ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.13
Committed: Tue Mar 7 12:18:15 1995 UTC (29 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +1 -0 lines
Log Message:
added cct entity

File Contents

# User Rev Content
1 greg 2.1 /* Copyright (c) 1994 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Convert MGF (Materials and Geometry Format) to Radiance
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <string.h>
14     #include "mgflib/parser.h"
15     #include "color.h"
16     #include "tmesh.h"
17    
18     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19    
20 greg 2.9 #define invert (xf_context != NULL && xf_context->rev)
21    
22 greg 2.2 double glowdist = FHUGE; /* glow test distance */
23 greg 2.1
24 greg 2.8 double emult = 1.; /* emitter multiplier */
25 greg 2.1
26 greg 2.11 FILE *matfp = stdout; /* material output file */
27    
28 greg 2.1 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
29     char *material(), *object(), *addarg();
30    
31    
32     main(argc, argv) /* convert files to stdout */
33     int argc;
34     char *argv[];
35     {
36     int i, rv;
37     /* initialize dispatch table */
38     mg_ehand[MG_E_COMMENT] = r_comment;
39     mg_ehand[MG_E_COLOR] = c_hcolor;
40     mg_ehand[MG_E_CONE] = r_cone;
41 greg 2.4 mg_ehand[MG_E_CMIX] = c_hcolor;
42     mg_ehand[MG_E_CSPEC] = c_hcolor;
43 greg 2.1 mg_ehand[MG_E_CXY] = c_hcolor;
44 greg 2.13 mg_ehand[MG_E_CCT] = c_hcolor;
45 greg 2.1 mg_ehand[MG_E_CYL] = r_cyl;
46     mg_ehand[MG_E_ED] = c_hmaterial;
47     mg_ehand[MG_E_FACE] = r_face;
48     mg_ehand[MG_E_IES] = r_ies;
49     mg_ehand[MG_E_MATERIAL] = c_hmaterial;
50     mg_ehand[MG_E_NORMAL] = c_hvertex;
51     mg_ehand[MG_E_OBJECT] = obj_handler;
52     mg_ehand[MG_E_POINT] = c_hvertex;
53     mg_ehand[MG_E_RD] = c_hmaterial;
54     mg_ehand[MG_E_RING] = r_ring;
55     mg_ehand[MG_E_RS] = c_hmaterial;
56 greg 2.6 mg_ehand[MG_E_SIDES] = c_hmaterial;
57 greg 2.1 mg_ehand[MG_E_SPH] = r_sph;
58     mg_ehand[MG_E_TD] = c_hmaterial;
59     mg_ehand[MG_E_TS] = c_hmaterial;
60     mg_ehand[MG_E_VERTEX] = c_hvertex;
61     mg_ehand[MG_E_XF] = xf_handler;
62     mg_init(); /* initialize the parser */
63     /* get options & print header */
64     printf("## %s", argv[0]);
65     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
66     printf(" %s", argv[i]);
67     switch (argv[i][1]) {
68     case 'g': /* glow distance (meters) */
69 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
70 greg 2.1 goto userr;
71     glowdist = atof(argv[++i]);
72     printf(" %s", argv[i]);
73     break;
74     case 'e': /* emitter multiplier */
75 greg 2.10 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
76 greg 2.1 goto userr;
77     emult = atof(argv[++i]);
78     printf(" %s", argv[i]);
79     break;
80 greg 2.11 case 'm': /* materials file */
81     matfp = fopen(argv[++i], "a");
82     if (matfp == NULL) {
83     fprintf(stderr, "%s: cannot append\n", argv[i]);
84     exit(1);
85     }
86     printf(" %s", argv[i]);
87     break;
88 greg 2.1 default:
89     goto userr;
90     }
91     }
92     putchar('\n');
93     if (i == argc) { /* convert stdin */
94     if ((rv = mg_load(NULL)) != MG_OK)
95     exit(1);
96     } else /* convert each file */
97     for ( ; i < argc; i++) {
98     printf("## %s %s ##############################\n",
99     argv[0], argv[i]);
100     if ((rv = mg_load(argv[i])) != MG_OK)
101     exit(1);
102     }
103     exit(0);
104     userr:
105 greg 2.11 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
106 greg 2.1 argv[0]);
107     exit(1);
108     }
109    
110    
111     int
112     r_comment(ac, av) /* repeat a comment verbatim */
113     register int ac;
114     register char **av;
115     {
116 greg 2.7 putchar('#'); /* use Radiance comment character */
117 greg 2.1 while (--ac) {
118     putchar(' ');
119     fputs(*++av, stdout);
120     }
121     putchar('\n');
122     return(MG_OK);
123     }
124    
125    
126     int
127     r_cone(ac, av) /* put out a cone */
128     int ac;
129     char **av;
130     {
131     static int ncones;
132     char *mat;
133     double r1, r2;
134     C_VERTEX *cv1, *cv2;
135     FVECT p1, p2;
136     int inv;
137    
138     if (ac != 5)
139     return(MG_EARGC);
140     if (!isflt(av[2]) || !isflt(av[4]))
141     return(MG_ETYPE);
142     if ((cv1 = c_getvert(av[1])) == NULL ||
143     (cv2 = c_getvert(av[3])) == NULL)
144     return(MG_EUNDEF);
145     xf_xfmpoint(p1, cv1->p);
146     xf_xfmpoint(p2, cv2->p);
147     r1 = xf_scale(atof(av[2]));
148     r2 = xf_scale(atof(av[4]));
149     inv = r1 < 0.;
150     if (r1 == 0.) {
151     if (r2 == 0.)
152     return(MG_EILL);
153     inv = r2 < 0.;
154     } else if (r2 != 0. && inv ^ r2 < 0.)
155     return(MG_EILL);
156     if (inv) {
157     r1 = -r1;
158     r2 = -r2;
159     }
160     if ((mat = material()) == NULL)
161     return(MG_EBADMAT);
162     printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
163     object(), ++ncones);
164     printf("0\n0\n8\n");
165     putv(p1);
166     putv(p2);
167     printf("%18.12g %18.12g\n", r1, r2);
168     return(MG_OK);
169     }
170    
171    
172     int
173     r_cyl(ac, av) /* put out a cylinder */
174     int ac;
175     char **av;
176     {
177     static int ncyls;
178     char *mat;
179     double rad;
180     C_VERTEX *cv1, *cv2;
181     FVECT p1, p2;
182     int inv;
183    
184     if (ac != 4)
185     return(MG_EARGC);
186     if (!isflt(av[2]))
187     return(MG_ETYPE);
188     if ((cv1 = c_getvert(av[1])) == NULL ||
189     (cv2 = c_getvert(av[3])) == NULL)
190     return(MG_EUNDEF);
191     xf_xfmpoint(p1, cv1->p);
192     xf_xfmpoint(p2, cv2->p);
193     rad = xf_scale(atof(av[2]));
194     if ((inv = rad < 0.))
195     rad = -rad;
196     if ((mat = material()) == NULL)
197     return(MG_EBADMAT);
198     printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
199     object(), ++ncyls);
200     printf("0\n0\n7\n");
201     putv(p1);
202     putv(p2);
203     printf("%18.12g\n", rad);
204     return(MG_OK);
205     }
206    
207    
208     int
209     r_sph(ac, av) /* put out a sphere */
210     int ac;
211     char **av;
212     {
213     static int nsphs;
214     char *mat;
215     double rad;
216     C_VERTEX *cv;
217     FVECT cent;
218     int inv;
219    
220     if (ac != 3)
221     return(MG_EARGC);
222     if (!isflt(av[2]))
223     return(MG_ETYPE);
224     if ((cv = c_getvert(av[1])) == NULL)
225     return(MG_EUNDEF);
226     xf_xfmpoint(cent, cv->p);
227     rad = xf_scale(atof(av[2]));
228     if ((inv = rad < 0.))
229     rad = -rad;
230     if ((mat = material()) == NULL)
231     return(MG_EBADMAT);
232     printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
233     object(), ++nsphs);
234     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
235     cent[0], cent[1], cent[2], rad);
236     return(MG_OK);
237     }
238    
239    
240     int
241     r_ring(ac, av) /* put out a ring */
242     int ac;
243     char **av;
244     {
245     static int nrings;
246     char *mat;
247     double r1, r2;
248     C_VERTEX *cv;
249     FVECT cent, norm;
250    
251     if (ac != 4)
252     return(MG_EARGC);
253     if (!isflt(av[2]) || !isflt(av[3]))
254     return(MG_ETYPE);
255     if ((cv = c_getvert(av[1])) == NULL)
256     return(MG_EUNDEF);
257     if (is0vect(cv->n))
258     return(MG_EILL);
259     xf_xfmpoint(cent, cv->p);
260     xf_rotvect(norm, cv->n);
261     r1 = xf_scale(atof(av[2]));
262     r2 = xf_scale(atof(av[3]));
263     if (r1 < 0. | r2 <= r1)
264     return(MG_EILL);
265     if ((mat = material()) == NULL)
266     return(MG_EBADMAT);
267     printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
268     printf("0\n0\n8\n");
269     putv(cent);
270     putv(norm);
271     printf("%18.12g %18.12g\n", r1, r2);
272     return(MG_OK);
273     }
274    
275    
276     int
277     r_face(ac, av) /* convert a face */
278     int ac;
279     char **av;
280     {
281     static int nfaces;
282     char *mat;
283     register int i;
284     register C_VERTEX *cv;
285     FVECT v;
286     int rv;
287    
288     if (ac < 4)
289     return(MG_EARGC);
290     if ((mat = material()) == NULL)
291     return(MG_EBADMAT);
292 greg 2.2 if (ac <= 5) { /* check for surface normals */
293 greg 2.1 for (i = 1; i < ac; i++) {
294     if ((cv = c_getvert(av[i])) == NULL)
295     return(MG_EUNDEF);
296     if (is0vect(cv->n))
297     break;
298     }
299     if (i == ac) { /* break into triangles */
300     do_tri(mat, av[1], av[2], av[3]);
301     if (ac == 5)
302     do_tri(mat, av[3], av[4], av[1]);
303     return(MG_OK);
304     }
305     }
306     printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
307     printf("0\n0\n%d\n", 3*(ac-1));
308     for (i = 1; i < ac; i++) {
309 greg 2.9 if ((cv = c_getvert(av[invert ? ac-i : i])) == NULL)
310 greg 2.1 return(MG_EUNDEF);
311     xf_xfmpoint(v, cv->p);
312     putv(v);
313     }
314     return(MG_OK);
315     }
316    
317    
318     r_ies(ac, av) /* convert an IES luminaire file */
319     int ac;
320     char **av;
321     {
322     int xa0 = 2;
323     char combuf[72];
324     char fname[48];
325     char *oname;
326     register char *op;
327     register int i;
328    
329     if (ac < 2)
330     return(MG_EARGC);
331     (void)strcpy(combuf, "ies2rad");
332     op = combuf + 7;
333     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
334     if (!isflt(av[xa0+1]))
335     return(MG_ETYPE);
336     op = addarg(addarg(op, "-m"), av[xa0+1]);
337     xa0 += 2;
338     }
339     if (access(av[1], 0) == -1)
340     return(MG_ENOFILE);
341     *op++ = ' '; /* IES filename goes last */
342     (void)strcpy(op, av[1]);
343     system(combuf); /* run ies2rad */
344     /* now let's find the output file */
345     if ((op = strrchr(av[1], '/')) == NULL)
346     op = av[1];
347     (void)strcpy(fname, op);
348     if ((op = strrchr(fname, '.')) == NULL)
349     op = fname + strlen(fname);
350     (void)strcpy(op, ".rad");
351     if (access(fname, 0) == -1)
352     return(MG_EINCL);
353     /* put out xform command */
354     printf("\n!xform");
355     oname = object();
356 greg 2.4 if (*oname) {
357     printf(" -n ");
358     for (op = oname; op[1]; op++) /* remove trailing separator */
359     putchar(*op);
360     }
361 greg 2.1 for (i = xa0; i < ac; i++)
362     printf(" %s", av[i]);
363     if (ac > xa0 && xf_argc > 0)
364     printf(" -i 1");
365     for (i = 0; i < xf_argc; i++)
366     printf(" %s", xf_argv[i]);
367     printf(" %s\n", fname);
368     return(MG_OK);
369     }
370    
371    
372     do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */
373     char *mat, *vn1, *vn2, *vn3;
374     {
375     static int ntris;
376     BARYCCM bvecs;
377     FLOAT bcoor[3][3];
378     C_VERTEX *cv1, *cv2, *cv3;
379     FVECT v1, v2, v3;
380     FVECT n1, n2, n3;
381     register int i;
382     /* the following is repeat code, so assume it's OK */
383     cv2 = c_getvert(vn2);
384 greg 2.9 if (invert) {
385     cv3 = c_getvert(vn1);
386     cv1 = c_getvert(vn3);
387     } else {
388     cv1 = c_getvert(vn1);
389     cv3 = c_getvert(vn3);
390     }
391 greg 2.1 xf_xfmpoint(v1, cv1->p);
392     xf_xfmpoint(v2, cv2->p);
393     xf_xfmpoint(v3, cv3->p);
394 greg 2.2 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
395     return; /* degenerate triangle! */
396     printf("\n%s texfunc T-nor\n", mat);
397     printf("4 dx dy dz %s\n0\n", TCALNAME);
398     xf_rotvect(n1, cv1->n);
399     xf_rotvect(n2, cv2->n);
400     xf_rotvect(n3, cv3->n);
401     for (i = 0; i < 3; i++) {
402     bcoor[i][0] = n1[i];
403     bcoor[i][1] = n2[i];
404     bcoor[i][2] = n3[i];
405 greg 2.1 }
406 greg 2.2 put_baryc(&bvecs, bcoor, 3);
407     printf("\nT-nor polygon %st%d\n", object(), ++ntris);
408 greg 2.1 printf("0\n0\n9\n");
409     putv(v1);
410     putv(v2);
411     putv(v3);
412     }
413    
414    
415     char *
416     material() /* get (and print) current material */
417     {
418     char *mname = "mat";
419     COLOR radrgb, c2;
420     double d;
421     register int i;
422    
423 greg 2.5 if (c_cmname != NULL)
424     mname = c_cmname;
425 greg 2.1 if (!c_cmaterial->clock)
426     return(mname); /* already current */
427     /* else update output */
428     c_cmaterial->clock = 0;
429     if (c_cmaterial->ed > .1) { /* emitter */
430     cvtcolor(radrgb, &c_cmaterial->ed_c,
431 greg 2.12 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
432 greg 2.2 if (glowdist < FHUGE) { /* do a glow */
433 greg 2.11 fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
434     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
435 greg 2.1 colval(radrgb,GRN),
436     colval(radrgb,BLU), glowdist);
437     } else {
438 greg 2.11 fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
439     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
440 greg 2.1 colval(radrgb,GRN),
441     colval(radrgb,BLU));
442     }
443     return(mname);
444     }
445     d = c_cmaterial->rd + c_cmaterial->td +
446     c_cmaterial->rs + c_cmaterial->ts;
447 greg 2.7 if (d < 0. | d > 1.)
448 greg 2.1 return(NULL);
449 greg 2.3 /* check for trans */
450     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
451 greg 2.1 double ts, a5, a6;
452    
453 greg 2.6 if (c_cmaterial->sided) {
454     ts = sqrt(c_cmaterial->ts); /* approximate */
455     a5 = .5;
456 greg 2.7 } else {
457     ts = c_cmaterial->ts;
458 greg 2.6 a5 = 1.;
459 greg 2.7 }
460 greg 2.1 /* average colors */
461     d = c_cmaterial->rd + c_cmaterial->td + ts;
462     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
463     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
464     addcolor(radrgb, c2);
465     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
466     addcolor(radrgb, c2);
467     if (c_cmaterial->rs + ts > .0001)
468     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
469 greg 2.6 ts*a5*c_cmaterial->ts_a) /
470 greg 2.1 (c_cmaterial->rs + ts);
471     a6 = (c_cmaterial->td + ts) /
472     (c_cmaterial->rd + c_cmaterial->td + ts);
473 greg 2.7 if (a6 < .999)
474 greg 2.1 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
475 greg 2.7 else
476     d = c_cmaterial->td + ts;
477     scalecolor(radrgb, d);
478 greg 2.11 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
479     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
480 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU));
481 greg 2.11 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
482 greg 2.1 ts/(ts + c_cmaterial->td));
483     return(mname);
484     }
485 greg 2.3 /* check for plastic */
486 greg 2.7 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .01 ||
487     c_isgrey(&c_cmaterial->rs_c))) {
488     cvtcolor(radrgb, &c_cmaterial->rd_c,
489 greg 2.1 c_cmaterial->rd/(1.-c_cmaterial->rs));
490 greg 2.11 fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
491     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
492 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
493     c_cmaterial->rs, c_cmaterial->rs_a);
494     return(mname);
495     }
496     /* else it's metal */
497 greg 2.7 /* average colors */
498     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
499     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
500 greg 2.1 addcolor(radrgb, c2);
501 greg 2.11 fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
502     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
503 greg 2.1 colval(radrgb,GRN), colval(radrgb,BLU),
504 greg 2.7 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
505     c_cmaterial->rs_a);
506 greg 2.1 return(mname);
507     }
508    
509    
510     cvtcolor(radrgb, ciec, intensity) /* convert a CIE color to Radiance */
511     COLOR radrgb;
512     register C_COLOR *ciec;
513     double intensity;
514     {
515     static COLOR ciexyz;
516    
517 greg 2.4 c_ccvt(ciec, C_CSXY); /* get xy representation */
518 greg 2.1 ciexyz[1] = intensity;
519     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
520     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
521     cie_rgb(radrgb, ciexyz);
522     }
523    
524    
525     char *
526     object() /* return current object name */
527     {
528     static char objbuf[64];
529     register int i;
530     register char *cp;
531     int len;
532    
533     i = obj_nnames - sizeof(objbuf)/16;
534     if (i < 0)
535     i = 0;
536     for (cp = objbuf; i < obj_nnames &&
537     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
538     i++, *cp++ = '.') {
539     strcpy(cp, obj_name[i]);
540     cp += len;
541     }
542     *cp = '\0';
543     return(objbuf);
544     }
545    
546    
547     char *
548     addarg(op, arg) /* add argument and advance pointer */
549     register char *op, *arg;
550     {
551     *op = ' ';
552     while (*++op = *arg++)
553     ;
554     return(op);
555     }