ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.14
Committed: Thu Apr 13 14:43:33 1995 UTC (29 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.13: +28 -0 lines
Log Message:
added MGF index of refraction (ir) and dielectric support

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1994 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Convert MGF (Materials and Geometry Format) to Radiance
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <string.h>
14     #include "mgflib/parser.h"
15     #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 greg 2.11 FILE *matfp = stdout; /* material output file */
27    
28 greg 2.1 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29     char *material(), *object(), *addarg();
30    
31    
32     main(argc, argv) /* convert files to stdout */
33     int argc;
34     char *argv[];
35     {
36     int i, rv;
37     /* initialize dispatch table */
38     mg_ehand[MG_E_COMMENT] = r_comment;
39     mg_ehand[MG_E_COLOR] = c_hcolor;
40     mg_ehand[MG_E_CONE] = r_cone;
41 greg 2.4 mg_ehand[MG_E_CMIX] = c_hcolor;
42     mg_ehand[MG_E_CSPEC] = c_hcolor;
43 greg 2.1 mg_ehand[MG_E_CXY] = c_hcolor;
44 greg 2.13 mg_ehand[MG_E_CCT] = c_hcolor;
45 greg 2.1 mg_ehand[MG_E_CYL] = r_cyl;
46     mg_ehand[MG_E_ED] = c_hmaterial;
47     mg_ehand[MG_E_FACE] = r_face;
48     mg_ehand[MG_E_IES] = r_ies;
49 greg 2.14 mg_ehand[MG_E_IR] = c_hmaterial;
50 greg 2.1 mg_ehand[MG_E_MATERIAL] = c_hmaterial;
51     mg_ehand[MG_E_NORMAL] = c_hvertex;
52     mg_ehand[MG_E_OBJECT] = obj_handler;
53     mg_ehand[MG_E_POINT] = c_hvertex;
54     mg_ehand[MG_E_RD] = c_hmaterial;
55     mg_ehand[MG_E_RING] = r_ring;
56     mg_ehand[MG_E_RS] = c_hmaterial;
57 greg 2.6 mg_ehand[MG_E_SIDES] = c_hmaterial;
58 greg 2.1 mg_ehand[MG_E_SPH] = r_sph;
59     mg_ehand[MG_E_TD] = c_hmaterial;
60     mg_ehand[MG_E_TS] = c_hmaterial;
61     mg_ehand[MG_E_VERTEX] = c_hvertex;
62     mg_ehand[MG_E_XF] = xf_handler;
63     mg_init(); /* initialize the parser */
64     /* get options & print header */
65     printf("## %s", argv[0]);
66     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
67     printf(" %s", argv[i]);
68     switch (argv[i][1]) {
69     case 'g': /* glow distance (meters) */
70 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
71 greg 2.1 goto userr;
72     glowdist = atof(argv[++i]);
73     printf(" %s", argv[i]);
74     break;
75     case 'e': /* emitter multiplier */
76 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
77 greg 2.1 goto userr;
78     emult = atof(argv[++i]);
79     printf(" %s", argv[i]);
80     break;
81 greg 2.11 case 'm': /* materials file */
82     matfp = fopen(argv[++i], "a");
83     if (matfp == NULL) {
84     fprintf(stderr, "%s: cannot append\n", argv[i]);
85     exit(1);
86     }
87     printf(" %s", argv[i]);
88     break;
89 greg 2.1 default:
90     goto userr;
91     }
92     }
93     putchar('\n');
94     if (i == argc) { /* convert stdin */
95     if ((rv = mg_load(NULL)) != MG_OK)
96     exit(1);
97     } else /* convert each file */
98     for ( ; i < argc; i++) {
99     printf("## %s %s ##############################\n",
100     argv[0], argv[i]);
101     if ((rv = mg_load(argv[i])) != MG_OK)
102     exit(1);
103     }
104     exit(0);
105     userr:
106 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
107 greg 2.1 argv[0]);
108     exit(1);
109     }
110    
111    
112     int
113     r_comment(ac, av) /* repeat a comment verbatim */
114     register int ac;
115     register char **av;
116     {
117 greg 2.7 putchar('#'); /* use Radiance comment character */
118 greg 2.1 while (--ac) {
119     putchar(' ');
120     fputs(*++av, stdout);
121     }
122     putchar('\n');
123     return(MG_OK);
124     }
125    
126    
127     int
128     r_cone(ac, av) /* put out a cone */
129     int ac;
130     char **av;
131     {
132     static int ncones;
133     char *mat;
134     double r1, r2;
135     C_VERTEX *cv1, *cv2;
136     FVECT p1, p2;
137     int inv;
138    
139     if (ac != 5)
140     return(MG_EARGC);
141     if (!isflt(av[2]) || !isflt(av[4]))
142     return(MG_ETYPE);
143     if ((cv1 = c_getvert(av[1])) == NULL ||
144     (cv2 = c_getvert(av[3])) == NULL)
145     return(MG_EUNDEF);
146     xf_xfmpoint(p1, cv1->p);
147     xf_xfmpoint(p2, cv2->p);
148     r1 = xf_scale(atof(av[2]));
149     r2 = xf_scale(atof(av[4]));
150     inv = r1 < 0.;
151     if (r1 == 0.) {
152     if (r2 == 0.)
153     return(MG_EILL);
154     inv = r2 < 0.;
155     } else if (r2 != 0. && inv ^ r2 < 0.)
156     return(MG_EILL);
157     if (inv) {
158     r1 = -r1;
159     r2 = -r2;
160     }
161     if ((mat = material()) == NULL)
162     return(MG_EBADMAT);
163     printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
164     object(), ++ncones);
165     printf("0\n0\n8\n");
166     putv(p1);
167     putv(p2);
168     printf("%18.12g %18.12g\n", r1, r2);
169     return(MG_OK);
170     }
171    
172    
173     int
174     r_cyl(ac, av) /* put out a cylinder */
175     int ac;
176     char **av;
177     {
178     static int ncyls;
179     char *mat;
180     double rad;
181     C_VERTEX *cv1, *cv2;
182     FVECT p1, p2;
183     int inv;
184    
185     if (ac != 4)
186     return(MG_EARGC);
187     if (!isflt(av[2]))
188     return(MG_ETYPE);
189     if ((cv1 = c_getvert(av[1])) == NULL ||
190     (cv2 = c_getvert(av[3])) == NULL)
191     return(MG_EUNDEF);
192     xf_xfmpoint(p1, cv1->p);
193     xf_xfmpoint(p2, cv2->p);
194     rad = xf_scale(atof(av[2]));
195     if ((inv = rad < 0.))
196     rad = -rad;
197     if ((mat = material()) == NULL)
198     return(MG_EBADMAT);
199     printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
200     object(), ++ncyls);
201     printf("0\n0\n7\n");
202     putv(p1);
203     putv(p2);
204     printf("%18.12g\n", rad);
205     return(MG_OK);
206     }
207    
208    
209     int
210     r_sph(ac, av) /* put out a sphere */
211     int ac;
212     char **av;
213     {
214     static int nsphs;
215     char *mat;
216     double rad;
217     C_VERTEX *cv;
218     FVECT cent;
219     int inv;
220    
221     if (ac != 3)
222     return(MG_EARGC);
223     if (!isflt(av[2]))
224     return(MG_ETYPE);
225     if ((cv = c_getvert(av[1])) == NULL)
226     return(MG_EUNDEF);
227     xf_xfmpoint(cent, cv->p);
228     rad = xf_scale(atof(av[2]));
229     if ((inv = rad < 0.))
230     rad = -rad;
231     if ((mat = material()) == NULL)
232     return(MG_EBADMAT);
233     printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
234     object(), ++nsphs);
235     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
236     cent[0], cent[1], cent[2], rad);
237     return(MG_OK);
238     }
239    
240    
241     int
242     r_ring(ac, av) /* put out a ring */
243     int ac;
244     char **av;
245     {
246     static int nrings;
247     char *mat;
248     double r1, r2;
249     C_VERTEX *cv;
250     FVECT cent, norm;
251    
252     if (ac != 4)
253     return(MG_EARGC);
254     if (!isflt(av[2]) || !isflt(av[3]))
255     return(MG_ETYPE);
256     if ((cv = c_getvert(av[1])) == NULL)
257     return(MG_EUNDEF);
258     if (is0vect(cv->n))
259     return(MG_EILL);
260     xf_xfmpoint(cent, cv->p);
261     xf_rotvect(norm, cv->n);
262     r1 = xf_scale(atof(av[2]));
263     r2 = xf_scale(atof(av[3]));
264     if (r1 < 0. | r2 <= r1)
265     return(MG_EILL);
266     if ((mat = material()) == NULL)
267     return(MG_EBADMAT);
268     printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
269     printf("0\n0\n8\n");
270     putv(cent);
271     putv(norm);
272     printf("%18.12g %18.12g\n", r1, r2);
273     return(MG_OK);
274     }
275    
276    
277     int
278     r_face(ac, av) /* convert a face */
279     int ac;
280     char **av;
281     {
282     static int nfaces;
283     char *mat;
284     register int i;
285     register C_VERTEX *cv;
286     FVECT v;
287     int rv;
288    
289     if (ac < 4)
290     return(MG_EARGC);
291     if ((mat = material()) == NULL)
292     return(MG_EBADMAT);
293 greg 2.2 if (ac <= 5) { /* check for surface normals */
294 greg 2.1 for (i = 1; i < ac; i++) {
295     if ((cv = c_getvert(av[i])) == NULL)
296     return(MG_EUNDEF);
297     if (is0vect(cv->n))
298     break;
299     }
300     if (i == ac) { /* break into triangles */
301     do_tri(mat, av[1], av[2], av[3]);
302     if (ac == 5)
303     do_tri(mat, av[3], av[4], av[1]);
304     return(MG_OK);
305     }
306     }
307     printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
308     printf("0\n0\n%d\n", 3*(ac-1));
309     for (i = 1; i < ac; i++) {
310 greg 2.9 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
311 greg 2.1 return(MG_EUNDEF);
312     xf_xfmpoint(v, cv->p);
313     putv(v);
314     }
315     return(MG_OK);
316     }
317    
318    
319     r_ies(ac, av) /* convert an IES luminaire file */
320     int ac;
321     char **av;
322     {
323     int xa0 = 2;
324     char combuf[72];
325     char fname[48];
326     char *oname;
327     register char *op;
328     register int i;
329    
330     if (ac < 2)
331     return(MG_EARGC);
332     (void)strcpy(combuf, "ies2rad");
333     op = combuf + 7;
334     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
335     if (!isflt(av[xa0+1]))
336     return(MG_ETYPE);
337     op = addarg(addarg(op, "-m"), av[xa0+1]);
338     xa0 += 2;
339     }
340     if (access(av[1], 0) == -1)
341     return(MG_ENOFILE);
342     *op++ = ' '; /* IES filename goes last */
343     (void)strcpy(op, av[1]);
344     system(combuf); /* run ies2rad */
345     /* now let's find the output file */
346     if ((op = strrchr(av[1], '/')) == NULL)
347     op = av[1];
348     (void)strcpy(fname, op);
349     if ((op = strrchr(fname, '.')) == NULL)
350     op = fname + strlen(fname);
351     (void)strcpy(op, ".rad");
352     if (access(fname, 0) == -1)
353     return(MG_EINCL);
354     /* put out xform command */
355     printf("\n!xform");
356     oname = object();
357 greg 2.4 if (*oname) {
358     printf(" -n ");
359     for (op = oname; op[1]; op++) /* remove trailing separator */
360     putchar(*op);
361     }
362 greg 2.1 for (i = xa0; i < ac; i++)
363     printf(" %s", av[i]);
364     if (ac > xa0 && xf_argc > 0)
365     printf(" -i 1");
366     for (i = 0; i < xf_argc; i++)
367     printf(" %s", xf_argv[i]);
368     printf(" %s\n", fname);
369     return(MG_OK);
370     }
371    
372    
373     do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */
374     char *mat, *vn1, *vn2, *vn3;
375     {
376     static int ntris;
377     BARYCCM bvecs;
378     FLOAT bcoor[3][3];
379     C_VERTEX *cv1, *cv2, *cv3;
380     FVECT v1, v2, v3;
381     FVECT n1, n2, n3;
382     register int i;
383     /* the following is repeat code, so assume it's OK */
384     cv2 = c_getvert(vn2);
385 greg 2.9 if (invert) {
386     cv3 = c_getvert(vn1);
387     cv1 = c_getvert(vn3);
388     } else {
389     cv1 = c_getvert(vn1);
390     cv3 = c_getvert(vn3);
391     }
392 greg 2.1 xf_xfmpoint(v1, cv1->p);
393     xf_xfmpoint(v2, cv2->p);
394     xf_xfmpoint(v3, cv3->p);
395 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
396     return; /* degenerate triangle! */
397     printf("\n%s texfunc T-nor\n", mat);
398     printf("4 dx dy dz %s\n0\n", TCALNAME);
399     xf_rotvect(n1, cv1->n);
400     xf_rotvect(n2, cv2->n);
401     xf_rotvect(n3, cv3->n);
402     for (i = 0; i < 3; i++) {
403     bcoor[i][0] = n1[i];
404     bcoor[i][1] = n2[i];
405     bcoor[i][2] = n3[i];
406 greg 2.1 }
407 greg 2.2 put_baryc(&bvecs, bcoor, 3);
408     printf("\nT-nor polygon %st%d\n", object(), ++ntris);
409 greg 2.1 printf("0\n0\n9\n");
410     putv(v1);
411     putv(v2);
412     putv(v3);
413     }
414    
415    
416     char *
417     material() /* get (and print) current material */
418     {
419     char *mname = "mat";
420     COLOR radrgb, c2;
421     double d;
422     register int i;
423    
424 greg 2.5 if (c_cmname != NULL)
425     mname = c_cmname;
426 greg 2.1 if (!c_cmaterial->clock)
427     return(mname); /* already current */
428     /* else update output */
429     c_cmaterial->clock = 0;
430     if (c_cmaterial->ed > .1) { /* emitter */
431     cvtcolor(radrgb, &c_cmaterial->ed_c,
432 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
433 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
434 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
435     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
436 greg 2.1 colval(radrgb,GRN),
437     colval(radrgb,BLU), glowdist);
438     } else {
439 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
440     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
441 greg 2.1 colval(radrgb,GRN),
442     colval(radrgb,BLU));
443     }
444     return(mname);
445     }
446     d = c_cmaterial->rd + c_cmaterial->td +
447     c_cmaterial->rs + c_cmaterial->ts;
448 greg 2.7 if (d < 0. | d > 1.)
449 greg 2.1 return(NULL);
450 greg 2.14 /* check for glass/dielectric */
451     if (c_cmaterial->nr > 1.1 &&
452     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
453     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
454     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
455     cvtcolor(radrgb, &c_cmaterial->ts_c,
456     c_cmaterial->ts + c_cmaterial->rs);
457     if (c_cmaterial->sided) { /* dielectric */
458     colval(radrgb,RED) = pow(colval(radrgb,RED),
459     1./C_1SIDEDTHICK);
460     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
461     1./C_1SIDEDTHICK);
462     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
463     1./C_1SIDEDTHICK);
464     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
465     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
466     colval(radrgb,GRN), colval(radrgb,BLU),
467     c_cmaterial->nr);
468     return(mname);
469     }
470     /* glass */
471     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
472     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
473     colval(radrgb,GRN), colval(radrgb,BLU),
474     c_cmaterial->nr);
475     return(mname);
476     }
477 greg 2.3 /* check for trans */
478     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
479 greg 2.1 double ts, a5, a6;
480    
481 greg 2.6 if (c_cmaterial->sided) {
482     ts = sqrt(c_cmaterial->ts); /* approximate */
483     a5 = .5;
484 greg 2.7 } else {
485     ts = c_cmaterial->ts;
486 greg 2.6 a5 = 1.;
487 greg 2.7 }
488 greg 2.1 /* average colors */
489     d = c_cmaterial->rd + c_cmaterial->td + ts;
490     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
491     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
492     addcolor(radrgb, c2);
493     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
494     addcolor(radrgb, c2);
495     if (c_cmaterial->rs + ts > .0001)
496     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
497 greg 2.6 ts*a5*c_cmaterial->ts_a) /
498 greg 2.1 (c_cmaterial->rs + ts);
499     a6 = (c_cmaterial->td + ts) /
500     (c_cmaterial->rd + c_cmaterial->td + ts);
501 greg 2.7 if (a6 < .999)
502 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
503 greg 2.7 else
504     d = c_cmaterial->td + ts;
505     scalecolor(radrgb, d);
506 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
507     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
508 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
509 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
510 greg 2.1 ts/(ts + c_cmaterial->td));
511     return(mname);
512     }
513 greg 2.3 /* check for plastic */
514 greg 2.7 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .01 ||
515     c_isgrey(&c_cmaterial->rs_c))) {
516     cvtcolor(radrgb, &c_cmaterial->rd_c,
517 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
518 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
519     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
520 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
521     c_cmaterial->rs, c_cmaterial->rs_a);
522     return(mname);
523     }
524     /* else it's metal */
525 greg 2.7 /* average colors */
526     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
527     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
528 greg 2.1 addcolor(radrgb, c2);
529 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
530     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
531 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
532 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
533     c_cmaterial->rs_a);
534 greg 2.1 return(mname);
535     }
536    
537    
538     cvtcolor(radrgb, ciec, intensity) /* convert a CIE color to Radiance */
539     COLOR radrgb;
540     register C_COLOR *ciec;
541     double intensity;
542     {
543     static COLOR ciexyz;
544    
545 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
546 greg 2.1 ciexyz[1] = intensity;
547     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
548     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
549     cie_rgb(radrgb, ciexyz);
550     }
551    
552    
553     char *
554     object() /* return current object name */
555     {
556     static char objbuf[64];
557     register int i;
558     register char *cp;
559     int len;
560    
561     i = obj_nnames - sizeof(objbuf)/16;
562     if (i < 0)
563     i = 0;
564     for (cp = objbuf; i < obj_nnames &&
565     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
566     i++, *cp++ = '.') {
567     strcpy(cp, obj_name[i]);
568     cp += len;
569     }
570     *cp = '\0';
571     return(objbuf);
572     }
573    
574    
575     char *
576     addarg(op, arg) /* add argument and advance pointer */
577     register char *op, *arg;
578     {
579     *op = ' ';
580     while (*++op = *arg++)
581     ;
582     return(op);
583     }