ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.23
Committed: Wed Jul 24 13:07:48 1996 UTC (27 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.22: +21 -16 lines
Log Message:
added check for flat triangles with normals

File Contents

# User Rev Content
1 greg 2.21 /* Copyright (c) 1996 Regents of the University of California */
2 greg 2.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Convert MGF (Materials and Geometry Format) to Radiance
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <string.h>
14     #include "mgflib/parser.h"
15     #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 greg 2.11 FILE *matfp = stdout; /* material output file */
27    
28 greg 2.1 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29     char *material(), *object(), *addarg();
30    
31    
32     main(argc, argv) /* convert files to stdout */
33     int argc;
34     char *argv[];
35     {
36 greg 2.20 int i;
37 greg 2.19 /* print out parser version */
38     printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
39 greg 2.1 /* initialize dispatch table */
40 greg 2.16 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
41     mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
42     mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
43     mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
44     mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
45     mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
46     mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
47     mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
48     mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
49     mg_ehand[MG_E_FACE] = r_face; /* we do faces */
50     mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
51     mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
52     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
53     mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
54     mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
55     mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
56     mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
57     mg_ehand[MG_E_RING] = r_ring; /* we do rings */
58     mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
59     mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
60     mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
61     mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
62     mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
63     mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
64     mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
65 greg 2.1 mg_init(); /* initialize the parser */
66 greg 2.16 /* get our options & print header */
67 greg 2.1 printf("## %s", argv[0]);
68     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
69     printf(" %s", argv[i]);
70     switch (argv[i][1]) {
71     case 'g': /* glow distance (meters) */
72 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
73 greg 2.1 goto userr;
74     glowdist = atof(argv[++i]);
75     printf(" %s", argv[i]);
76     break;
77     case 'e': /* emitter multiplier */
78 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
79 greg 2.1 goto userr;
80     emult = atof(argv[++i]);
81     printf(" %s", argv[i]);
82     break;
83 greg 2.11 case 'm': /* materials file */
84     matfp = fopen(argv[++i], "a");
85     if (matfp == NULL) {
86     fprintf(stderr, "%s: cannot append\n", argv[i]);
87     exit(1);
88     }
89     printf(" %s", argv[i]);
90     break;
91 greg 2.1 default:
92     goto userr;
93     }
94     }
95     putchar('\n');
96     if (i == argc) { /* convert stdin */
97 greg 2.20 if (mg_load(NULL) != MG_OK)
98 greg 2.1 exit(1);
99 greg 2.18 if (mg_nunknown)
100     printf("## %s: %u unknown entities\n",
101     argv[0], mg_nunknown);
102 greg 2.1 } else /* convert each file */
103     for ( ; i < argc; i++) {
104     printf("## %s %s ##############################\n",
105     argv[0], argv[i]);
106 greg 2.20 if (mg_load(argv[i]) != MG_OK)
107 greg 2.1 exit(1);
108 greg 2.18 if (mg_nunknown) {
109     printf("## %s %s: %u unknown entities\n",
110     argv[0], argv[i], mg_nunknown);
111     mg_nunknown = 0;
112     }
113 greg 2.1 }
114     exit(0);
115     userr:
116 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
117 greg 2.1 argv[0]);
118     exit(1);
119     }
120    
121    
122     int
123     r_comment(ac, av) /* repeat a comment verbatim */
124     register int ac;
125     register char **av;
126     {
127 greg 2.7 putchar('#'); /* use Radiance comment character */
128 greg 2.16 while (--ac) { /* pass through verbatim */
129 greg 2.1 putchar(' ');
130     fputs(*++av, stdout);
131     }
132     putchar('\n');
133     return(MG_OK);
134     }
135    
136    
137     int
138     r_cone(ac, av) /* put out a cone */
139     int ac;
140     char **av;
141     {
142     static int ncones;
143     char *mat;
144     double r1, r2;
145     C_VERTEX *cv1, *cv2;
146     FVECT p1, p2;
147     int inv;
148 greg 2.16 /* check argument count and type */
149 greg 2.1 if (ac != 5)
150     return(MG_EARGC);
151     if (!isflt(av[2]) || !isflt(av[4]))
152     return(MG_ETYPE);
153 greg 2.16 /* get the endpoint vertices */
154 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
155     (cv2 = c_getvert(av[3])) == NULL)
156     return(MG_EUNDEF);
157 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
158 greg 2.1 xf_xfmpoint(p2, cv2->p);
159 greg 2.16 r1 = xf_scale(atof(av[2])); /* scale radii */
160 greg 2.1 r2 = xf_scale(atof(av[4]));
161 greg 2.16 inv = r1 < 0.; /* check for inverted cone */
162     if (r1 == 0.) { /* check for illegal radii */
163 greg 2.1 if (r2 == 0.)
164     return(MG_EILL);
165     inv = r2 < 0.;
166     } else if (r2 != 0. && inv ^ r2 < 0.)
167     return(MG_EILL);
168     if (inv) {
169     r1 = -r1;
170     r2 = -r2;
171     }
172 greg 2.16 if ((mat = material()) == NULL) /* get material */
173 greg 2.1 return(MG_EBADMAT);
174 greg 2.16 /* spit the sucker out */
175 greg 2.1 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
176     object(), ++ncones);
177     printf("0\n0\n8\n");
178     putv(p1);
179     putv(p2);
180     printf("%18.12g %18.12g\n", r1, r2);
181     return(MG_OK);
182     }
183    
184    
185     int
186     r_cyl(ac, av) /* put out a cylinder */
187     int ac;
188     char **av;
189     {
190     static int ncyls;
191     char *mat;
192     double rad;
193     C_VERTEX *cv1, *cv2;
194     FVECT p1, p2;
195     int inv;
196 greg 2.16 /* check argument count and type */
197 greg 2.1 if (ac != 4)
198     return(MG_EARGC);
199     if (!isflt(av[2]))
200     return(MG_ETYPE);
201 greg 2.16 /* get the endpoint vertices */
202 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
203     (cv2 = c_getvert(av[3])) == NULL)
204     return(MG_EUNDEF);
205 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
206 greg 2.1 xf_xfmpoint(p2, cv2->p);
207 greg 2.16 rad = xf_scale(atof(av[2])); /* scale radius */
208     if ((inv = rad < 0.)) /* check for inverted cylinder */
209 greg 2.1 rad = -rad;
210 greg 2.16 if ((mat = material()) == NULL) /* get material */
211 greg 2.1 return(MG_EBADMAT);
212 greg 2.16 /* spit out the primitive */
213 greg 2.1 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
214     object(), ++ncyls);
215     printf("0\n0\n7\n");
216     putv(p1);
217     putv(p2);
218     printf("%18.12g\n", rad);
219     return(MG_OK);
220     }
221    
222    
223     int
224     r_sph(ac, av) /* put out a sphere */
225     int ac;
226     char **av;
227     {
228     static int nsphs;
229     char *mat;
230     double rad;
231     C_VERTEX *cv;
232     FVECT cent;
233     int inv;
234 greg 2.16 /* check argument count and type */
235 greg 2.1 if (ac != 3)
236     return(MG_EARGC);
237     if (!isflt(av[2]))
238     return(MG_ETYPE);
239 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
240 greg 2.1 return(MG_EUNDEF);
241 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
242     rad = xf_scale(atof(av[2])); /* scale radius */
243     if ((inv = rad < 0.)) /* check for inversion */
244 greg 2.1 rad = -rad;
245 greg 2.16 if ((mat = material()) == NULL) /* get material */
246 greg 2.1 return(MG_EBADMAT);
247 greg 2.16 /* spit out primitive */
248 greg 2.1 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
249     object(), ++nsphs);
250     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
251     cent[0], cent[1], cent[2], rad);
252     return(MG_OK);
253     }
254    
255    
256     int
257     r_ring(ac, av) /* put out a ring */
258     int ac;
259     char **av;
260     {
261     static int nrings;
262     char *mat;
263     double r1, r2;
264     C_VERTEX *cv;
265     FVECT cent, norm;
266 greg 2.16 /* check argument count and type */
267 greg 2.1 if (ac != 4)
268     return(MG_EARGC);
269     if (!isflt(av[2]) || !isflt(av[3]))
270     return(MG_ETYPE);
271 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
272 greg 2.1 return(MG_EUNDEF);
273 greg 2.16 if (is0vect(cv->n)) /* make sure we have normal */
274 greg 2.1 return(MG_EILL);
275 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
276     xf_rotvect(norm, cv->n); /* rotate normal */
277     r1 = xf_scale(atof(av[2])); /* scale radii */
278 greg 2.1 r2 = xf_scale(atof(av[3]));
279     if (r1 < 0. | r2 <= r1)
280     return(MG_EILL);
281 greg 2.16 if ((mat = material()) == NULL) /* get material */
282 greg 2.1 return(MG_EBADMAT);
283 greg 2.16 /* spit out primitive */
284 greg 2.1 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
285     printf("0\n0\n8\n");
286     putv(cent);
287     putv(norm);
288     printf("%18.12g %18.12g\n", r1, r2);
289     return(MG_OK);
290     }
291    
292    
293     int
294     r_face(ac, av) /* convert a face */
295     int ac;
296     char **av;
297     {
298     static int nfaces;
299     char *mat;
300     register int i;
301     register C_VERTEX *cv;
302     FVECT v;
303     int rv;
304 greg 2.16 /* check argument count and type */
305 greg 2.1 if (ac < 4)
306     return(MG_EARGC);
307 greg 2.16 if ((mat = material()) == NULL) /* get material */
308 greg 2.1 return(MG_EBADMAT);
309 greg 2.16 if (ac <= 5) { /* check for smoothing */
310 greg 2.23 C_VERTEX *cva[5];
311 greg 2.1 for (i = 1; i < ac; i++) {
312 greg 2.23 if ((cva[i-1] = c_getvert(av[i])) == NULL)
313 greg 2.1 return(MG_EUNDEF);
314 greg 2.23 if (is0vect(cva[i-1]->n))
315 greg 2.1 break;
316     }
317 greg 2.23 if (i == ac) {
318     i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
319     cva[0]->n, cva[1]->n, cva[2]->n);
320     if (i < 0)
321     return(MG_OK); /* degenerate (error?) */
322     }
323     if (!i) { /* smoothed triangles */
324     do_tri(mat, cva[0], cva[1], cva[2]);
325 greg 2.1 if (ac == 5)
326 greg 2.23 do_tri(mat, cva[2], cva[3], cva[0]);
327 greg 2.1 return(MG_OK);
328     }
329     }
330 greg 2.16 /* spit out unsmoothed primitive */
331 greg 2.1 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
332     printf("0\n0\n%d\n", 3*(ac-1));
333 greg 2.16 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
334 greg 2.9 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
335 greg 2.1 return(MG_EUNDEF);
336     xf_xfmpoint(v, cv->p);
337     putv(v);
338     }
339     return(MG_OK);
340     }
341    
342    
343 greg 2.15 int
344 greg 2.1 r_ies(ac, av) /* convert an IES luminaire file */
345     int ac;
346     char **av;
347     {
348     int xa0 = 2;
349 greg 2.15 char combuf[128];
350 greg 2.1 char fname[48];
351     char *oname;
352     register char *op;
353     register int i;
354 greg 2.16 /* check argument count */
355 greg 2.1 if (ac < 2)
356     return(MG_EARGC);
357 greg 2.16 /* construct output file name */
358 greg 2.22 if ((op = strrchr(av[1], '/')) != NULL)
359     op++;
360     else
361 greg 2.1 op = av[1];
362     (void)strcpy(fname, op);
363     if ((op = strrchr(fname, '.')) == NULL)
364     op = fname + strlen(fname);
365     (void)strcpy(op, ".rad");
366 greg 2.16 /* see if we need to run ies2rad */
367 greg 2.17 if (access(fname, 0) == -1) {
368 greg 2.16 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
369     op = combuf + 7; /* get -m option (first) */
370     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
371     if (!isflt(av[xa0+1]))
372     return(MG_ETYPE);
373     op = addarg(addarg(op, "-m"), av[xa0+1]);
374     xa0 += 2;
375     }
376     *op++ = ' '; /* build IES filename */
377     i = 0;
378     if (mg_file != NULL &&
379     (oname = strrchr(mg_file->fname,'/')) != NULL) {
380     i = oname - mg_file->fname + 1;
381     (void)strcpy(op, mg_file->fname);
382     }
383     (void)strcpy(op+i, av[1]);
384     if (access(op, 0) == -1) /* check for file existence */
385     return(MG_ENOFILE);
386     system(combuf); /* run ies2rad */
387     if (access(fname, 0) == -1) /* check success */
388     return(MG_EINCL);
389     }
390     printf("\n!xform"); /* put out xform command */
391 greg 2.1 oname = object();
392 greg 2.4 if (*oname) {
393     printf(" -n ");
394     for (op = oname; op[1]; op++) /* remove trailing separator */
395     putchar(*op);
396     }
397 greg 2.1 for (i = xa0; i < ac; i++)
398     printf(" %s", av[i]);
399     if (ac > xa0 && xf_argc > 0)
400     printf(" -i 1");
401     for (i = 0; i < xf_argc; i++)
402     printf(" %s", xf_argv[i]);
403     printf(" %s\n", fname);
404     return(MG_OK);
405     }
406    
407    
408 greg 2.23 do_tri(mat, cv1, cv2, cv3) /* put out smoothed triangle */
409     char *mat;
410     C_VERTEX *cv1, *cv2, *cv3;
411 greg 2.1 {
412     static int ntris;
413     BARYCCM bvecs;
414     FLOAT bcoor[3][3];
415 greg 2.23 C_VERTEX *cvt;
416 greg 2.1 FVECT v1, v2, v3;
417     FVECT n1, n2, n3;
418     register int i;
419 greg 2.23
420     if (invert) { /* swap vertex order if inverted */
421     cvt = cv1;
422     cv1 = cv3;
423     cv3 = cvt;
424 greg 2.9 }
425 greg 2.1 xf_xfmpoint(v1, cv1->p);
426     xf_xfmpoint(v2, cv2->p);
427     xf_xfmpoint(v3, cv3->p);
428 greg 2.16 /* compute barycentric coords. */
429 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
430     return; /* degenerate triangle! */
431 greg 2.16 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
432 greg 2.2 printf("4 dx dy dz %s\n0\n", TCALNAME);
433     xf_rotvect(n1, cv1->n);
434     xf_rotvect(n2, cv2->n);
435     xf_rotvect(n3, cv3->n);
436     for (i = 0; i < 3; i++) {
437     bcoor[i][0] = n1[i];
438     bcoor[i][1] = n2[i];
439     bcoor[i][2] = n3[i];
440 greg 2.1 }
441 greg 2.2 put_baryc(&bvecs, bcoor, 3);
442 greg 2.16 /* put out triangle */
443 greg 2.2 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
444 greg 2.1 printf("0\n0\n9\n");
445     putv(v1);
446     putv(v2);
447     putv(v3);
448     }
449    
450    
451     char *
452     material() /* get (and print) current material */
453     {
454     char *mname = "mat";
455     COLOR radrgb, c2;
456     double d;
457     register int i;
458    
459 greg 2.5 if (c_cmname != NULL)
460     mname = c_cmname;
461 greg 2.1 if (!c_cmaterial->clock)
462     return(mname); /* already current */
463     /* else update output */
464     c_cmaterial->clock = 0;
465     if (c_cmaterial->ed > .1) { /* emitter */
466     cvtcolor(radrgb, &c_cmaterial->ed_c,
467 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
468 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
469 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
470     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
471 greg 2.1 colval(radrgb,GRN),
472     colval(radrgb,BLU), glowdist);
473     } else {
474 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
475     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
476 greg 2.1 colval(radrgb,GRN),
477     colval(radrgb,BLU));
478     }
479     return(mname);
480     }
481     d = c_cmaterial->rd + c_cmaterial->td +
482     c_cmaterial->rs + c_cmaterial->ts;
483 greg 2.7 if (d < 0. | d > 1.)
484 greg 2.1 return(NULL);
485 greg 2.14 /* check for glass/dielectric */
486     if (c_cmaterial->nr > 1.1 &&
487     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
488     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
489     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
490     cvtcolor(radrgb, &c_cmaterial->ts_c,
491     c_cmaterial->ts + c_cmaterial->rs);
492     if (c_cmaterial->sided) { /* dielectric */
493     colval(radrgb,RED) = pow(colval(radrgb,RED),
494     1./C_1SIDEDTHICK);
495     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
496     1./C_1SIDEDTHICK);
497     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
498     1./C_1SIDEDTHICK);
499     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
500     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
501     colval(radrgb,GRN), colval(radrgb,BLU),
502     c_cmaterial->nr);
503     return(mname);
504     }
505     /* glass */
506     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
507     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
508     colval(radrgb,GRN), colval(radrgb,BLU),
509     c_cmaterial->nr);
510     return(mname);
511     }
512 greg 2.3 /* check for trans */
513     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
514 greg 2.1 double ts, a5, a6;
515    
516 greg 2.6 if (c_cmaterial->sided) {
517     ts = sqrt(c_cmaterial->ts); /* approximate */
518     a5 = .5;
519 greg 2.7 } else {
520     ts = c_cmaterial->ts;
521 greg 2.6 a5 = 1.;
522 greg 2.7 }
523 greg 2.1 /* average colors */
524     d = c_cmaterial->rd + c_cmaterial->td + ts;
525     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
526     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
527     addcolor(radrgb, c2);
528     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
529     addcolor(radrgb, c2);
530     if (c_cmaterial->rs + ts > .0001)
531     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
532 greg 2.6 ts*a5*c_cmaterial->ts_a) /
533 greg 2.1 (c_cmaterial->rs + ts);
534     a6 = (c_cmaterial->td + ts) /
535     (c_cmaterial->rd + c_cmaterial->td + ts);
536 greg 2.7 if (a6 < .999)
537 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
538 greg 2.7 else
539     d = c_cmaterial->td + ts;
540     scalecolor(radrgb, d);
541 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
542     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
543 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
544 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
545 greg 2.1 ts/(ts + c_cmaterial->td));
546     return(mname);
547     }
548 greg 2.3 /* check for plastic */
549 greg 2.21 if (c_cmaterial->rs < .1) {
550 greg 2.7 cvtcolor(radrgb, &c_cmaterial->rd_c,
551 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
552 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
553     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
554 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
555     c_cmaterial->rs, c_cmaterial->rs_a);
556     return(mname);
557     }
558     /* else it's metal */
559 greg 2.7 /* average colors */
560     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
561     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
562 greg 2.1 addcolor(radrgb, c2);
563 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
564     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
565 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
566 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
567     c_cmaterial->rs_a);
568 greg 2.1 return(mname);
569     }
570    
571    
572 greg 2.16 cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
573 greg 2.1 COLOR radrgb;
574     register C_COLOR *ciec;
575     double intensity;
576     {
577     static COLOR ciexyz;
578    
579 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
580 greg 2.1 ciexyz[1] = intensity;
581     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
582     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
583     cie_rgb(radrgb, ciexyz);
584     }
585    
586    
587     char *
588     object() /* return current object name */
589     {
590     static char objbuf[64];
591     register int i;
592     register char *cp;
593     int len;
594 greg 2.16 /* tracked by obj_handler */
595 greg 2.1 i = obj_nnames - sizeof(objbuf)/16;
596     if (i < 0)
597     i = 0;
598     for (cp = objbuf; i < obj_nnames &&
599     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
600     i++, *cp++ = '.') {
601     strcpy(cp, obj_name[i]);
602     cp += len;
603     }
604     *cp = '\0';
605     return(objbuf);
606     }
607    
608    
609     char *
610     addarg(op, arg) /* add argument and advance pointer */
611     register char *op, *arg;
612     {
613     *op = ' ';
614     while (*++op = *arg++)
615     ;
616     return(op);
617     }