG_OK);
199     }
200    
201    
202     int
203 schorsch 2.28 r_cyl( /* put out a cylinder */
204     int ac,
205     char **av
206     )
207 greg 2.1 {
208     static int ncyls;
209     char *mat;
210     double rad;
211     C_VERTEX *cv1, *cv2;
212     FVECT p1, p2;
213     int inv;
214 greg 2.16 /* check argument count and type */
215 greg 2.1 if (ac != 4)
216     return(MG_EARGC);
217     if (!isflt(av[2]))
218     return(MG_ETYPE);
219 greg 2.16 /* get the endpoint vertices */
220 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
221     (cv2 = c_getvert(av[3])) == NULL)
222     return(MG_EUNDEF);
223 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
224 greg 2.1 xf_xfmpoint(p2, cv2->p);
225 greg 2.16 rad = xf_scale(atof(av[2])); /* scale radius */
226     if ((inv = rad < 0.)) /* check for inverted cylinder */
227 greg 2.1 rad = -rad;
228 greg 2.16 if ((mat = material()) == NULL) /* get material */
229 greg 2.1 return(MG_EBADMAT);
230 greg 2.16 /* spit out the primitive */
231 greg 2.1 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
232     object(), ++ncyls);
233     printf("0\n0\n7\n");
234     putv(p1);
235     putv(p2);
236     printf("%18.12g\n", rad);
237     return(MG_OK);
238     }
239    
240    
241     int
242 schorsch 2.28 r_sph( /* put out a sphere */
243     int ac,
244     char **av
245     )
246 greg 2.1 {
247     static int nsphs;
248     char *mat;
249     double rad;
250     C_VERTEX *cv;
251     FVECT cent;
252     int inv;
253 greg 2.16 /* check argument count and type */
254 greg 2.1 if (ac != 3)
255     return(MG_EARGC);
256     if (!isflt(av[2]))
257     return(MG_ETYPE);
258 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
259 greg 2.1 return(MG_EUNDEF);
260 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
261     rad = xf_scale(atof(av[2])); /* scale radius */
262     if ((inv = rad < 0.)) /* check for inversion */
263 greg 2.1 rad = -rad;
264 greg 2.16 if ((mat = material()) == NULL) /* get material */
265 greg 2.1 return(MG_EBADMAT);
266 greg 2.16 /* spit out primitive */
267 greg 2.1 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
268     object(), ++nsphs);
269     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
270     cent[0], cent[1], cent[2], rad);
271     return(MG_OK);
272     }
273    
274    
275     int
276 schorsch 2.28 r_ring( /* put out a ring */
277     int ac,
278     char **av
279     )
280 greg 2.1 {
281     static int nrings;
282     char *mat;
283     double r1, r2;
284     C_VERTEX *cv;
285     FVECT cent, norm;
286 greg 2.16 /* check argument count and type */
287 greg 2.1 if (ac != 4)
288     return(MG_EARGC);
289     if (!isflt(av[2]) || !isflt(av[3]))
290     return(MG_ETYPE);
291 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
292 greg 2.1 return(MG_EUNDEF);
293 greg 2.16 if (is0vect(cv->n)) /* make sure we have normal */
294 greg 2.1 return(MG_EILL);
295 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
296     xf_rotvect(norm, cv->n); /* rotate normal */
297     r1 = xf_scale(atof(av[2])); /* scale radii */
298 greg 2.1 r2 = xf_scale(atof(av[3]));
299 schorsch 2.27 if ((r1 < 0.) | (r2 <= r1))
300 greg 2.1 return(MG_EILL);
301 greg 2.16 if ((mat = material()) == NULL) /* get material */
302 greg 2.1 return(MG_EBADMAT);
303 greg 2.16 /* spit out primitive */
304 greg 2.1 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
305     printf("0\n0\n8\n");
306     putv(cent);
307     putv(norm);
308     printf("%18.12g %18.12g\n", r1, r2);
309     return(MG_OK);
310     }
311    
312    
313     int
314 schorsch 2.28 r_face( /* convert a face */
315     int ac,
316     char **av
317     )
318 greg 2.1 {
319     static int nfaces;
320 greg 2.25 int myi = invert;
321 greg 2.1 char *mat;
322     register int i;
323     register C_VERTEX *cv;
324     FVECT v;
325 schorsch 2.28
326 greg 2.16 /* check argument count and type */
327 greg 2.1 if (ac < 4)
328     return(MG_EARGC);
329 greg 2.16 if ((mat = material()) == NULL) /* get material */
330 greg 2.1 return(MG_EBADMAT);
331 greg 2.16 if (ac <= 5) { /* check for smoothing */
332 greg 2.23 C_VERTEX *cva[5];
333 greg 2.1 for (i = 1; i < ac; i++) {
334 greg 2.23 if ((cva[i-1] = c_getvert(av[i])) == NULL)
335 greg 2.1 return(MG_EUNDEF);
336 greg 2.23 if (is0vect(cva[i-1]->n))
337 greg 2.1 break;
338     }
339 greg 2.25 if (i < ac)
340     i = ISFLAT;
341     else
342 greg 2.23 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
343     cva[0]->n, cva[1]->n, cva[2]->n);
344 greg 2.25 if (i == DEGEN)
345     return(MG_OK); /* degenerate (error?) */
346     if (i == RVBENT) {
347     myi = !myi;
348     i = ISBENT;
349     } else if (i == RVFLAT) {
350     myi = !myi;
351     i = ISFLAT;
352 greg 2.23 }
353 greg 2.25 if (i == ISBENT) { /* smoothed triangles */
354     do_tri(mat, cva[0], cva[1], cva[2], myi);
355 greg 2.1 if (ac == 5)
356 greg 2.25 do_tri(mat, cva[2], cva[3], cva[0], myi);
357 greg 2.1 return(MG_OK);
358     }
359     }
360 greg 2.16 /* spit out unsmoothed primitive */
361 greg 2.1 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
362     printf("0\n0\n%d\n", 3*(ac-1));
363 greg 2.16 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
364 greg 2.25 if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
365 greg 2.1 return(MG_EUNDEF);
366     xf_xfmpoint(v, cv->p);
367     putv(v);
368     }
369     return(MG_OK);
370     }
371    
372    
373 greg 2.15 int
374 schorsch 2.28 r_ies( /* convert an IES luminaire file */
375     int ac,
376     char **av
377     )
378 greg 2.1 {
379     int xa0 = 2;
380 greg 2.15 char combuf[128];
381 greg 2.1 char fname[48];
382     char *oname;
383     register char *op;
384     register int i;
385 greg 2.16 /* check argument count */
386 greg 2.1 if (ac < 2)
387     return(MG_EARGC);
388 greg 2.16 /* construct output file name */
389 greg 2.22 if ((op = strrchr(av[1], '/')) != NULL)
390     op++;
391     else
392 greg 2.1 op = av[1];
393     (void)strcpy(fname, op);
394     if ((op = strrchr(fname, '.')) == NULL)
395     op = fname + strlen(fname);
396     (void)strcpy(op, ".rad");
397 greg 2.16 /* see if we need to run ies2rad */
398 greg 2.17 if (access(fname, 0) == -1) {
399 greg 2.16 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
400     op = combuf + 7; /* get -m option (first) */
401     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
402     if (!isflt(av[xa0+1]))
403     return(MG_ETYPE);
404     op = addarg(addarg(op, "-m"), av[xa0+1]);
405     xa0 += 2;
406     }
407     *op++ = ' '; /* build IES filename */
408     i = 0;
409     if (mg_file != NULL &&
410     (oname = strrchr(mg_file->fname,'/')) != NULL) {
411     i = oname - mg_file->fname + 1;
412     (void)strcpy(op, mg_file->fname);
413     }
414     (void)strcpy(op+i, av[1]);
415     if (access(op, 0) == -1) /* check for file existence */
416     return(MG_ENOFILE);
417     system(combuf); /* run ies2rad */
418     if (access(fname, 0) == -1) /* check success */
419     return(MG_EINCL);
420     }
421     printf("\n!xform"); /* put out xform command */
422 greg 2.1 oname = object();
423 greg 2.4 if (*oname) {
424     printf(" -n ");
425     for (op = oname; op[1]; op++) /* remove trailing separator */
426     putchar(*op);
427     }
428 greg 2.1 for (i = xa0; i < ac; i++)
429     printf(" %s", av[i]);
430     if (ac > xa0 && xf_argc > 0)
431     printf(" -i 1");
432     for (i = 0; i < xf_argc; i++)
433     printf(" %s", xf_argv[i]);
434     printf(" %s\n", fname);
435     return(MG_OK);
436     }
437    
438    
439 schorsch 2.28 void
440     do_tri( /* put out smoothed triangle */
441     char *mat,
442     C_VERTEX *cv1,
443     C_VERTEX *cv2,
444     C_VERTEX *cv3,
445     int iv
446     )
447 greg 2.1 {
448     static int ntris;
449     BARYCCM bvecs;
450 schorsch 2.26 RREAL bcoor[3][3];
451 greg 2.23 C_VERTEX *cvt;
452 greg 2.1 FVECT v1, v2, v3;
453     FVECT n1, n2, n3;
454     register int i;
455 greg 2.23
456 greg 2.25 if (iv) { /* swap vertex order if inverted */
457 greg 2.23 cvt = cv1;
458     cv1 = cv3;
459     cv3 = cvt;
460 greg 2.9 }
461 greg 2.1 xf_xfmpoint(v1, cv1->p);
462     xf_xfmpoint(v2, cv2->p);
463     xf_xfmpoint(v3, cv3->p);
464 greg 2.16 /* compute barycentric coords. */
465 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
466     return; /* degenerate triangle! */
467 greg 2.16 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
468 greg 2.2 printf("4 dx dy dz %s\n0\n", TCALNAME);
469     xf_rotvect(n1, cv1->n);
470     xf_rotvect(n2, cv2->n);
471     xf_rotvect(n3, cv3->n);
472     for (i = 0; i < 3; i++) {
473     bcoor[i][0] = n1[i];
474     bcoor[i][1] = n2[i];
475     bcoor[i][2] = n3[i];
476 greg 2.1 }
477 greg 2.2 put_baryc(&bvecs, bcoor, 3);
478 greg 2.16 /* put out triangle */
479 greg 2.2 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
480 greg 2.1 printf("0\n0\n9\n");
481     putv(v1);
482     putv(v2);
483     putv(v3);
484     }
485    
486    
487     char *
488 schorsch 2.28 material(void) /* get (and print) current material */
489 greg 2.1 {
490     char *mname = "mat";
491     COLOR radrgb, c2;
492     double d;
493    
494 greg 2.5 if (c_cmname != NULL)
495     mname = c_cmname;
496 greg 2.1 if (!c_cmaterial->clock)
497     return(mname); /* already current */
498     /* else update output */
499     c_cmaterial->clock = 0;
500     if (c_cmaterial->ed > .1) { /* emitter */
501     cvtcolor(radrgb, &c_cmaterial->ed_c,
502 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
503 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
504 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
505     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
506 greg 2.1 colval(radrgb,GRN),
507     colval(radrgb,BLU), glowdist);
508     } else {
509 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
510     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
511 greg 2.1 colval(radrgb,GRN),
512     colval(radrgb,BLU));
513     }
514     return(mname);
515     }
516     d = c_cmaterial->rd + c_cmaterial->td +
517     c_cmaterial->rs + c_cmaterial->ts;
518 schorsch 2.27 if ((d < 0.) | (d > 1.))
519 greg 2.1 return(NULL);
520 greg 2.14 /* check for glass/dielectric */
521     if (c_cmaterial->nr > 1.1 &&
522     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
523     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
524     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
525     cvtcolor(radrgb, &c_cmaterial->ts_c,
526     c_cmaterial->ts + c_cmaterial->rs);
527     if (c_cmaterial->sided) { /* dielectric */
528     colval(radrgb,RED) = pow(colval(radrgb,RED),
529     1./C_1SIDEDTHICK);
530     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
531     1./C_1SIDEDTHICK);
532     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
533     1./C_1SIDEDTHICK);
534     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
535     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
536     colval(radrgb,GRN), colval(radrgb,BLU),
537     c_cmaterial->nr);
538     return(mname);
539     }
540     /* glass */
541     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
542     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
543     colval(radrgb,GRN), colval(radrgb,BLU),
544     c_cmaterial->nr);
545     return(mname);
546     }
547 greg 2.3 /* check for trans */
548     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
549 greg 2.1 double ts, a5, a6;
550    
551 greg 2.6 if (c_cmaterial->sided) {
552     ts = sqrt(c_cmaterial->ts); /* approximate */
553     a5 = .5;
554 greg 2.7 } else {
555     ts = c_cmaterial->ts;
556 greg 2.6 a5 = 1.;
557 greg 2.7 }
558 greg 2.1 /* average colors */
559     d = c_cmaterial->rd + c_cmaterial->td + ts;
560     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
561     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
562     addcolor(radrgb, c2);
563     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
564     addcolor(radrgb, c2);
565     if (c_cmaterial->rs + ts > .0001)
566     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
567 greg 2.6 ts*a5*c_cmaterial->ts_a) /
568 greg 2.1 (c_cmaterial->rs + ts);
569     a6 = (c_cmaterial->td + ts) /
570     (c_cmaterial->rd + c_cmaterial->td + ts);
571 greg 2.7 if (a6 < .999)
572 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
573 greg 2.7 else
574     d = c_cmaterial->td + ts;
575     scalecolor(radrgb, d);
576 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
577     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
578 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
579 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
580 greg 2.1 ts/(ts + c_cmaterial->td));
581     return(mname);
582     }
583 greg 2.3 /* check for plastic */
584 greg 2.21 if (c_cmaterial->rs < .1) {
585 greg 2.7 cvtcolor(radrgb, &c_cmaterial->rd_c,
586 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
587 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
588     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
589 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
590     c_cmaterial->rs, c_cmaterial->rs_a);
591     return(mname);
592     }
593     /* else it's metal */
594 greg 2.7 /* average colors */
595     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
596     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
597 greg 2.1 addcolor(radrgb, c2);
598 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
599     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
600 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
601 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
602     c_cmaterial->rs_a);
603 greg 2.1 return(mname);
604     }
605    
606    
607 schorsch 2.28 void
608     cvtcolor( /* convert a CIE XYZ color to RGB */
609     COLOR radrgb,
610     register C_COLOR *ciec,
611     double intensity
612     )
613 greg 2.1 {
614     static COLOR ciexyz;
615    
616 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
617 greg 2.1 ciexyz[1] = intensity;
618     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
619     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
620     cie_rgb(radrgb, ciexyz);
621     }
622    
623    
624     char *
625 schorsch 2.28 object(void) /* return current object name */
626 greg 2.1 {
627     static char objbuf[64];
628     register int i;
629     register char *cp;
630     int len;
631 greg 2.16 /* tracked by obj_handler */
632 greg 2.1 i = obj_nnames - sizeof(objbuf)/16;
633     if (i < 0)
634     i = 0;
635     for (cp = objbuf; i < obj_nnames &&
636     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
637     i++, *cp++ = '.') {
638     strcpy(cp, obj_name[i]);
639     cp += len;
640     }
641     *cp = '\0';
642     return(objbuf);
643     }
644    
645    
646     char *
647 schorsch 2.28 addarg( /* add argument and advance pointer */
648     register char *op,
649     register char *arg
650     )
651 greg 2.1 {
652     *op = ' ';
653 schorsch 2.27 while ( (*++op = *arg++) )
654 greg 2.1 ;
655     return(op);
656     }