ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.24
Committed: Wed Jun 9 14:06:00 1999 UTC (24 years, 10 months ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 2.23: +3 -1 lines
Log Message:
moved output file initialization into main for Linux non-constant stdout

File Contents

# User Rev Content
1 greg 2.21 /* Copyright (c) 1996 Regents of the University of California */
2 greg 2.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Convert MGF (Materials and Geometry Format) to Radiance
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <string.h>
14     #include "mgflib/parser.h"
15     #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 gwlarson 2.24 FILE *matfp; /* material output file */
27 greg 2.11
28 greg 2.1 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29     char *material(), *object(), *addarg();
30    
31    
32     main(argc, argv) /* convert files to stdout */
33     int argc;
34     char *argv[];
35     {
36 greg 2.20 int i;
37 gwlarson 2.24
38     matfp = stdout;
39 greg 2.19 /* print out parser version */
40     printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
41 greg 2.1 /* initialize dispatch table */
42 greg 2.16 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
43     mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
44     mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
45     mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
46     mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
47     mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
48     mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
49     mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
50     mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
51     mg_ehand[MG_E_FACE] = r_face; /* we do faces */
52     mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
53     mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
54     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
55     mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
56     mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
57     mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
58     mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
59     mg_ehand[MG_E_RING] = r_ring; /* we do rings */
60     mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
61     mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
62     mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
63     mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
64     mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
65     mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
66     mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
67 greg 2.1 mg_init(); /* initialize the parser */
68 greg 2.16 /* get our options & print header */
69 greg 2.1 printf("## %s", argv[0]);
70     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
71     printf(" %s", argv[i]);
72     switch (argv[i][1]) {
73     case 'g': /* glow distance (meters) */
74 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
75 greg 2.1 goto userr;
76     glowdist = atof(argv[++i]);
77     printf(" %s", argv[i]);
78     break;
79     case 'e': /* emitter multiplier */
80 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
81 greg 2.1 goto userr;
82     emult = atof(argv[++i]);
83     printf(" %s", argv[i]);
84     break;
85 greg 2.11 case 'm': /* materials file */
86     matfp = fopen(argv[++i], "a");
87     if (matfp == NULL) {
88     fprintf(stderr, "%s: cannot append\n", argv[i]);
89     exit(1);
90     }
91     printf(" %s", argv[i]);
92     break;
93 greg 2.1 default:
94     goto userr;
95     }
96     }
97     putchar('\n');
98     if (i == argc) { /* convert stdin */
99 greg 2.20 if (mg_load(NULL) != MG_OK)
100 greg 2.1 exit(1);
101 greg 2.18 if (mg_nunknown)
102     printf("## %s: %u unknown entities\n",
103     argv[0], mg_nunknown);
104 greg 2.1 } else /* convert each file */
105     for ( ; i < argc; i++) {
106     printf("## %s %s ##############################\n",
107     argv[0], argv[i]);
108 greg 2.20 if (mg_load(argv[i]) != MG_OK)
109 greg 2.1 exit(1);
110 greg 2.18 if (mg_nunknown) {
111     printf("## %s %s: %u unknown entities\n",
112     argv[0], argv[i], mg_nunknown);
113     mg_nunknown = 0;
114     }
115 greg 2.1 }
116     exit(0);
117     userr:
118 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
119 greg 2.1 argv[0]);
120     exit(1);
121     }
122    
123    
124     int
125     r_comment(ac, av) /* repeat a comment verbatim */
126     register int ac;
127     register char **av;
128     {
129 greg 2.7 putchar('#'); /* use Radiance comment character */
130 greg 2.16 while (--ac) { /* pass through verbatim */
131 greg 2.1 putchar(' ');
132     fputs(*++av, stdout);
133     }
134     putchar('\n');
135     return(MG_OK);
136     }
137    
138    
139     int
140     r_cone(ac, av) /* put out a cone */
141     int ac;
142     char **av;
143     {
144     static int ncones;
145     char *mat;
146     double r1, r2;
147     C_VERTEX *cv1, *cv2;
148     FVECT p1, p2;
149     int inv;
150 greg 2.16 /* check argument count and type */
151 greg 2.1 if (ac != 5)
152     return(MG_EARGC);
153     if (!isflt(av[2]) || !isflt(av[4]))
154     return(MG_ETYPE);
155 greg 2.16 /* get the endpoint vertices */
156 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
157     (cv2 = c_getvert(av[3])) == NULL)
158     return(MG_EUNDEF);
159 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
160 greg 2.1 xf_xfmpoint(p2, cv2->p);
161 greg 2.16 r1 = xf_scale(atof(av[2])); /* scale radii */
162 greg 2.1 r2 = xf_scale(atof(av[4]));
163 greg 2.16 inv = r1 < 0.; /* check for inverted cone */
164     if (r1 == 0.) { /* check for illegal radii */
165 greg 2.1 if (r2 == 0.)
166     return(MG_EILL);
167     inv = r2 < 0.;
168     } else if (r2 != 0. && inv ^ r2 < 0.)
169     return(MG_EILL);
170     if (inv) {
171     r1 = -r1;
172     r2 = -r2;
173     }
174 greg 2.16 if ((mat = material()) == NULL) /* get material */
175 greg 2.1 return(MG_EBADMAT);
176 greg 2.16 /* spit the sucker out */
177 greg 2.1 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
178     object(), ++ncones);
179     printf("0\n0\n8\n");
180     putv(p1);
181     putv(p2);
182     printf("%18.12g %18.12g\n", r1, r2);
183     return(MG_OK);
184     }
185    
186    
187     int
188     r_cyl(ac, av) /* put out a cylinder */
189     int ac;
190     char **av;
191     {
192     static int ncyls;
193     char *mat;
194     double rad;
195     C_VERTEX *cv1, *cv2;
196     FVECT p1, p2;
197     int inv;
198 greg 2.16 /* check argument count and type */
199 greg 2.1 if (ac != 4)
200     return(MG_EARGC);
201     if (!isflt(av[2]))
202     return(MG_ETYPE);
203 greg 2.16 /* get the endpoint vertices */
204 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
205     (cv2 = c_getvert(av[3])) == NULL)
206     return(MG_EUNDEF);
207 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
208 greg 2.1 xf_xfmpoint(p2, cv2->p);
209 greg 2.16 rad = xf_scale(atof(av[2])); /* scale radius */
210     if ((inv = rad < 0.)) /* check for inverted cylinder */
211 greg 2.1 rad = -rad;
212 greg 2.16 if ((mat = material()) == NULL) /* get material */
213 greg 2.1 return(MG_EBADMAT);
214 greg 2.16 /* spit out the primitive */
215 greg 2.1 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
216     object(), ++ncyls);
217     printf("0\n0\n7\n");
218     putv(p1);
219     putv(p2);
220     printf("%18.12g\n", rad);
221     return(MG_OK);
222     }
223    
224    
225     int
226     r_sph(ac, av) /* put out a sphere */
227     int ac;
228     char **av;
229     {
230     static int nsphs;
231     char *mat;
232     double rad;
233     C_VERTEX *cv;
234     FVECT cent;
235     int inv;
236 greg 2.16 /* check argument count and type */
237 greg 2.1 if (ac != 3)
238     return(MG_EARGC);
239     if (!isflt(av[2]))
240     return(MG_ETYPE);
241 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
242 greg 2.1 return(MG_EUNDEF);
243 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
244     rad = xf_scale(atof(av[2])); /* scale radius */
245     if ((inv = rad < 0.)) /* check for inversion */
246 greg 2.1 rad = -rad;
247 greg 2.16 if ((mat = material()) == NULL) /* get material */
248 greg 2.1 return(MG_EBADMAT);
249 greg 2.16 /* spit out primitive */
250 greg 2.1 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
251     object(), ++nsphs);
252     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
253     cent[0], cent[1], cent[2], rad);
254     return(MG_OK);
255     }
256    
257    
258     int
259     r_ring(ac, av) /* put out a ring */
260     int ac;
261     char **av;
262     {
263     static int nrings;
264     char *mat;
265     double r1, r2;
266     C_VERTEX *cv;
267     FVECT cent, norm;
268 greg 2.16 /* check argument count and type */
269 greg 2.1 if (ac != 4)
270     return(MG_EARGC);
271     if (!isflt(av[2]) || !isflt(av[3]))
272     return(MG_ETYPE);
273 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
274 greg 2.1 return(MG_EUNDEF);
275 greg 2.16 if (is0vect(cv->n)) /* make sure we have normal */
276 greg 2.1 return(MG_EILL);
277 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
278     xf_rotvect(norm, cv->n); /* rotate normal */
279     r1 = xf_scale(atof(av[2])); /* scale radii */
280 greg 2.1 r2 = xf_scale(atof(av[3]));
281     if (r1 < 0. | r2 <= r1)
282     return(MG_EILL);
283 greg 2.16 if ((mat = material()) == NULL) /* get material */
284 greg 2.1 return(MG_EBADMAT);
285 greg 2.16 /* spit out primitive */
286 greg 2.1 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
287     printf("0\n0\n8\n");
288     putv(cent);
289     putv(norm);
290     printf("%18.12g %18.12g\n", r1, r2);
291     return(MG_OK);
292     }
293    
294    
295     int
296     r_face(ac, av) /* convert a face */
297     int ac;
298     char **av;
299     {
300     static int nfaces;
301     char *mat;
302     register int i;
303     register C_VERTEX *cv;
304     FVECT v;
305     int rv;
306 greg 2.16 /* check argument count and type */
307 greg 2.1 if (ac < 4)
308     return(MG_EARGC);
309 greg 2.16 if ((mat = material()) == NULL) /* get material */
310 greg 2.1 return(MG_EBADMAT);
311 greg 2.16 if (ac <= 5) { /* check for smoothing */
312 greg 2.23 C_VERTEX *cva[5];
313 greg 2.1 for (i = 1; i < ac; i++) {
314 greg 2.23 if ((cva[i-1] = c_getvert(av[i])) == NULL)
315 greg 2.1 return(MG_EUNDEF);
316 greg 2.23 if (is0vect(cva[i-1]->n))
317 greg 2.1 break;
318     }
319 greg 2.23 if (i == ac) {
320     i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
321     cva[0]->n, cva[1]->n, cva[2]->n);
322     if (i < 0)
323     return(MG_OK); /* degenerate (error?) */
324     }
325     if (!i) { /* smoothed triangles */
326     do_tri(mat, cva[0], cva[1], cva[2]);
327 greg 2.1 if (ac == 5)
328 greg 2.23 do_tri(mat, cva[2], cva[3], cva[0]);
329 greg 2.1 return(MG_OK);
330     }
331     }
332 greg 2.16 /* spit out unsmoothed primitive */
333 greg 2.1 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
334     printf("0\n0\n%d\n", 3*(ac-1));
335 greg 2.16 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
336 greg 2.9 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
337 greg 2.1 return(MG_EUNDEF);
338     xf_xfmpoint(v, cv->p);
339     putv(v);
340     }
341     return(MG_OK);
342     }
343    
344    
345 greg 2.15 int
346 greg 2.1 r_ies(ac, av) /* convert an IES luminaire file */
347     int ac;
348     char **av;
349     {
350     int xa0 = 2;
351 greg 2.15 char combuf[128];
352 greg 2.1 char fname[48];
353     char *oname;
354     register char *op;
355     register int i;
356 greg 2.16 /* check argument count */
357 greg 2.1 if (ac < 2)
358     return(MG_EARGC);
359 greg 2.16 /* construct output file name */
360 greg 2.22 if ((op = strrchr(av[1], '/')) != NULL)
361     op++;
362     else
363 greg 2.1 op = av[1];
364     (void)strcpy(fname, op);
365     if ((op = strrchr(fname, '.')) == NULL)
366     op = fname + strlen(fname);
367     (void)strcpy(op, ".rad");
368 greg 2.16 /* see if we need to run ies2rad */
369 greg 2.17 if (access(fname, 0) == -1) {
370 greg 2.16 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
371     op = combuf + 7; /* get -m option (first) */
372     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
373     if (!isflt(av[xa0+1]))
374     return(MG_ETYPE);
375     op = addarg(addarg(op, "-m"), av[xa0+1]);
376     xa0 += 2;
377     }
378     *op++ = ' '; /* build IES filename */
379     i = 0;
380     if (mg_file != NULL &&
381     (oname = strrchr(mg_file->fname,'/')) != NULL) {
382     i = oname - mg_file->fname + 1;
383     (void)strcpy(op, mg_file->fname);
384     }
385     (void)strcpy(op+i, av[1]);
386     if (access(op, 0) == -1) /* check for file existence */
387     return(MG_ENOFILE);
388     system(combuf); /* run ies2rad */
389     if (access(fname, 0) == -1) /* check success */
390     return(MG_EINCL);
391     }
392     printf("\n!xform"); /* put out xform command */
393 greg 2.1 oname = object();
394 greg 2.4 if (*oname) {
395     printf(" -n ");
396     for (op = oname; op[1]; op++) /* remove trailing separator */
397     putchar(*op);
398     }
399 greg 2.1 for (i = xa0; i < ac; i++)
400     printf(" %s", av[i]);
401     if (ac > xa0 && xf_argc > 0)
402     printf(" -i 1");
403     for (i = 0; i < xf_argc; i++)
404     printf(" %s", xf_argv[i]);
405     printf(" %s\n", fname);
406     return(MG_OK);
407     }
408    
409    
410 greg 2.23 do_tri(mat, cv1, cv2, cv3) /* put out smoothed triangle */
411     char *mat;
412     C_VERTEX *cv1, *cv2, *cv3;
413 greg 2.1 {
414     static int ntris;
415     BARYCCM bvecs;
416     FLOAT bcoor[3][3];
417 greg 2.23 C_VERTEX *cvt;
418 greg 2.1 FVECT v1, v2, v3;
419     FVECT n1, n2, n3;
420     register int i;
421 greg 2.23
422     if (invert) { /* swap vertex order if inverted */
423     cvt = cv1;
424     cv1 = cv3;
425     cv3 = cvt;
426 greg 2.9 }
427 greg 2.1 xf_xfmpoint(v1, cv1->p);
428     xf_xfmpoint(v2, cv2->p);
429     xf_xfmpoint(v3, cv3->p);
430 greg 2.16 /* compute barycentric coords. */
431 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
432     return; /* degenerate triangle! */
433 greg 2.16 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
434 greg 2.2 printf("4 dx dy dz %s\n0\n", TCALNAME);
435     xf_rotvect(n1, cv1->n);
436     xf_rotvect(n2, cv2->n);
437     xf_rotvect(n3, cv3->n);
438     for (i = 0; i < 3; i++) {
439     bcoor[i][0] = n1[i];
440     bcoor[i][1] = n2[i];
441     bcoor[i][2] = n3[i];
442 greg 2.1 }
443 greg 2.2 put_baryc(&bvecs, bcoor, 3);
444 greg 2.16 /* put out triangle */
445 greg 2.2 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
446 greg 2.1 printf("0\n0\n9\n");
447     putv(v1);
448     putv(v2);
449     putv(v3);
450     }
451    
452    
453     char *
454     material() /* get (and print) current material */
455     {
456     char *mname = "mat";
457     COLOR radrgb, c2;
458     double d;
459     register int i;
460    
461 greg 2.5 if (c_cmname != NULL)
462     mname = c_cmname;
463 greg 2.1 if (!c_cmaterial->clock)
464     return(mname); /* already current */
465     /* else update output */
466     c_cmaterial->clock = 0;
467     if (c_cmaterial->ed > .1) { /* emitter */
468     cvtcolor(radrgb, &c_cmaterial->ed_c,
469 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
470 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
471 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
472     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
473 greg 2.1 colval(radrgb,GRN),
474     colval(radrgb,BLU), glowdist);
475     } else {
476 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
477     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
478 greg 2.1 colval(radrgb,GRN),
479     colval(radrgb,BLU));
480     }
481     return(mname);
482     }
483     d = c_cmaterial->rd + c_cmaterial->td +
484     c_cmaterial->rs + c_cmaterial->ts;
485 greg 2.7 if (d < 0. | d > 1.)
486 greg 2.1 return(NULL);
487 greg 2.14 /* check for glass/dielectric */
488     if (c_cmaterial->nr > 1.1 &&
489     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
490     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
491     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
492     cvtcolor(radrgb, &c_cmaterial->ts_c,
493     c_cmaterial->ts + c_cmaterial->rs);
494     if (c_cmaterial->sided) { /* dielectric */
495     colval(radrgb,RED) = pow(colval(radrgb,RED),
496     1./C_1SIDEDTHICK);
497     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
498     1./C_1SIDEDTHICK);
499     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
500     1./C_1SIDEDTHICK);
501     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
502     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
503     colval(radrgb,GRN), colval(radrgb,BLU),
504     c_cmaterial->nr);
505     return(mname);
506     }
507     /* glass */
508     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
509     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
510     colval(radrgb,GRN), colval(radrgb,BLU),
511     c_cmaterial->nr);
512     return(mname);
513     }
514 greg 2.3 /* check for trans */
515     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
516 greg 2.1 double ts, a5, a6;
517    
518 greg 2.6 if (c_cmaterial->sided) {
519     ts = sqrt(c_cmaterial->ts); /* approximate */
520     a5 = .5;
521 greg 2.7 } else {
522     ts = c_cmaterial->ts;
523 greg 2.6 a5 = 1.;
524 greg 2.7 }
525 greg 2.1 /* average colors */
526     d = c_cmaterial->rd + c_cmaterial->td + ts;
527     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
528     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
529     addcolor(radrgb, c2);
530     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
531     addcolor(radrgb, c2);
532     if (c_cmaterial->rs + ts > .0001)
533     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
534 greg 2.6 ts*a5*c_cmaterial->ts_a) /
535 greg 2.1 (c_cmaterial->rs + ts);
536     a6 = (c_cmaterial->td + ts) /
537     (c_cmaterial->rd + c_cmaterial->td + ts);
538 greg 2.7 if (a6 < .999)
539 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
540 greg 2.7 else
541     d = c_cmaterial->td + ts;
542     scalecolor(radrgb, d);
543 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
544     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
545 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
546 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
547 greg 2.1 ts/(ts + c_cmaterial->td));
548     return(mname);
549     }
550 greg 2.3 /* check for plastic */
551 greg 2.21 if (c_cmaterial->rs < .1) {
552 greg 2.7 cvtcolor(radrgb, &c_cmaterial->rd_c,
553 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
554 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
555     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
556 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
557     c_cmaterial->rs, c_cmaterial->rs_a);
558     return(mname);
559     }
560     /* else it's metal */
561 greg 2.7 /* average colors */
562     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
563     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
564 greg 2.1 addcolor(radrgb, c2);
565 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
566     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
567 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
568 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
569     c_cmaterial->rs_a);
570 greg 2.1 return(mname);
571     }
572    
573    
574 greg 2.16 cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
575 greg 2.1 COLOR radrgb;
576     register C_COLOR *ciec;
577     double intensity;
578     {
579     static COLOR ciexyz;
580    
581 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
582 greg 2.1 ciexyz[1] = intensity;
583     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
584     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
585     cie_rgb(radrgb, ciexyz);
586     }
587    
588    
589     char *
590     object() /* return current object name */
591     {
592     static char objbuf[64];
593     register int i;
594     register char *cp;
595     int len;
596 greg 2.16 /* tracked by obj_handler */
597 greg 2.1 i = obj_nnames - sizeof(objbuf)/16;
598     if (i < 0)
599     i = 0;
600     for (cp = objbuf; i < obj_nnames &&
601     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
602     i++, *cp++ = '.') {
603     strcpy(cp, obj_name[i]);
604     cp += len;
605     }
606     *cp = '\0';
607     return(objbuf);
608     }
609    
610    
611     char *
612     addarg(op, arg) /* add argument and advance pointer */
613     register char *op, *arg;
614     {
615     *op = ' ';
616     while (*++op = *arg++)
617     ;
618     return(op);
619     }