ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.17
Committed: Mon May 1 17:05:22 1995 UTC (29 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.16: +1 -1 lines
Log Message:
bug fix in r_ies

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1994 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Convert MGF (Materials and Geometry Format) to Radiance
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <string.h>
14     #include "mgflib/parser.h"
15     #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 greg 2.11 FILE *matfp = stdout; /* material output file */
27    
28 greg 2.1 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29     char *material(), *object(), *addarg();
30    
31    
32     main(argc, argv) /* convert files to stdout */
33     int argc;
34     char *argv[];
35     {
36     int i, rv;
37     /* initialize dispatch table */
38 greg 2.16 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
39     mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
40     mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
41     mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
42     mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
43     mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
44     mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
45     mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
46     mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
47     mg_ehand[MG_E_FACE] = r_face; /* we do faces */
48     mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
49     mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
50     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
51     mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
52     mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
53     mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
54     mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
55     mg_ehand[MG_E_RING] = r_ring; /* we do rings */
56     mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
57     mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
58     mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
59     mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
60     mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
61     mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
62     mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
63 greg 2.1 mg_init(); /* initialize the parser */
64 greg 2.16 /* get our options & print header */
65 greg 2.1 printf("## %s", argv[0]);
66     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
67     printf(" %s", argv[i]);
68     switch (argv[i][1]) {
69     case 'g': /* glow distance (meters) */
70 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
71 greg 2.1 goto userr;
72     glowdist = atof(argv[++i]);
73     printf(" %s", argv[i]);
74     break;
75     case 'e': /* emitter multiplier */
76 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
77 greg 2.1 goto userr;
78     emult = atof(argv[++i]);
79     printf(" %s", argv[i]);
80     break;
81 greg 2.11 case 'm': /* materials file */
82     matfp = fopen(argv[++i], "a");
83     if (matfp == NULL) {
84     fprintf(stderr, "%s: cannot append\n", argv[i]);
85     exit(1);
86     }
87     printf(" %s", argv[i]);
88     break;
89 greg 2.1 default:
90     goto userr;
91     }
92     }
93     putchar('\n');
94     if (i == argc) { /* convert stdin */
95     if ((rv = mg_load(NULL)) != MG_OK)
96     exit(1);
97     } else /* convert each file */
98     for ( ; i < argc; i++) {
99     printf("## %s %s ##############################\n",
100     argv[0], argv[i]);
101     if ((rv = mg_load(argv[i])) != MG_OK)
102     exit(1);
103     }
104     exit(0);
105     userr:
106 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
107 greg 2.1 argv[0]);
108     exit(1);
109     }
110    
111    
112     int
113     r_comment(ac, av) /* repeat a comment verbatim */
114     register int ac;
115     register char **av;
116     {
117 greg 2.7 putchar('#'); /* use Radiance comment character */
118 greg 2.16 while (--ac) { /* pass through verbatim */
119 greg 2.1 putchar(' ');
120     fputs(*++av, stdout);
121     }
122     putchar('\n');
123     return(MG_OK);
124     }
125    
126    
127     int
128     r_cone(ac, av) /* put out a cone */
129     int ac;
130     char **av;
131     {
132     static int ncones;
133     char *mat;
134     double r1, r2;
135     C_VERTEX *cv1, *cv2;
136     FVECT p1, p2;
137     int inv;
138 greg 2.16 /* check argument count and type */
139 greg 2.1 if (ac != 5)
140     return(MG_EARGC);
141     if (!isflt(av[2]) || !isflt(av[4]))
142     return(MG_ETYPE);
143 greg 2.16 /* get the endpoint vertices */
144 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
145     (cv2 = c_getvert(av[3])) == NULL)
146     return(MG_EUNDEF);
147 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
148 greg 2.1 xf_xfmpoint(p2, cv2->p);
149 greg 2.16 r1 = xf_scale(atof(av[2])); /* scale radii */
150 greg 2.1 r2 = xf_scale(atof(av[4]));
151 greg 2.16 inv = r1 < 0.; /* check for inverted cone */
152     if (r1 == 0.) { /* check for illegal radii */
153 greg 2.1 if (r2 == 0.)
154     return(MG_EILL);
155     inv = r2 < 0.;
156     } else if (r2 != 0. && inv ^ r2 < 0.)
157     return(MG_EILL);
158     if (inv) {
159     r1 = -r1;
160     r2 = -r2;
161     }
162 greg 2.16 if ((mat = material()) == NULL) /* get material */
163 greg 2.1 return(MG_EBADMAT);
164 greg 2.16 /* spit the sucker out */
165 greg 2.1 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
166     object(), ++ncones);
167     printf("0\n0\n8\n");
168     putv(p1);
169     putv(p2);
170     printf("%18.12g %18.12g\n", r1, r2);
171     return(MG_OK);
172     }
173    
174    
175     int
176     r_cyl(ac, av) /* put out a cylinder */
177     int ac;
178     char **av;
179     {
180     static int ncyls;
181     char *mat;
182     double rad;
183     C_VERTEX *cv1, *cv2;
184     FVECT p1, p2;
185     int inv;
186 greg 2.16 /* check argument count and type */
187 greg 2.1 if (ac != 4)
188     return(MG_EARGC);
189     if (!isflt(av[2]))
190     return(MG_ETYPE);
191 greg 2.16 /* get the endpoint vertices */
192 greg 2.1 if ((cv1 = c_getvert(av[1])) == NULL ||
193     (cv2 = c_getvert(av[3])) == NULL)
194     return(MG_EUNDEF);
195 greg 2.16 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
196 greg 2.1 xf_xfmpoint(p2, cv2->p);
197 greg 2.16 rad = xf_scale(atof(av[2])); /* scale radius */
198     if ((inv = rad < 0.)) /* check for inverted cylinder */
199 greg 2.1 rad = -rad;
200 greg 2.16 if ((mat = material()) == NULL) /* get material */
201 greg 2.1 return(MG_EBADMAT);
202 greg 2.16 /* spit out the primitive */
203 greg 2.1 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
204     object(), ++ncyls);
205     printf("0\n0\n7\n");
206     putv(p1);
207     putv(p2);
208     printf("%18.12g\n", rad);
209     return(MG_OK);
210     }
211    
212    
213     int
214     r_sph(ac, av) /* put out a sphere */
215     int ac;
216     char **av;
217     {
218     static int nsphs;
219     char *mat;
220     double rad;
221     C_VERTEX *cv;
222     FVECT cent;
223     int inv;
224 greg 2.16 /* check argument count and type */
225 greg 2.1 if (ac != 3)
226     return(MG_EARGC);
227     if (!isflt(av[2]))
228     return(MG_ETYPE);
229 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
230 greg 2.1 return(MG_EUNDEF);
231 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
232     rad = xf_scale(atof(av[2])); /* scale radius */
233     if ((inv = rad < 0.)) /* check for inversion */
234 greg 2.1 rad = -rad;
235 greg 2.16 if ((mat = material()) == NULL) /* get material */
236 greg 2.1 return(MG_EBADMAT);
237 greg 2.16 /* spit out primitive */
238 greg 2.1 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
239     object(), ++nsphs);
240     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
241     cent[0], cent[1], cent[2], rad);
242     return(MG_OK);
243     }
244    
245    
246     int
247     r_ring(ac, av) /* put out a ring */
248     int ac;
249     char **av;
250     {
251     static int nrings;
252     char *mat;
253     double r1, r2;
254     C_VERTEX *cv;
255     FVECT cent, norm;
256 greg 2.16 /* check argument count and type */
257 greg 2.1 if (ac != 4)
258     return(MG_EARGC);
259     if (!isflt(av[2]) || !isflt(av[3]))
260     return(MG_ETYPE);
261 greg 2.16 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
262 greg 2.1 return(MG_EUNDEF);
263 greg 2.16 if (is0vect(cv->n)) /* make sure we have normal */
264 greg 2.1 return(MG_EILL);
265 greg 2.16 xf_xfmpoint(cent, cv->p); /* transform center */
266     xf_rotvect(norm, cv->n); /* rotate normal */
267     r1 = xf_scale(atof(av[2])); /* scale radii */
268 greg 2.1 r2 = xf_scale(atof(av[3]));
269     if (r1 < 0. | r2 <= r1)
270     return(MG_EILL);
271 greg 2.16 if ((mat = material()) == NULL) /* get material */
272 greg 2.1 return(MG_EBADMAT);
273 greg 2.16 /* spit out primitive */
274 greg 2.1 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
275     printf("0\n0\n8\n");
276     putv(cent);
277     putv(norm);
278     printf("%18.12g %18.12g\n", r1, r2);
279     return(MG_OK);
280     }
281    
282    
283     int
284     r_face(ac, av) /* convert a face */
285     int ac;
286     char **av;
287     {
288     static int nfaces;
289     char *mat;
290     register int i;
291     register C_VERTEX *cv;
292     FVECT v;
293     int rv;
294 greg 2.16 /* check argument count and type */
295 greg 2.1 if (ac < 4)
296     return(MG_EARGC);
297 greg 2.16 if ((mat = material()) == NULL) /* get material */
298 greg 2.1 return(MG_EBADMAT);
299 greg 2.16 if (ac <= 5) { /* check for smoothing */
300 greg 2.1 for (i = 1; i < ac; i++) {
301     if ((cv = c_getvert(av[i])) == NULL)
302     return(MG_EUNDEF);
303     if (is0vect(cv->n))
304     break;
305     }
306     if (i == ac) { /* break into triangles */
307     do_tri(mat, av[1], av[2], av[3]);
308     if (ac == 5)
309     do_tri(mat, av[3], av[4], av[1]);
310     return(MG_OK);
311     }
312     }
313 greg 2.16 /* spit out unsmoothed primitive */
314 greg 2.1 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
315     printf("0\n0\n%d\n", 3*(ac-1));
316 greg 2.16 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
317 greg 2.9 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
318 greg 2.1 return(MG_EUNDEF);
319     xf_xfmpoint(v, cv->p);
320     putv(v);
321     }
322     return(MG_OK);
323     }
324    
325    
326 greg 2.15 int
327 greg 2.1 r_ies(ac, av) /* convert an IES luminaire file */
328     int ac;
329     char **av;
330     {
331     int xa0 = 2;
332 greg 2.15 char combuf[128];
333 greg 2.1 char fname[48];
334     char *oname;
335     register char *op;
336     register int i;
337 greg 2.16 /* check argument count */
338 greg 2.1 if (ac < 2)
339     return(MG_EARGC);
340 greg 2.16 /* construct output file name */
341 greg 2.1 if ((op = strrchr(av[1], '/')) == NULL)
342     op = av[1];
343     (void)strcpy(fname, op);
344     if ((op = strrchr(fname, '.')) == NULL)
345     op = fname + strlen(fname);
346     (void)strcpy(op, ".rad");
347 greg 2.16 /* see if we need to run ies2rad */
348 greg 2.17 if (access(fname, 0) == -1) {
349 greg 2.16 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
350     op = combuf + 7; /* get -m option (first) */
351     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
352     if (!isflt(av[xa0+1]))
353     return(MG_ETYPE);
354     op = addarg(addarg(op, "-m"), av[xa0+1]);
355     xa0 += 2;
356     }
357     *op++ = ' '; /* build IES filename */
358     i = 0;
359     if (mg_file != NULL &&
360     (oname = strrchr(mg_file->fname,'/')) != NULL) {
361     i = oname - mg_file->fname + 1;
362     (void)strcpy(op, mg_file->fname);
363     }
364     (void)strcpy(op+i, av[1]);
365     if (access(op, 0) == -1) /* check for file existence */
366     return(MG_ENOFILE);
367     system(combuf); /* run ies2rad */
368     if (access(fname, 0) == -1) /* check success */
369     return(MG_EINCL);
370     }
371     printf("\n!xform"); /* put out xform command */
372 greg 2.1 oname = object();
373 greg 2.4 if (*oname) {
374     printf(" -n ");
375     for (op = oname; op[1]; op++) /* remove trailing separator */
376     putchar(*op);
377     }
378 greg 2.1 for (i = xa0; i < ac; i++)
379     printf(" %s", av[i]);
380     if (ac > xa0 && xf_argc > 0)
381     printf(" -i 1");
382     for (i = 0; i < xf_argc; i++)
383     printf(" %s", xf_argv[i]);
384     printf(" %s\n", fname);
385     return(MG_OK);
386     }
387    
388    
389     do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */
390     char *mat, *vn1, *vn2, *vn3;
391     {
392     static int ntris;
393     BARYCCM bvecs;
394     FLOAT bcoor[3][3];
395     C_VERTEX *cv1, *cv2, *cv3;
396     FVECT v1, v2, v3;
397     FVECT n1, n2, n3;
398     register int i;
399     /* the following is repeat code, so assume it's OK */
400     cv2 = c_getvert(vn2);
401 greg 2.9 if (invert) {
402     cv3 = c_getvert(vn1);
403     cv1 = c_getvert(vn3);
404     } else {
405     cv1 = c_getvert(vn1);
406     cv3 = c_getvert(vn3);
407     }
408 greg 2.1 xf_xfmpoint(v1, cv1->p);
409     xf_xfmpoint(v2, cv2->p);
410     xf_xfmpoint(v3, cv3->p);
411 greg 2.16 /* compute barycentric coords. */
412 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
413     return; /* degenerate triangle! */
414 greg 2.16 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
415 greg 2.2 printf("4 dx dy dz %s\n0\n", TCALNAME);
416     xf_rotvect(n1, cv1->n);
417     xf_rotvect(n2, cv2->n);
418     xf_rotvect(n3, cv3->n);
419     for (i = 0; i < 3; i++) {
420     bcoor[i][0] = n1[i];
421     bcoor[i][1] = n2[i];
422     bcoor[i][2] = n3[i];
423 greg 2.1 }
424 greg 2.2 put_baryc(&bvecs, bcoor, 3);
425 greg 2.16 /* put out triangle */
426 greg 2.2 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
427 greg 2.1 printf("0\n0\n9\n");
428     putv(v1);
429     putv(v2);
430     putv(v3);
431     }
432    
433    
434     char *
435     material() /* get (and print) current material */
436     {
437     char *mname = "mat";
438     COLOR radrgb, c2;
439     double d;
440     register int i;
441    
442 greg 2.5 if (c_cmname != NULL)
443     mname = c_cmname;
444 greg 2.1 if (!c_cmaterial->clock)
445     return(mname); /* already current */
446     /* else update output */
447     c_cmaterial->clock = 0;
448     if (c_cmaterial->ed > .1) { /* emitter */
449     cvtcolor(radrgb, &c_cmaterial->ed_c,
450 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
451 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
452 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
453     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
454 greg 2.1 colval(radrgb,GRN),
455     colval(radrgb,BLU), glowdist);
456     } else {
457 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
458     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
459 greg 2.1 colval(radrgb,GRN),
460     colval(radrgb,BLU));
461     }
462     return(mname);
463     }
464     d = c_cmaterial->rd + c_cmaterial->td +
465     c_cmaterial->rs + c_cmaterial->ts;
466 greg 2.7 if (d < 0. | d > 1.)
467 greg 2.1 return(NULL);
468 greg 2.14 /* check for glass/dielectric */
469     if (c_cmaterial->nr > 1.1 &&
470     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
471     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
472     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
473     cvtcolor(radrgb, &c_cmaterial->ts_c,
474     c_cmaterial->ts + c_cmaterial->rs);
475     if (c_cmaterial->sided) { /* dielectric */
476     colval(radrgb,RED) = pow(colval(radrgb,RED),
477     1./C_1SIDEDTHICK);
478     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
479     1./C_1SIDEDTHICK);
480     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
481     1./C_1SIDEDTHICK);
482     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
483     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
484     colval(radrgb,GRN), colval(radrgb,BLU),
485     c_cmaterial->nr);
486     return(mname);
487     }
488     /* glass */
489     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
490     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
491     colval(radrgb,GRN), colval(radrgb,BLU),
492     c_cmaterial->nr);
493     return(mname);
494     }
495 greg 2.3 /* check for trans */
496     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
497 greg 2.1 double ts, a5, a6;
498    
499 greg 2.6 if (c_cmaterial->sided) {
500     ts = sqrt(c_cmaterial->ts); /* approximate */
501     a5 = .5;
502 greg 2.7 } else {
503     ts = c_cmaterial->ts;
504 greg 2.6 a5 = 1.;
505 greg 2.7 }
506 greg 2.1 /* average colors */
507     d = c_cmaterial->rd + c_cmaterial->td + ts;
508     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
509     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
510     addcolor(radrgb, c2);
511     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
512     addcolor(radrgb, c2);
513     if (c_cmaterial->rs + ts > .0001)
514     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
515 greg 2.6 ts*a5*c_cmaterial->ts_a) /
516 greg 2.1 (c_cmaterial->rs + ts);
517     a6 = (c_cmaterial->td + ts) /
518     (c_cmaterial->rd + c_cmaterial->td + ts);
519 greg 2.7 if (a6 < .999)
520 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
521 greg 2.7 else
522     d = c_cmaterial->td + ts;
523     scalecolor(radrgb, d);
524 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
525     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
526 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
527 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
528 greg 2.1 ts/(ts + c_cmaterial->td));
529     return(mname);
530     }
531 greg 2.3 /* check for plastic */
532 greg 2.7 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .01 ||
533     c_isgrey(&c_cmaterial->rs_c))) {
534     cvtcolor(radrgb, &c_cmaterial->rd_c,
535 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
536 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
537     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
538 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
539     c_cmaterial->rs, c_cmaterial->rs_a);
540     return(mname);
541     }
542     /* else it's metal */
543 greg 2.7 /* average colors */
544     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
545     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
546 greg 2.1 addcolor(radrgb, c2);
547 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
548     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
549 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
550 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
551     c_cmaterial->rs_a);
552 greg 2.1 return(mname);
553     }
554    
555    
556 greg 2.16 cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
557 greg 2.1 COLOR radrgb;
558     register C_COLOR *ciec;
559     double intensity;
560     {
561     static COLOR ciexyz;
562    
563 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
564 greg 2.1 ciexyz[1] = intensity;
565     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
566     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
567     cie_rgb(radrgb, ciexyz);
568     }
569    
570    
571     char *
572     object() /* return current object name */
573     {
574     static char objbuf[64];
575     register int i;
576     register char *cp;
577     int len;
578 greg 2.16 /* tracked by obj_handler */
579 greg 2.1 i = obj_nnames - sizeof(objbuf)/16;
580     if (i < 0)
581     i = 0;
582     for (cp = objbuf; i < obj_nnames &&
583     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
584     i++, *cp++ = '.') {
585     strcpy(cp, obj_name[i]);
586     cp += len;
587     }
588     *cp = '\0';
589     return(objbuf);
590     }
591    
592    
593     char *
594     addarg(op, arg) /* add argument and advance pointer */
595     register char *op, *arg;
596     {
597     *op = ' ';
598     while (*++op = *arg++)
599     ;
600     return(op);
601     }