1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: ies2rad.c,v 2.36 2022/11/16 01:59:43 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* ies2rad -- Convert IES luminaire data to Radiance description |
6 |
* |
7 |
* ies2rad converts an IES LM-63 luminare description to a Radiance |
8 |
* luminaire description. In addition, ies2rad manages a local |
9 |
* database of Radiance luminaire files. |
10 |
* |
11 |
* Ies2rad generates two or three files for each luminaire. For a |
12 |
* luminaire named LUM, ies2rad will generate LUM.rad, a Radiance |
13 |
* scene description file which describes the light source, LUM.dat, |
14 |
* which contains the photometric data from the IES LM-63 file, and |
15 |
* (if tilt data is provided) LUM%.dat, which contains the tilt data |
16 |
* from the IES file. |
17 |
* |
18 |
* Ies2rad is supported by the Radiance function files source.cal and |
19 |
* tilt.cal, which transform the coordinates in the IES data into |
20 |
* Radiance (θ,φ) luminaire coordinates and then apply photometric and |
21 |
* tilt data to generate Radiance light. θ is altitude from the |
22 |
* negative z-axis and φ is azimuth from the positive x-axis, |
23 |
* increasing towards the positive y-axis. This system matches none of |
24 |
* the usual goniophotometric conventions, but it is closest to IES |
25 |
* type C; V in type C photometry is θ in Radiance and L is -φ. |
26 |
* |
27 |
* The ies2rad scene description for a luminaire LUM, with tilt data, |
28 |
* uses the following Radiance scene description primitives: |
29 |
* |
30 |
* void brightdata LUM_tilt |
31 |
* … |
32 |
* LUM_tilt brightdata LUM_dist |
33 |
* … |
34 |
* LUM_dist light LUM_light |
35 |
* … |
36 |
* LUM_light surface1 name1 |
37 |
* … |
38 |
* LUM_light surface2 name2 |
39 |
* … |
40 |
* LUM_light surface_n name_n |
41 |
* |
42 |
* Without tilt data, the primitives are: |
43 |
* |
44 |
* void brightdata LUM_dist |
45 |
* … |
46 |
* LUM_dist light LUM_light |
47 |
* … |
48 |
* LUM_light surface1 name1 |
49 |
* … |
50 |
* LUM_light surface2 name2 |
51 |
* … |
52 |
* LUM_light surface_n name_n |
53 |
* |
54 |
* As many surfaces are given as required to describe the light |
55 |
* source. Illum may be used rather than light so that a visible form |
56 |
* (impostor) may be given to the luminaire, rather than a simple |
57 |
* glowing shape. If an impostor is provided, it must be wholly |
58 |
* contained within the illum and if it provides impostor light |
59 |
* sources, those must be given with glow, so that they do not |
60 |
* themselves illuminate the scene, providing incorrect results. |
61 |
* |
62 |
* Overview of the LM-63 file format |
63 |
* ================================= |
64 |
* Here we offer a summary of the IESNA LM-63 photometry file format |
65 |
* for the perplexed reader. Dear reader, do remember that this is |
66 |
* our interpretation of the five different versions of the standard. |
67 |
* When our interpretation of the standard conflicts with the official |
68 |
* standard, the official document is to be respected. In conflicts |
69 |
* with practice, do take into account the robustness principle and be |
70 |
* permissive, accepting reasonable deviations from the standard. |
71 |
* |
72 |
* LM-63 files are organized as a version tag, followed by a series of |
73 |
* luminaire data sets. The luminaire data sets, in turn, are |
74 |
* organized into a label, a tilt data section, and a photometric data |
75 |
* section. Finally, the data sections are organized into records, |
76 |
* which are made up of lines of numeric values delimited by spaces or |
77 |
* commas. Lines are delimited by CR LF sequences. Records are made |
78 |
* up of one or more lines, and every record must be made up of some |
79 |
* number of complete lines, but there is no delimiter which makes the |
80 |
* end of a record. The first records of the tilt and photometric |
81 |
* data sections have fixed numbers of numeric values; the initial |
82 |
* records contain counts that describe the remaining records. |
83 |
* |
84 |
* Ies2rad allows only one luminaire data set per file. |
85 |
* |
86 |
* The tilt section is made up of exactly four records; the second gives |
87 |
* the number of values in the third and fourth records. |
88 |
* |
89 |
* The photometric section begins with two records, which give both the |
90 |
* number of records following and the number of values in each of the |
91 |
* following records. |
92 |
* |
93 |
* The original 1986 version of LM-63 does not have a version tag. |
94 |
* |
95 |
* The 1986, 1991, and 1995 versions allow 80 characters for the label |
96 |
* lines and the "TILT=" line which begins the tilt data section, and |
97 |
* 132 characters thereafter. (Those counts do not include the CR LF |
98 |
* line terminator.) The 2002 version dispenses with those limits, |
99 |
* allowing 256 characters per line, including the CR LF line |
100 |
* terminator. The 2019 version does not specify a line length at |
101 |
* all. Ies2rad allows lines of up to 256 characters and will accept |
102 |
* CR LF or LF alone as line terminators. |
103 |
* |
104 |
* In the 1986 version, the label is a series of free-form lines of up |
105 |
* to 80 characters. In later versions, the label is a series of |
106 |
* lines of beginning with keywords in brackets with interpretation |
107 |
* rules which differ between versions. |
108 |
* |
109 |
* The tilt data section begins with a line beginning with "TILT=", |
110 |
* optionally followed by either a file name or four records of |
111 |
* numerical data. The 2019 version no longer allows a file name to |
112 |
* be given. |
113 |
* |
114 |
* The main photometric data section contains two header records |
115 |
* followed by a record of vertical angles, a record of horizontal |
116 |
* angles, and one record of candela values for each horizontal angle. |
117 |
* Each record of candela values contains exactly one value for each |
118 |
* vertical angle. Data values in records are separated by spaces or |
119 |
* commas. In keeping with the robustness principle, commas |
120 |
* surrounded by spaces will also be accepted as separators. |
121 |
* |
122 |
* The first header record of the photometric data section contains |
123 |
* exactly 10 values. The second contains exactly 3 values. Most of |
124 |
* the data values are floating point numbers; the exceptions are |
125 |
* various counts and enumerators, which are integers: the number of |
126 |
* lamps, the numbers of vertical and horizontal angles, the |
127 |
* photometric type identifier, and the units type identifier. In the |
128 |
* 2019 version, a field with information about how the file was |
129 |
* generated has replaced a field unused since 1995; it is a textual |
130 |
* representation of a bit string, but may - we hope! - safely be |
131 |
* interpreted as a floating point number and decoded later. |
132 |
* |
133 |
* Style Note |
134 |
* ========== |
135 |
* The ies2rad code uses the "bsd" style. For emacs, this is set up |
136 |
* automatically in the "Local Variables" section at the end of the |
137 |
* file. For vim, use ":set tabstop=8 shiftwidth=8". |
138 |
* |
139 |
* History |
140 |
* ======= |
141 |
* |
142 |
* 07Apr90 Greg Ward |
143 |
* |
144 |
* Fixed correction factor for flat sources 29Oct2001 GW |
145 |
* Extensive comments added by Randolph Fritz May2018 |
146 |
*/ |
147 |
|
148 |
#include <math.h> |
149 |
#include <ctype.h> |
150 |
|
151 |
#include "rtio.h" |
152 |
#include "color.h" |
153 |
#include "paths.h" |
154 |
|
155 |
#define PI 3.14159265358979323846 |
156 |
|
157 |
#define FAIL (-1) |
158 |
#define SUCCESS 0 |
159 |
|
160 |
/* floating point comparisons -- floating point numbers within FTINY |
161 |
* of each other are considered equal */ |
162 |
#define FTINY 1e-6 |
163 |
#define FEQ(a,b) ((a)<=(b)+FTINY&&(a)>=(b)-FTINY) |
164 |
|
165 |
#define IESFIRSTVER 1986 |
166 |
#define IESLASTVER 2019 |
167 |
|
168 |
/* tilt specs |
169 |
* |
170 |
* This next series of definitions address metal-halide lamps, which |
171 |
* change their brightness depending on the angle at which they are |
172 |
* mounted. The section begins with "TILT=". The constants in this |
173 |
* section are all defined in LM-63. |
174 |
* |
175 |
*/ |
176 |
|
177 |
#define TLTSTR "TILT=" |
178 |
#define TLTSTRLEN 5 |
179 |
#define TLTNONE "NONE" |
180 |
#define TLTINCL "INCLUDE" |
181 |
#define TLT_VERT 1 |
182 |
#define TLT_H0 2 |
183 |
#define TLT_H90 3 |
184 |
|
185 |
/* Constants from LM-63 files */ |
186 |
|
187 |
/* photometric types |
188 |
* |
189 |
* This enumeration reflects three different methods of measuring the |
190 |
* distribution of light from a luminaire -- "goniophotometry" -- and |
191 |
* the different coordinate systems related to these |
192 |
* goniophotometers. All are described in IES standard LM-75-01. |
193 |
* Earlier and shorter descriptions may be found the LM-63 standards |
194 |
* from 1986, 1991, and 1995. |
195 |
* |
196 |
* ies2rad does not support type A photometry. |
197 |
* |
198 |
* In the 1986 file format, LM-63-86, 1 is used for type C and type A |
199 |
* photometric data. |
200 |
* |
201 |
*/ |
202 |
#define PM_C 1 |
203 |
#define PM_B 2 |
204 |
#define PM_A 3 |
205 |
|
206 |
/* unit types */ |
207 |
#define U_FEET 1 |
208 |
#define U_METERS 2 |
209 |
|
210 |
/* string lengths */ |
211 |
/* Maximum length of a keyword, including brackets and NUL */ |
212 |
#define MAXKW 21 |
213 |
/* Maximum input line is 256 characters including CR LF and NUL at end. */ |
214 |
#define MAXLINE 257 |
215 |
#define MAXUNITNAME 64 |
216 |
#define RMAXWORD 76 |
217 |
|
218 |
/* Shapes defined in the IES LM-63 standards |
219 |
* |
220 |
* PH stands for photometric horizontal |
221 |
* PPH stands for perpendicular to photometric horizontal |
222 |
* Cylinders are vertical and circular unless otherwise stated |
223 |
* |
224 |
* The numbers assigned here are not part of any LM-63 standard; they |
225 |
* are for programming convenience. |
226 |
*/ |
227 |
/* Error and not-yet-assigned constants */ |
228 |
#define IESERROR -2 |
229 |
#define IESNONE -1 |
230 |
/* Shapes */ |
231 |
#define IESPT 0 |
232 |
#define IESRECT 1 |
233 |
#define IESBOX 2 |
234 |
#define IESDISK 3 |
235 |
#define IESELLIPSE 4 |
236 |
#define IESVCYL 5 |
237 |
#define IESVECYL 6 |
238 |
#define IESSPHERE 7 |
239 |
#define IESELLIPSOID 8 |
240 |
#define IESHCYL_PH 9 |
241 |
#define IESHECYL_PH 10 |
242 |
#define IESHCYL_PPH 11 |
243 |
#define IESHECYL_PPH 12 |
244 |
#define IESVDISK_PH 13 |
245 |
#define IESVEL_PH 14 |
246 |
|
247 |
/* End of LM-63 related #defines */ |
248 |
|
249 |
/* file extensions */ |
250 |
#define T_RAD ".rad" |
251 |
#define T_DST ".dat" |
252 |
#define T_TLT "%.dat" |
253 |
#define T_OCT ".oct" |
254 |
|
255 |
/* Radiance shape types |
256 |
* These #defines enumerate the shapes of the Radiance objects which |
257 |
* emit the light. |
258 |
*/ |
259 |
#define RECT 1 |
260 |
#define DISK 2 |
261 |
#define SPHERE 3 |
262 |
|
263 |
/* 1mm. The diameter of a point source luminaire model. Also the minimum |
264 |
* size (in meters) that the luminous opening of a luminaire must have |
265 |
* to be treated as other than a point source. */ |
266 |
#define MINDIM .001 |
267 |
|
268 |
/* feet to meters */ |
269 |
/* length_in_meters = length_in_feet * F_M */ |
270 |
#define F_M .3048 |
271 |
|
272 |
/* abspath - return true if a path begins with a directory separator |
273 |
* or a '.' (current directory) */ |
274 |
#define abspath(p) (ISDIRSEP((p)[0]) || (p)[0] == '.') |
275 |
|
276 |
/* LM-63 related constants */ |
277 |
typedef struct { |
278 |
char *tag; |
279 |
int yr; } IESversions; |
280 |
|
281 |
IESversions IESFILEVERSIONS[] = { |
282 |
{ "IESNA91", 1991 }, |
283 |
{ "IESNA:LM-63-1995", 1995 }, |
284 |
{ "IESNA:LM-63-2002", 2002 }, |
285 |
{ "IES:LM-63-2019", 2019 }, |
286 |
{ NULL, 1986 } |
287 |
}; |
288 |
|
289 |
char *IESHAPENAMES[] = { |
290 |
"point", "rectangle", "box", "disk", "ellipse", "vertical cylinder", |
291 |
"vertical elliptical cylinder", "sphere", "ellipsoid", |
292 |
"horizontal cylinder along photometric horizontal", |
293 |
"horizontal elliptical cylinder along photometric horizontal", |
294 |
"horizontal cylinder perpendicular to photometric horizontal", |
295 |
"horizontal elliptical cylinder perpendicular to photometric horizontal", |
296 |
"vertical disk facing photometric horizontal", |
297 |
"vertical ellipse facing photometric horizontal" }; |
298 |
|
299 |
/* end of LM-63 related constants */ |
300 |
|
301 |
/* Radiance shape names */ |
302 |
char *RADSHAPENAMES[] = { "rectangle or box", "disk or cylinder", "sphere" }; |
303 |
|
304 |
/* Global variables. |
305 |
* |
306 |
* Mostly, these are a way of communicating command line parameters to |
307 |
* the rest of the program. |
308 |
*/ |
309 |
static char default_name[] = "default"; |
310 |
|
311 |
char *libdir = NULL; /* library directory location */ |
312 |
char *prefdir = NULL; /* subdirectory */ |
313 |
char *lampdat = "lamp.tab"; /* lamp data file */ |
314 |
|
315 |
double meters2out = 1.0; /* conversion from meters to output */ |
316 |
char *lamptype = NULL; /* selected lamp type */ |
317 |
char *deflamp = NULL; /* default lamp type */ |
318 |
float defcolor[3] = {1.,1.,1.}; /* default lamp color */ |
319 |
float *lampcolor = defcolor; /* pointer to current lamp color */ |
320 |
double multiplier = 1.0; /* multiplier for all light sources */ |
321 |
char units[MAXUNITNAME] = "meters"; /* output units */ |
322 |
int out2stdout = 0; /* put out to stdout r.t. file */ |
323 |
int instantiate = 0; /* instantiate geometry */ |
324 |
double illumrad = 0.0; /* radius for illum sphere */ |
325 |
|
326 |
/* This struct describes the Radiance source object */ |
327 |
typedef struct { |
328 |
int isillum; /* do as illum */ |
329 |
int type; /* RECT, DISK, SPHERE */ |
330 |
double mult; /* candela multiplier */ |
331 |
double w, l, h; /* width, length, height */ |
332 |
double area; /* max. projected area */ |
333 |
int filerev; /* IES file version */ |
334 |
int havelamppos; /* Lamp position was given */ |
335 |
float lamppos[2]; /* Lamp position */ |
336 |
int iesshape; /* Shape number */ |
337 |
char *warn; /* Warning message */ |
338 |
} SRCINFO; /* a source shape (units=meters) */ |
339 |
|
340 |
/* A count and pointer to the list of input file names */ |
341 |
int gargc; /* global argc */ |
342 |
char **gargv; /* global argv */ |
343 |
|
344 |
/* macros to scan numbers out of IES files |
345 |
* |
346 |
* fp is a file pointer. scnint() places the number in the integer |
347 |
* indicated by ip; scnflt() places the number in the double indicated |
348 |
* by rp. The macros return 1 if successful, 0 if not. |
349 |
* |
350 |
*/ |
351 |
#define scnint(fp,ip) cvtint(ip,getword(fp)) |
352 |
#define scnflt(fp,rp) cvtflt(rp,getword(fp)) |
353 |
|
354 |
/* The original (1986) version of LM-63 allows decimals points in |
355 |
* integers, so that, for instance, the number of lamps may be written |
356 |
* 3.0 (the number, obviously, must still be an integer.) This |
357 |
* confusing define accommodates that. */ |
358 |
#define isint isflt |
359 |
|
360 |
/* IES file conversion functions */ |
361 |
static int ies2rad(char *inpname, char *outname); |
362 |
static void initlamps(void); |
363 |
static int dosource(SRCINFO *sinf, FILE *in, FILE *out, char *mod, char *name); |
364 |
static int dotilt(FILE *in, FILE *out, char *dir, char *tltspec, |
365 |
char *dfltname, char *tltid); |
366 |
static int cvgeometry(char *inpname, SRCINFO *sinf, char *outname, FILE *outfp); |
367 |
static int cvtint(int *ip, char *wrd); |
368 |
static int cvdata(FILE *in, FILE *out, int ndim, int npts[], double mult, |
369 |
double lim[][2]); |
370 |
static int cvtflt(double *rp, char *wrd); |
371 |
static int makeiesshape(SRCINFO *shp, double length, double width, double height); |
372 |
static int makeillumsphere(SRCINFO *shp); |
373 |
static int makeshape(SRCINFO *shp, double width, double length, double height); |
374 |
static void makecylshape(SRCINFO *shp, double diam, double height); |
375 |
static void makeelshape(SRCINFO *shp, double width, double length, double height); |
376 |
static void makeecylshape(SRCINFO *shp, double width, double length, double height); |
377 |
static void makeelshape(SRCINFO *shp, double width, double length, double height); |
378 |
static void makeboxshape(SRCINFO *shp, double length, double width, double height); |
379 |
static int makepointshape(SRCINFO *shp); |
380 |
static int putsource(SRCINFO *shp, FILE *fp, char *mod, char *name, |
381 |
int dolower, int doupper, int dosides); |
382 |
static void putrectsrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up); |
383 |
static void putsides(SRCINFO *shp, FILE *fp, char *mod, char *name); |
384 |
static void putdisksrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up); |
385 |
static void putspheresrc(SRCINFO *shp, FILE *fp, char *mod, char *name); |
386 |
static void putrect(SRCINFO *shp, FILE *fp, char *mod, char *name, char *suffix, |
387 |
int a, int b, int c, int d); |
388 |
static void putpoint(SRCINFO *shp, FILE *fp, int p); |
389 |
static void putcyl(SRCINFO *shp, FILE *fp, char *mod, char *name); |
390 |
static void shapearea(SRCINFO *shp); |
391 |
|
392 |
/* string and filename functions */ |
393 |
static int isprefix(char *p, char *s); |
394 |
static char * matchprefix(char *p, char *s); |
395 |
static char * tailtrunc(char *name); |
396 |
static char * filename(char *path); |
397 |
static char * libname(char *path, char *fname, char *suffix); |
398 |
static char * getword(FILE *fp); |
399 |
static char * fullnam(char *path, char *fname, char *suffix); |
400 |
|
401 |
/* output function */ |
402 |
static void fpcomment(FILE *fp, char *prefix, char *s); |
403 |
|
404 |
/* main - process arguments and run the conversion |
405 |
* |
406 |
* Refer to the man page for details of the arguments. |
407 |
* |
408 |
* Following Unix environment conventions, main() exits with 0 on |
409 |
* success and 1 on failure. |
410 |
* |
411 |
* ies2rad outputs either two or three files for a given IES |
412 |
* file. There is always a .rad file containing Radiance scene |
413 |
* description primitives and a .dat file for the photometric data. If |
414 |
* tilt data is given, that is placed in a separate .dat file. So |
415 |
* ies2rad must have a filename to operate. Sometimes this name is the |
416 |
* input file name, shorn of its extension; sometimes it is given in |
417 |
* the -o option. But an output file name is required for ies2rad to |
418 |
* do its work. |
419 |
* |
420 |
* Older versions of the LM-63 standard allowed inclusion of multiple |
421 |
* luminaires in one IES file; this is not supported by ies2rad. |
422 |
* |
423 |
* This code sometimes does not check to make sure it has not run out |
424 |
* of arguments; this can lead to segmentation faults and perhaps |
425 |
* other errors. |
426 |
* |
427 |
*/ |
428 |
int |
429 |
main( |
430 |
int argc, |
431 |
char *argv[] |
432 |
) |
433 |
{ |
434 |
char *outfile = NULL; |
435 |
int status; |
436 |
char outname[RMAXWORD]; |
437 |
double d1; |
438 |
int i; |
439 |
|
440 |
/* Scan the options */ |
441 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
442 |
switch (argv[i][1]) { |
443 |
case 'd': /* dimensions */ |
444 |
if (argv[i][2] == '\0') |
445 |
goto badopt; |
446 |
if (argv[i][3] == '\0') |
447 |
d1 = 1.0; |
448 |
else if (argv[i][3] == '/') { |
449 |
d1 = atof(argv[i]+4); |
450 |
if (d1 <= FTINY) |
451 |
goto badopt; |
452 |
} else |
453 |
goto badopt; |
454 |
switch (argv[i][2]) { |
455 |
case 'c': /* centimeters */ |
456 |
if (FEQ(d1,10.)) |
457 |
strcpy(units,"millimeters"); |
458 |
else { |
459 |
strcpy(units,"centimeters"); |
460 |
strcat(units,argv[i]+3); |
461 |
} |
462 |
meters2out = 100.*d1; |
463 |
break; |
464 |
case 'm': /* meters */ |
465 |
if (FEQ(d1,1000.)) |
466 |
strcpy(units,"millimeters"); |
467 |
else if (FEQ(d1,100.)) |
468 |
strcpy(units,"centimeters"); |
469 |
else { |
470 |
strcpy(units,"meters"); |
471 |
strcat(units,argv[i]+3); |
472 |
} |
473 |
meters2out = d1; |
474 |
break; |
475 |
case 'i': /* inches */ |
476 |
strcpy(units,"inches"); |
477 |
strcat(units,argv[i]+3); |
478 |
meters2out = d1*(12./F_M); |
479 |
break; |
480 |
case 'f': /* feet */ |
481 |
if (FEQ(d1,12.)) |
482 |
strcpy(units,"inches"); |
483 |
else { |
484 |
strcpy(units,"feet"); |
485 |
strcat(units,argv[i]+3); |
486 |
} |
487 |
meters2out = d1/F_M; |
488 |
break; |
489 |
default: |
490 |
goto badopt; |
491 |
} |
492 |
break; |
493 |
case 'l': /* library directory */ |
494 |
libdir = argv[++i]; |
495 |
break; |
496 |
case 'p': /* prefix subdirectory */ |
497 |
prefdir = argv[++i]; |
498 |
break; |
499 |
case 'f': /* lamp data file */ |
500 |
lampdat = argv[++i]; |
501 |
break; |
502 |
case 'o': /* output file root name */ |
503 |
outfile = argv[++i]; |
504 |
break; |
505 |
case 's': /* output to stdout */ |
506 |
out2stdout = !out2stdout; |
507 |
break; |
508 |
case 'i': /* illum */ |
509 |
illumrad = atof(argv[++i]); |
510 |
break; |
511 |
case 'g': /* instantiate geometry? */ |
512 |
instantiate = !instantiate; |
513 |
break; |
514 |
case 't': /* override lamp type */ |
515 |
lamptype = argv[++i]; |
516 |
break; |
517 |
case 'u': /* default lamp type */ |
518 |
deflamp = argv[++i]; |
519 |
break; |
520 |
case 'c': /* default lamp color */ |
521 |
defcolor[0] = atof(argv[++i]); |
522 |
defcolor[1] = atof(argv[++i]); |
523 |
defcolor[2] = atof(argv[++i]); |
524 |
break; |
525 |
case 'm': /* multiplier */ |
526 |
multiplier = atof(argv[++i]); |
527 |
break; |
528 |
default: |
529 |
badopt: |
530 |
fprintf(stderr, "%s: bad option: %s\n", |
531 |
argv[0], argv[i]); |
532 |
exit(1); |
533 |
} |
534 |
/* Save pointers to the list of input file names */ |
535 |
gargc = i; |
536 |
gargv = argv; |
537 |
|
538 |
/* get lamp data (if needed) */ |
539 |
initlamps(); |
540 |
|
541 |
/* convert ies file(s) */ |
542 |
/* If an output file name is specified */ |
543 |
if (outfile != NULL) { |
544 |
if (i == argc) |
545 |
/* If no input filename is given, use stdin as |
546 |
* the source for the IES file */ |
547 |
exit(ies2rad(NULL, outfile) == 0 ? 0 : 1); |
548 |
else if (i == argc-1) |
549 |
/* If exactly one input file name is given, use it. */ |
550 |
exit(ies2rad(argv[i], outfile) == 0 ? 0 : 1); |
551 |
else |
552 |
goto needsingle; /* Otherwise, error. */ |
553 |
} else if (i >= argc) { |
554 |
/* If an output file and an input file are not give, error. */ |
555 |
fprintf(stderr, "%s: missing output file specification\n", |
556 |
argv[0]); |
557 |
exit(1); |
558 |
} |
559 |
/* If no input or output file is given, error. */ |
560 |
if (out2stdout && i != argc-1) |
561 |
goto needsingle; |
562 |
/* Otherwise, process each input file in turn. */ |
563 |
status = 0; |
564 |
for ( ; i < argc; i++) { |
565 |
tailtrunc(strcpy(outname,filename(argv[i]))); |
566 |
if (ies2rad(argv[i], outname) != 0) |
567 |
status = 1; |
568 |
} |
569 |
exit(status); |
570 |
needsingle: |
571 |
fprintf(stderr, "%s: single input file required\n", argv[0]); |
572 |
exit(1); |
573 |
} |
574 |
|
575 |
/* Initlamps -- If necessary, read lamp data table */ |
576 |
void |
577 |
initlamps(void) /* set up lamps */ |
578 |
{ |
579 |
float *lcol; |
580 |
int status; |
581 |
|
582 |
/* If the lamp name is set to default, don't bother to read |
583 |
* the lamp data table. */ |
584 |
if (lamptype != NULL && !strcmp(lamptype, default_name) && |
585 |
deflamp == NULL) |
586 |
return; |
587 |
|
588 |
if ((status = loadlamps(lampdat)) < 0) /* Load the lamp data table */ |
589 |
exit(1); /* Exit if problems |
590 |
* with the file. */ |
591 |
if (status == 0) { |
592 |
/* If can't open the file, just use the standard default lamp */ |
593 |
fprintf(stderr, "%s: warning - no lamp data\n", lampdat); |
594 |
lamptype = default_name; |
595 |
return; |
596 |
} |
597 |
if (deflamp != NULL) { |
598 |
/* Look up the specified default lamp type */ |
599 |
if ((lcol = matchlamp(deflamp)) == NULL) |
600 |
/* If it can't be found, use the default */ |
601 |
fprintf(stderr, |
602 |
"%s: warning - unknown default lamp type\n", |
603 |
deflamp); |
604 |
else |
605 |
/* Use the selected default lamp color */ |
606 |
copycolor(defcolor, lcol); |
607 |
} |
608 |
/* If a lamp type is specified and can be found, use it, and |
609 |
* release the lamp data table memory; it won't be needed any more. */ |
610 |
if (lamptype != NULL) { |
611 |
if (strcmp(lamptype, default_name)) { |
612 |
if ((lcol = matchlamp(lamptype)) == NULL) { |
613 |
fprintf(stderr, |
614 |
"%s: warning - unknown lamp type\n", |
615 |
lamptype); |
616 |
lamptype = default_name; |
617 |
} else |
618 |
copycolor(defcolor, lcol); |
619 |
} |
620 |
freelamps(); /* all done with data */ |
621 |
} |
622 |
/* else keep lamp data */ |
623 |
} |
624 |
|
625 |
/* |
626 |
* String functions |
627 |
*/ |
628 |
|
629 |
/* |
630 |
* isprefix - return 1 (true) if p is a prefix of s, 0 otherwise |
631 |
* |
632 |
* For this to work properly, s must be as long or longer than p. |
633 |
*/ |
634 |
int |
635 |
isprefix(char *p, char *s) { |
636 |
return matchprefix(p,s) != NULL; |
637 |
} |
638 |
|
639 |
/* |
640 |
* matchprefix - match p against s |
641 |
* |
642 |
* If p is a prefix of s, return a pointer to the character of s just |
643 |
* past p. |
644 |
* |
645 |
* For this to work properly, s must be as long or longer than p. |
646 |
*/ |
647 |
char * |
648 |
matchprefix(char *p, char *s) { |
649 |
int c; |
650 |
|
651 |
while ((c = *p++)) { |
652 |
if (c != *s++) |
653 |
return NULL; |
654 |
} |
655 |
return s; |
656 |
} |
657 |
|
658 |
/* |
659 |
* skipws - skip whitespace |
660 |
*/ |
661 |
char * |
662 |
skipws(char *s) { |
663 |
while (isspace(*s)) |
664 |
s++; |
665 |
return s; |
666 |
} |
667 |
|
668 |
/* |
669 |
* streq - test strings for equality |
670 |
*/ |
671 |
int |
672 |
streq(char *s1, char *s2) { |
673 |
return strcmp(s1,s2) == 0; |
674 |
} |
675 |
|
676 |
/* |
677 |
* strneq - test strings for equality, with a length limit |
678 |
*/ |
679 |
int |
680 |
strneq(char *s1, char *s2, int n) { |
681 |
return strncmp(s1,s2,n) == 0; |
682 |
} |
683 |
|
684 |
/* |
685 |
* IES (LM-63) file functions |
686 |
*/ |
687 |
|
688 |
/* |
689 |
* prockwd - process keywords on a label line |
690 |
* |
691 |
* We're looking for four keywords: LAMP, LAMPCAT, LAMPPOSITION, and |
692 |
* LUMINOUSGEOMETRY. Any other keywords are ignored. |
693 |
* |
694 |
* LAMP and LAMPCAT are searched for a known lamp type name. |
695 |
* LAMPPOSITION is stored. |
696 |
* LUMINOUSGEOMETRY contains the name of an MGF file, which is stored. |
697 |
*/ |
698 |
void |
699 |
prockwd(char *bp, char *geomfile, char *inpname, SRCINFO *srcinfo) { |
700 |
char *kwbegin; |
701 |
int kwlen; |
702 |
|
703 |
bp = skipws(bp); /* Skip leading whitespace. */ |
704 |
if (*bp != '[') |
705 |
return; /* If there's no keyword on this line, |
706 |
* do nothing */ |
707 |
kwbegin = bp; |
708 |
while (*bp && *bp != ']') /* Skip to the end of the keyword or |
709 |
* end of the buffer. */ |
710 |
bp++; |
711 |
if (!(*bp)) /* If the keyword doesn't have a |
712 |
* terminating ']', return. */ |
713 |
return; |
714 |
kwlen = bp - kwbegin + 1; |
715 |
bp++; |
716 |
if (lampcolor == NULL && strneq("[LAMP]", kwbegin, kwlen)) |
717 |
lampcolor = matchlamp(bp); |
718 |
else if (lampcolor == NULL && strneq("[LAMPCAT]", kwbegin, kwlen)) |
719 |
lampcolor = matchlamp(bp); |
720 |
else if (strneq("[LUMINOUSGEOMETRY]", kwbegin, kwlen)) { |
721 |
bp = skipws(bp); /* Skip leading whitespace. */ |
722 |
strcpy(geomfile, inpname); /* Copy the input file path */ |
723 |
/* Replace the filename in the input file path with |
724 |
* the name of the MGF file. Trailing spaces were |
725 |
* trimmed before this routine was called. */ |
726 |
strcpy(filename(geomfile), bp); |
727 |
srcinfo->isillum = 1; |
728 |
} |
729 |
else if (strneq("[LAMPPOSITION]", kwbegin, kwlen)) { |
730 |
srcinfo->havelamppos = 1; |
731 |
sscanf(bp,"%f%f", &(srcinfo->lamppos[0]), |
732 |
&(srcinfo->lamppos[1])); |
733 |
} |
734 |
} |
735 |
|
736 |
/* |
737 |
* iesversion - examine the first line of an IES file and return the version |
738 |
* |
739 |
* Returns the year of the version. If the version is unknown, |
740 |
* returns 1986, since the first line of a 1986-format IES file can be |
741 |
* anything. |
742 |
*/ |
743 |
int |
744 |
iesversion(char *buf) { |
745 |
IESversions *v; |
746 |
|
747 |
for(v = IESFILEVERSIONS; v->tag != NULL; v++) |
748 |
if (streq(v->tag,buf)) |
749 |
return v->yr; |
750 |
return v->yr; |
751 |
} |
752 |
|
753 |
|
754 |
/* |
755 |
* File path operations |
756 |
* |
757 |
* These provide file path operations that operate on both MS-Windows |
758 |
* and *nix. They will ignore and pass, but will not necessarily |
759 |
* process correctly, Windows drive letters. Paths including Windows |
760 |
* UNC network names (\\server\folder\file) may also cause problems. |
761 |
* |
762 |
*/ |
763 |
|
764 |
/* |
765 |
* stradd() |
766 |
* |
767 |
* Add a string to the end of a string, optionally concatenating a |
768 |
* file path separator character. If the path already ends with a |
769 |
* path separator, no additional separator is appended. |
770 |
* |
771 |
*/ |
772 |
char * |
773 |
stradd( /* add a string at dst */ |
774 |
char *dst, |
775 |
char *src, |
776 |
int sep |
777 |
) |
778 |
{ |
779 |
if (src && *src) { |
780 |
do |
781 |
*dst++ = *src++; |
782 |
while (*src); |
783 |
if (sep && dst[-1] != sep) |
784 |
*dst++ = sep; |
785 |
} |
786 |
*dst = '\0'; |
787 |
return(dst); |
788 |
} |
789 |
|
790 |
/* |
791 |
* fullnam () - return a usable path name for an output file |
792 |
*/ |
793 |
char * |
794 |
fullnam( |
795 |
char *path, /* The base directory path */ |
796 |
char *fname, /* The file name */ |
797 |
char *suffix /* A suffix, which usually contains |
798 |
* a file name extension. */ |
799 |
) |
800 |
{ |
801 |
extern char *prefdir; |
802 |
extern char *libdir; |
803 |
|
804 |
if (prefdir != NULL && abspath(prefdir)) |
805 |
/* If the subdirectory path is absolute or '.', just |
806 |
* concatenate the names together */ |
807 |
libname(path, fname, suffix); |
808 |
else if (abspath(fname)) |
809 |
/* If there is no subdirectory, and the file name is |
810 |
* an absolute path or '.', concatenate the path, |
811 |
* filename, and suffix. */ |
812 |
strcpy(stradd(path, fname, 0), suffix); |
813 |
else |
814 |
/* If the file name is relative, concatenate path, |
815 |
* library directory, directory separator, file name, |
816 |
* and suffix. */ |
817 |
libname(stradd(path, libdir, DIRSEP), fname, suffix); |
818 |
|
819 |
return(path); |
820 |
} |
821 |
|
822 |
|
823 |
/* |
824 |
* libname - convert a file name to a path |
825 |
*/ |
826 |
char * |
827 |
libname( |
828 |
char *path, /* The base directory path */ |
829 |
char *fname, /* The file name */ |
830 |
char *suffix /* A suffix, which usually contains |
831 |
* a file name extension. */ |
832 |
) |
833 |
{ |
834 |
extern char *prefdir; /* The subdirectory where the file |
835 |
* name is stored. */ |
836 |
|
837 |
if (abspath(fname)) |
838 |
/* If the file name begins with '/' or '.', combine |
839 |
* it with the path and attach the suffix */ |
840 |
strcpy(stradd(path, fname, 0), suffix); |
841 |
else |
842 |
/* If the file name is relative, attach it to the |
843 |
* path, include the subdirectory, and append the suffix. */ |
844 |
strcpy(stradd(stradd(path, prefdir, DIRSEP), fname, 0), suffix); |
845 |
|
846 |
return(path); |
847 |
} |
848 |
|
849 |
/* filename - pointer to filename in buffer containing path |
850 |
* |
851 |
* Scan the path, recording directory separators. Return the location |
852 |
* of the character past the last one. If no directory separators are |
853 |
* found, returns a pointer to beginning of the path. |
854 |
*/ |
855 |
char * |
856 |
filename( |
857 |
char *path |
858 |
) |
859 |
{ |
860 |
char *cp = path; |
861 |
|
862 |
for (; *path; path++) |
863 |
if (ISDIRSEP(*path)) |
864 |
cp = path+1; |
865 |
return(cp); |
866 |
} |
867 |
|
868 |
|
869 |
/* filetrunc() - return the directory portion of a path |
870 |
* |
871 |
* The path is passed in in a pointer to a buffer; a null character is |
872 |
* inserted in the buffer after the last directory separator |
873 |
* |
874 |
*/ |
875 |
char * |
876 |
filetrunc( |
877 |
char *path |
878 |
) |
879 |
{ |
880 |
char *p1, *p2; |
881 |
|
882 |
for (p1 = p2 = path; *p2; p2++) |
883 |
if (ISDIRSEP(*p2)) |
884 |
p1 = p2; |
885 |
if (p1 == path && ISDIRSEP(*p1)) |
886 |
p1++; |
887 |
*p1 = '\0'; |
888 |
return(path); |
889 |
} |
890 |
|
891 |
/* tailtrunc() - trim a file name extension, if any. |
892 |
* |
893 |
* The file name is passed in in a buffer indicated by *name; the |
894 |
* period which begins the extension is replaced with a 0 byte. |
895 |
*/ |
896 |
char * |
897 |
tailtrunc( |
898 |
char *name |
899 |
) |
900 |
{ |
901 |
char *p1, *p2; |
902 |
|
903 |
/* Skip leading periods */ |
904 |
for (p1 = filename(name); *p1 == '.'; p1++) |
905 |
; |
906 |
/* Find the last period in a file name */ |
907 |
p2 = NULL; |
908 |
for ( ; *p1; p1++) |
909 |
if (*p1 == '.') |
910 |
p2 = p1; |
911 |
/* If present, trim the filename at that period */ |
912 |
if (p2 != NULL) |
913 |
*p2 = '\0'; |
914 |
return(name); |
915 |
} |
916 |
|
917 |
/* blanktrunc() - trim spaces at the end of a string |
918 |
* |
919 |
* the string is passed in a character array, which is modified |
920 |
*/ |
921 |
void |
922 |
blanktrunc( |
923 |
char *s |
924 |
) |
925 |
{ |
926 |
char *cp; |
927 |
|
928 |
for (cp = s; *cp; cp++) |
929 |
; |
930 |
while (cp-- > s && isspace(*cp)) |
931 |
; |
932 |
*++cp = '\0'; |
933 |
} |
934 |
|
935 |
/* fpcomment - output a multi-line comment |
936 |
* |
937 |
* The comment may be multiple lines, with each line separated by a |
938 |
* newline. Each line is prefixed by prefix. If the last line isn't |
939 |
* terminated by a newline, no newline will be output. |
940 |
*/ |
941 |
void |
942 |
fpcomment(FILE *fp, char *prefix, char *s) { |
943 |
while (*s) { /* While there are characters left to output */ |
944 |
fprintf(fp, "%s", prefix); /* Output the prefix */ |
945 |
for (; *s && *s != '\n'; s++) /* Output a line */ |
946 |
putc(*s, fp); |
947 |
if (*s == '\n') { /* Including the newline, if any */ |
948 |
putc(*s, fp); |
949 |
s++; |
950 |
} |
951 |
} |
952 |
} |
953 |
|
954 |
/* putheader - output the header of the .rad file |
955 |
* |
956 |
* Header is: |
957 |
* # <file> <file> <file> (all files from input line) |
958 |
* # Dimensions in [feet,meters,etc.] |
959 |
* |
960 |
* ??? Is listing all the input file names correct behavior? |
961 |
* |
962 |
*/ |
963 |
void |
964 |
|
965 |
putheader( |
966 |
FILE *out |
967 |
) |
968 |
{ |
969 |
int i; |
970 |
|
971 |
putc('#', out); |
972 |
for (i = 0; i < gargc; i++) { |
973 |
putc(' ', out); |
974 |
fputs(gargv[i], out); |
975 |
} |
976 |
fputs("\n# Dimensions in ", out); |
977 |
fputs(units, out); |
978 |
putc('\n', out); |
979 |
} |
980 |
|
981 |
/* ies2rad - convert an IES LM-63 file to a Radiance light source desc. |
982 |
* |
983 |
* Return -1 in case of failure, 0 in case of success. |
984 |
* |
985 |
*/ |
986 |
int |
987 |
ies2rad( /* convert IES file */ |
988 |
char *inpname, |
989 |
char *outname |
990 |
) |
991 |
{ |
992 |
SRCINFO srcinfo; |
993 |
char buf[MAXLINE], tltid[RMAXWORD]; |
994 |
char geomfile[MAXLINE]; |
995 |
FILE *inpfp, *outfp; |
996 |
int lineno = 0; |
997 |
|
998 |
|
999 |
/* Initialize srcinfo */ |
1000 |
srcinfo.filerev = IESFIRSTVER; |
1001 |
srcinfo.iesshape = IESNONE; |
1002 |
srcinfo.warn = NULL; |
1003 |
srcinfo.isillum = 0; |
1004 |
srcinfo.havelamppos = 0; |
1005 |
/* Open input and output files */ |
1006 |
geomfile[0] = '\0'; |
1007 |
if (inpname == NULL) { |
1008 |
inpname = "<stdin>"; |
1009 |
inpfp = stdin; |
1010 |
} else if ((inpfp = fopen(inpname, "r")) == NULL) { |
1011 |
perror(inpname); |
1012 |
return(-1); |
1013 |
} |
1014 |
if (out2stdout) |
1015 |
outfp = stdout; |
1016 |
else if ((outfp = fopen(fullnam(buf,outname,T_RAD), "w")) == NULL) { |
1017 |
perror(buf); |
1018 |
fclose(inpfp); |
1019 |
return(-1); |
1020 |
} |
1021 |
|
1022 |
/* Output the output file header */ |
1023 |
putheader(outfp); |
1024 |
|
1025 |
/* If the lamp type wasn't given on the command line, mark |
1026 |
* the lamp color as missing */ |
1027 |
if (lamptype == NULL) |
1028 |
lampcolor = NULL; |
1029 |
|
1030 |
/* Read the input file header, copying lines to the .rad file |
1031 |
* and looking for a lamp type. Stop at EOF or a line |
1032 |
* beginning with "TILT=". */ |
1033 |
while (fgets(buf,sizeof(buf),inpfp) != NULL |
1034 |
&& strncmp(buf,TLTSTR,TLTSTRLEN)) { |
1035 |
blanktrunc(buf); /* Trim trailing spaces, CR, LF. */ |
1036 |
if (!buf[0]) /* Skip blank lines */ |
1037 |
continue; |
1038 |
/* increment the header line count. If we are on the |
1039 |
* first line of the file, check for a version tag. If |
1040 |
* one is not found, assume the first version of the |
1041 |
* file. */ |
1042 |
if (!lineno++) |
1043 |
srcinfo.filerev = iesversion(buf); |
1044 |
/* Output the header line as a comment in the .rad file. */ |
1045 |
fputs("#<", outfp); |
1046 |
fputs(buf, outfp); |
1047 |
putc('\n', outfp); |
1048 |
|
1049 |
/* For post-1986 version files, process a keyword |
1050 |
* line. Otherwise, just scan the line for a lamp |
1051 |
* name */ |
1052 |
if (srcinfo.filerev != 1986) |
1053 |
prockwd(buf, geomfile, inpname, &srcinfo); |
1054 |
else if (lampcolor == NULL) |
1055 |
lampcolor = matchlamp(buf); |
1056 |
} |
1057 |
|
1058 |
/* Done reading header information. If a lamp color still |
1059 |
* hasn't been found, print a warning and use the default |
1060 |
* color; if a lamp type hasn't been found, but a color has |
1061 |
* been specified, used the specified color. */ |
1062 |
if (lampcolor == NULL) { |
1063 |
fprintf(stderr, "%s: warning - no lamp type\n", inpname); |
1064 |
fputs("# Unknown lamp type (used default)\n", outfp); |
1065 |
lampcolor = defcolor; |
1066 |
} else if (lamptype == NULL) |
1067 |
fprintf(outfp,"# CIE(x,y) = (%f,%f)\n# Depreciation = %.1f%%\n", |
1068 |
lampcolor[3], lampcolor[4], 100.*lampcolor[5]); |
1069 |
|
1070 |
/* If the file ended before a "TILT=" line, that's an error. */ |
1071 |
if (feof(inpfp)) { |
1072 |
fprintf(stderr, "%s: not in IES format\n", inpname); |
1073 |
goto readerr; |
1074 |
} |
1075 |
|
1076 |
/* Process the tilt section of the file. */ |
1077 |
/* Get the tilt file name, or the keyword "INCLUDE". */ |
1078 |
atos(tltid, RMAXWORD, buf+TLTSTRLEN); |
1079 |
if (inpfp == stdin) |
1080 |
buf[0] = '\0'; |
1081 |
else |
1082 |
filetrunc(strcpy(buf, inpname)); |
1083 |
/* Process the tilt data. */ |
1084 |
if (dotilt(inpfp, outfp, buf, tltid, outname, tltid) != 0) { |
1085 |
fprintf(stderr, "%s: bad tilt data\n", inpname); |
1086 |
goto readerr; |
1087 |
} |
1088 |
|
1089 |
/* Process the luminaire data. */ |
1090 |
if (dosource(&srcinfo, inpfp, outfp, tltid, outname) != 0) { |
1091 |
fprintf(stderr, "%s: bad luminaire data\n", inpname); |
1092 |
goto readerr; |
1093 |
} |
1094 |
|
1095 |
/* Close the input file */ |
1096 |
fclose(inpfp); |
1097 |
|
1098 |
/* Process an MGF file, if present. cvgeometry() closes outfp. */ |
1099 |
if (cvgeometry(geomfile, &srcinfo, outname, outfp) != 0) { |
1100 |
fprintf(stderr, "%s: bad geometry file\n", geomfile); |
1101 |
return(-1); |
1102 |
} |
1103 |
return(0); |
1104 |
|
1105 |
readerr: |
1106 |
/* If there is an error reading the file, close the input and |
1107 |
* .rad output files, and delete the .rad file, returning -1. */ |
1108 |
fclose(inpfp); |
1109 |
fclose(outfp); |
1110 |
unlink(fullnam(buf,outname,T_RAD)); |
1111 |
return(-1); |
1112 |
} |
1113 |
|
1114 |
/* dotilt -- process tilt data |
1115 |
* |
1116 |
* Generate a brightdata primitive which describes the effect of |
1117 |
* luminaire tilt on luminaire output and return its identifier in tltid. |
1118 |
* |
1119 |
* Tilt data (if present) is given as a number 1, 2, or 3, which |
1120 |
* specifies the orientation of the lamp within the luminaire, a |
1121 |
* number, n, of (angle, multiplier) pairs, followed by n angles and n |
1122 |
* multipliers. |
1123 |
* |
1124 |
* returns 0 for success, -1 for error |
1125 |
*/ |
1126 |
int |
1127 |
dotilt( |
1128 |
FILE *in, |
1129 |
FILE *out, |
1130 |
char *dir, |
1131 |
char *tltspec, |
1132 |
char *dfltname, |
1133 |
char *tltid |
1134 |
) |
1135 |
{ |
1136 |
int nangles, tlt_type; |
1137 |
double minmax[1][2]; |
1138 |
char buf[PATH_MAX], tltname[RMAXWORD]; |
1139 |
FILE *datin, *datout; |
1140 |
|
1141 |
/* Decide where the tilt data is; if the luminaire description |
1142 |
* doesn't have a tilt section, set the identifier to "void". */ |
1143 |
if (!strcmp(tltspec, TLTNONE)) { |
1144 |
/* If the line is "TILT=NONE", set the input file |
1145 |
* pointer to NULL and the identifier to "void". */ |
1146 |
datin = NULL; |
1147 |
strcpy(tltid, "void"); |
1148 |
} else if (!strcmp(tltspec, TLTINCL)) { |
1149 |
/* If the line is "TILT=INCLUDE" use the main IES |
1150 |
* file as the source of tilt data. */ |
1151 |
datin = in; |
1152 |
strcpy(tltname, dfltname); |
1153 |
} else { |
1154 |
/* If the line is "TILT=<filename>", use that file |
1155 |
* name as the source of tilt data. */ |
1156 |
if (ISDIRSEP(tltspec[0])) |
1157 |
strcpy(buf, tltspec); |
1158 |
else |
1159 |
strcpy(stradd(buf, dir, DIRSEP), tltspec); |
1160 |
if ((datin = fopen(buf, "r")) == NULL) { |
1161 |
perror(buf); |
1162 |
return(-1); |
1163 |
} |
1164 |
tailtrunc(strcpy(tltname,filename(tltspec))); |
1165 |
} |
1166 |
/* If tilt data is present, read, process, and output it. */ |
1167 |
if (datin != NULL) { |
1168 |
/* Try to open the output file */ |
1169 |
if ((datout = fopen(fullnam(buf,tltname,T_TLT),"w")) == NULL) { |
1170 |
perror(buf); |
1171 |
if (datin != in) |
1172 |
fclose(datin); |
1173 |
return(-1); |
1174 |
} |
1175 |
/* Try to copy the tilt data to the tilt data file */ |
1176 |
if (!scnint(datin,&tlt_type) || !scnint(datin,&nangles) |
1177 |
|| cvdata(datin,datout,1,&nangles,1.,minmax) != 0) { |
1178 |
fprintf(stderr, "%s: data format error\n", tltspec); |
1179 |
fclose(datout); |
1180 |
if (datin != in) |
1181 |
fclose(datin); |
1182 |
unlink(fullnam(buf,tltname,T_TLT)); |
1183 |
return(-1); |
1184 |
} |
1185 |
fclose(datout); |
1186 |
if (datin != in) |
1187 |
fclose(datin); |
1188 |
|
1189 |
/* Generate the identifier of the brightdata; the filename |
1190 |
* with "_tilt" appended. */ |
1191 |
strcat(strcpy(tltid, filename(tltname)), "_tilt"); |
1192 |
/* Write out the brightdata primitive */ |
1193 |
fprintf(out, "\nvoid brightdata %s\n", tltid); |
1194 |
libname(buf,tltname,T_TLT); |
1195 |
/* Generate the tilt description */ |
1196 |
switch (tlt_type) { |
1197 |
case TLT_VERT: |
1198 |
/* The lamp is mounted vertically; either |
1199 |
* base up or base down. */ |
1200 |
fprintf(out, "4 noop %s tilt.cal %s\n", buf, |
1201 |
minmax[0][1]>90.+FTINY ? "tilt_ang" : "tilt_ang2"); |
1202 |
break; |
1203 |
case TLT_H0: |
1204 |
/* The lamp is mounted horizontally and |
1205 |
* rotates but does not tilt when the |
1206 |
* luminaire is tilted. */ |
1207 |
fprintf(out, "6 noop %s tilt.cal %s -rz 90\n", buf, |
1208 |
minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
1209 |
break; |
1210 |
case TLT_H90: |
1211 |
/* The lamp is mounted horizontally, and |
1212 |
* tilts when the luminaire is tilted. */ |
1213 |
fprintf(out, "4 noop %s tilt.cal %s\n", buf, |
1214 |
minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
1215 |
break; |
1216 |
default: |
1217 |
/* otherwise, this is a bad IES file */ |
1218 |
fprintf(stderr, |
1219 |
"%s: illegal lamp to luminaire geometry (%d)\n", |
1220 |
tltspec, tlt_type); |
1221 |
return(-1); |
1222 |
} |
1223 |
/* And finally output the numbers of integer and real |
1224 |
* arguments, of which there are none. */ |
1225 |
fprintf(out, "0\n0\n"); |
1226 |
} |
1227 |
return(0); |
1228 |
} |
1229 |
|
1230 |
/* dosource -- create the source and distribution primitives */ |
1231 |
int |
1232 |
dosource( |
1233 |
SRCINFO *sinf, |
1234 |
FILE *in, |
1235 |
FILE *out, |
1236 |
char *mod, |
1237 |
char *name |
1238 |
) |
1239 |
{ |
1240 |
char buf[PATH_MAX], id[RMAXWORD]; |
1241 |
FILE *datout; |
1242 |
double mult, bfactor, pfactor, width, length, height, wattage; |
1243 |
double bounds[2][2]; |
1244 |
int nangles[2], pmtype, unitype; |
1245 |
double d1; |
1246 |
int doupper, dolower, dosides; |
1247 |
|
1248 |
/* Read in the luminaire description header */ |
1249 |
if (!isint(getword(in)) || !isflt(getword(in)) || !scnflt(in,&mult) |
1250 |
|| !scnint(in,&nangles[0]) || !scnint(in,&nangles[1]) |
1251 |
|| !scnint(in,&pmtype) || !scnint(in,&unitype) |
1252 |
|| !scnflt(in,&width) || !scnflt(in,&length) |
1253 |
|| !scnflt(in,&height) || !scnflt(in,&bfactor) |
1254 |
|| !scnflt(in,&pfactor) || !scnflt(in,&wattage)) { |
1255 |
fprintf(stderr, "dosource: bad lamp specification\n"); |
1256 |
return(-1); |
1257 |
} |
1258 |
|
1259 |
/* pfactor is only provided in 1986 and 1991 format files, and |
1260 |
* is something completely different in 2019 files. If the |
1261 |
* file version is 1995 or later, set it to 1.0 to avoid |
1262 |
* error. */ |
1263 |
if (sinf->filerev >= 1995) |
1264 |
pfactor = 1.0; |
1265 |
|
1266 |
/* Type A photometry is not supported */ |
1267 |
if (pmtype != PM_C && pmtype != PM_B) { |
1268 |
fprintf(stderr, "dosource: unsupported photometric type (%d)\n", |
1269 |
pmtype); |
1270 |
return(-1); |
1271 |
} |
1272 |
|
1273 |
/* Multiplier = the multiplier from the -m option, times the |
1274 |
* multiplier from the IES file, times the ballast factor, |
1275 |
* times the "ballast lamp photometric factor," (pfactor) |
1276 |
* which was part of the 1986 and 1991 standards. In the 1995 |
1277 |
* and 2002 standards, it is always supposed to be 1 and in |
1278 |
* the 2019 standard it encodes information about the source |
1279 |
* of the file. For those files, pfactor is set to 1.0, |
1280 |
* above. */ |
1281 |
sinf->mult = multiplier*mult*bfactor*pfactor; |
1282 |
|
1283 |
/* If the count of angles is wrong, raise an error and quit. */ |
1284 |
if (nangles[0] < 2 || nangles[1] < 1) { |
1285 |
fprintf(stderr, "dosource: too few measured angles\n"); |
1286 |
return(-1); |
1287 |
} |
1288 |
|
1289 |
/* For internal computation, convert units to meters. */ |
1290 |
if (unitype == U_FEET) { |
1291 |
width *= F_M; |
1292 |
length *= F_M; |
1293 |
height *= F_M; |
1294 |
} |
1295 |
|
1296 |
/* Make decisions about the shape of the light source |
1297 |
* geometry, and store them in sinf. */ |
1298 |
if (makeshape(sinf, width, length, height) != 0) { |
1299 |
fprintf(stderr, "dosource: illegal source dimensions\n"); |
1300 |
return(-1); |
1301 |
} |
1302 |
/* If any warning messages were generated by makeshape(), output them */ |
1303 |
if ((sinf->warn) != NULL) |
1304 |
fputs(sinf->warn, stderr); |
1305 |
|
1306 |
/* Copy the candela values into a Radiance data file. */ |
1307 |
if ((datout = fopen(fullnam(buf,name,T_DST), "w")) == NULL) { |
1308 |
perror(buf); |
1309 |
return(-1); |
1310 |
} |
1311 |
if (cvdata(in, datout, 2, nangles, 1./WHTEFFICACY, bounds) != 0) { |
1312 |
fprintf(stderr, "dosource: bad distribution data\n"); |
1313 |
fclose(datout); |
1314 |
unlink(fullnam(buf,name,T_DST)); |
1315 |
return(-1); |
1316 |
} |
1317 |
fclose(datout); |
1318 |
|
1319 |
/* Output explanatory comment */ |
1320 |
fprintf(out, "\n# %g watt luminaire, lamp*ballast factor = %g\n", |
1321 |
wattage, bfactor*pfactor); |
1322 |
if (sinf->iesshape >= 0) |
1323 |
fprintf(out, "# IES file shape = %s\n", |
1324 |
IESHAPENAMES[sinf->iesshape]); |
1325 |
else |
1326 |
fprintf(out, "# IES file shape overridden\n"); |
1327 |
fprintf(out, "# Radiance geometry shape = %s\n", |
1328 |
RADSHAPENAMES[sinf->type - 1]); |
1329 |
if (sinf->warn != NULL) |
1330 |
fpcomment(out, "# ", sinf->warn); |
1331 |
|
1332 |
/* Output distribution "brightdata" primitive. Start handling |
1333 |
the various cases of symmetry of the distribution. This |
1334 |
code reflects the complexity of the LM-63 format, as |
1335 |
described under "<horizontal angles>" in the various |
1336 |
versions of the standard. */ |
1337 |
strcat(strcpy(id, filename(name)), "_dist"); |
1338 |
fprintf(out, "\n'%s' brightdata '%s'\n", mod, id); |
1339 |
if (nangles[1] < 2) |
1340 |
/* if it's a radially-symmetric type C distribution */ |
1341 |
fprintf(out, "4 "); |
1342 |
else if (pmtype == PM_B) |
1343 |
/* Photometry type B */ |
1344 |
fprintf(out, "5 "); |
1345 |
else if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.)) |
1346 |
/* Symmetric around the 90-270 degree plane */ |
1347 |
fprintf(out, "7 "); |
1348 |
else |
1349 |
/* Just regular type C photometry */ |
1350 |
fprintf(out, "5 "); |
1351 |
|
1352 |
/* If the generated source geometry will be a box, a flat |
1353 |
* rectangle, or a disk figure out if it needs a top, a |
1354 |
* bottom, and/or sides. */ |
1355 |
dolower = (bounds[0][0] < 90.-FTINY); /* Smallest vertical angle */ |
1356 |
doupper = (bounds[0][1] > 90.+FTINY); /* Largest vertical angle */ |
1357 |
dosides = (doupper & dolower && sinf->h > MINDIM); /* Sides */ |
1358 |
|
1359 |
/* Select the appropriate function and parameters from source.cal */ |
1360 |
fprintf(out, "%s '%s' source.cal ", |
1361 |
sinf->type==SPHERE ? "corr" : |
1362 |
!dosides ? "flatcorr" : |
1363 |
sinf->type==DISK ? "cylcorr" : "boxcorr", |
1364 |
libname(buf,name,T_DST)); |
1365 |
if (pmtype == PM_B) { |
1366 |
/* Type B photometry */ |
1367 |
if (FEQ(bounds[1][0],0.)) |
1368 |
/* laterally symmetric around a vertical plane */ |
1369 |
fprintf(out, "srcB_horiz2 "); |
1370 |
else |
1371 |
fprintf(out, "srcB_horiz "); |
1372 |
fprintf(out, "srcB_vert "); |
1373 |
} else /* pmtype == PM_C */ { |
1374 |
if (nangles[1] >= 2) { |
1375 |
/* Not radially symmetric */ |
1376 |
d1 = bounds[1][1] - bounds[1][0]; |
1377 |
if (d1 <= 90.+FTINY) |
1378 |
/* Data for a quadrant */ |
1379 |
fprintf(out, "src_phi4 "); |
1380 |
else if (d1 <= 180.+FTINY) { |
1381 |
/* Data for a hemisphere */ |
1382 |
if (FEQ(bounds[1][0],90.)) |
1383 |
fprintf(out, "src_phi2+90 "); |
1384 |
else |
1385 |
fprintf(out, "src_phi2 "); |
1386 |
} else /* Data for a whole sphere */ |
1387 |
fprintf(out, "src_phi "); |
1388 |
fprintf(out, "src_theta "); |
1389 |
/* For the hemisphere around the 90-270 degree plane */ |
1390 |
if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.)) |
1391 |
fprintf(out, "-rz -90 "); |
1392 |
} else /* Radially symmetric */ |
1393 |
fprintf(out, "src_theta "); |
1394 |
} |
1395 |
/* finish the brightdata primitive with appropriate data */ |
1396 |
if (!dosides || sinf->type == SPHERE) |
1397 |
fprintf(out, "\n0\n1 %g\n", sinf->mult/sinf->area); |
1398 |
else if (sinf->type == DISK) |
1399 |
fprintf(out, "\n0\n3 %g %g %g\n", sinf->mult, |
1400 |
sinf->w, sinf->h); |
1401 |
else |
1402 |
fprintf(out, "\n0\n4 %g %g %g %g\n", sinf->mult, |
1403 |
sinf->l, sinf->w, sinf->h); |
1404 |
/* Brightdata primitive written out. */ |
1405 |
|
1406 |
/* Finally, output the descriptions of the actual radiant |
1407 |
* surfaces. */ |
1408 |
if (putsource(sinf, out, id, filename(name), |
1409 |
dolower, doupper, dosides) != 0) |
1410 |
return(-1); |
1411 |
return(0); |
1412 |
} |
1413 |
|
1414 |
/* putsource - output the actual light emitting geometry |
1415 |
* |
1416 |
* Three kinds of geometry are produced: rectangles and boxes, disks |
1417 |
* ("ring" primitive, but the radius of the hole is always zero) and |
1418 |
* cylinders, and spheres. |
1419 |
*/ |
1420 |
int |
1421 |
putsource( |
1422 |
SRCINFO *shp, |
1423 |
FILE *fp, |
1424 |
char *mod, |
1425 |
char *name, |
1426 |
int dolower, |
1427 |
int doupper, |
1428 |
int dosides |
1429 |
) |
1430 |
{ |
1431 |
char lname[RMAXWORD]; |
1432 |
|
1433 |
/* First, describe the light. If a materials and geometry |
1434 |
* file is given, generate an illum instead. */ |
1435 |
strcat(strcpy(lname, name), "_light"); |
1436 |
fprintf(fp, "\n'%s' %s '%s'\n", mod, |
1437 |
shp->isillum ? "illum" : "light", lname); |
1438 |
fprintf(fp, "0\n0\n3 %g %g %g\n", |
1439 |
lampcolor[0], lampcolor[1], lampcolor[2]); |
1440 |
switch (shp->type) { |
1441 |
case RECT: |
1442 |
/* Output at least one rectangle. If light is radiated |
1443 |
* from the sides of the luminaire, output rectangular |
1444 |
* sides as well. */ |
1445 |
if (dolower) |
1446 |
putrectsrc(shp, fp, lname, name, 0); |
1447 |
if (doupper) |
1448 |
putrectsrc(shp, fp, lname, name, 1); |
1449 |
if (dosides) |
1450 |
putsides(shp, fp, lname, name); |
1451 |
break; |
1452 |
case DISK: |
1453 |
/* Output at least one disk. If light is radiated from |
1454 |
* the sides of luminaire, output a cylinder as well. */ |
1455 |
if (dolower) |
1456 |
putdisksrc(shp, fp, lname, name, 0); |
1457 |
if (doupper) |
1458 |
putdisksrc(shp, fp, lname, name, 1); |
1459 |
if (dosides) |
1460 |
putcyl(shp, fp, lname, name); |
1461 |
break; |
1462 |
case SPHERE: |
1463 |
/* Output a sphere. */ |
1464 |
putspheresrc(shp, fp, lname, name); |
1465 |
break; |
1466 |
} |
1467 |
return(0); |
1468 |
} |
1469 |
|
1470 |
/* makeshape -- decide what shape will be used |
1471 |
* |
1472 |
* Makeshape decides what Radiance geometry will be used to represent |
1473 |
* the light source and stores information about it in shp. |
1474 |
* |
1475 |
* The height, width, and length parameters are values from the |
1476 |
* IES file, given in meters. |
1477 |
* |
1478 |
* The various versions of the IES LM-63 standard give a "luminous |
1479 |
* opening" (really a crude shape) a width, a length (or depth), and a |
1480 |
* height. If all three values are positive, they describe a box. If |
1481 |
* they are all zero, they describe a point. Various combinations of |
1482 |
* negative values are used to denote disks, circular or elliptical |
1483 |
* cylinders, spheres, and ellipsoids. This encoding differs from |
1484 |
* version to version of LM-63. |
1485 |
* |
1486 |
* Ies2rad simplifies this, reducing the geometry of LM-63 files to |
1487 |
* three forms which can be easily represented by Radiance primitives: |
1488 |
* boxes (RECT), cylinders or disks (DISK), and spheres (SPHERE.) A |
1489 |
* point is necessarily represented by a small sphere, since a point |
1490 |
* is not a Radiance object. |
1491 |
* |
1492 |
* Makeshape() returns 0 if it succeeds in choosing a shape, and -1 if |
1493 |
* it fails. |
1494 |
* |
1495 |
*/ |
1496 |
int |
1497 |
makeshape( |
1498 |
SRCINFO *shp, |
1499 |
double width, |
1500 |
double length, |
1501 |
double height |
1502 |
) |
1503 |
{ |
1504 |
int rc; |
1505 |
|
1506 |
if (illumrad != 0.0) |
1507 |
rc = makeillumsphere(shp); |
1508 |
else |
1509 |
rc = makeiesshape(shp, length, width, height); |
1510 |
if (rc == SUCCESS) |
1511 |
shapearea(shp); |
1512 |
return rc; |
1513 |
} |
1514 |
|
1515 |
/* |
1516 |
* Return 1 if d < 0, 2 if d == 0, 3 if d > 0. This is used to encode |
1517 |
* the signs of IES file dimensions for quick lookup. As usual with |
1518 |
* macros, don't use an expression with side effects as an argument. |
1519 |
*/ |
1520 |
#define CONVSGN(d) ((d) < 0 ? 1 : ((d) == 0 ? 2 : 3)) |
1521 |
|
1522 |
/* |
1523 |
* Generate the numeric key, the "thumbprint" for the various |
1524 |
* combinations of IES LM-63 version year, length, width, and height. |
1525 |
* This must be an integer constant expression so that it can be used |
1526 |
* in a case label. See the header comments of makeiesshape() for |
1527 |
* additional information. |
1528 |
*/ |
1529 |
#define TBPR(ver,l,w,h) ((ver) * 1000 + CONVSGN(l) * 100 + CONVSGN(w) * 10 + CONVSGN(h)) |
1530 |
|
1531 |
/* makeiesshape - convert IES shape to Radiance shape |
1532 |
* |
1533 |
* Some 34 cases in the various versions of the IES LM-63 standard are |
1534 |
* handled, though some only by approximation. For each case which is |
1535 |
* processed a Radiance box, cylinder, or sphere is selected. |
1536 |
* |
1537 |
* Shapes are categorized by version year of the standard and the |
1538 |
* signs of the LM-63 length, width (depth), and height fields. These |
1539 |
* are combined and converted to an integer, which is then used as the |
1540 |
* argument to switch(). The last two digits of the IES file version |
1541 |
* year are used and the signs of length, width, and height are |
1542 |
* encoded, in that order, as 1 for negative, 2 for zero, and 3 for |
1543 |
* positive. These are then combined into a numeric key by the |
1544 |
* following formula: |
1545 |
* |
1546 |
* version * 1000 + sgn(length) * 100 + sgn(width) * 10 + sgn(height) |
1547 |
* |
1548 |
* The macro TBPR implements this formula. |
1549 |
* |
1550 |
* Since the 1991 version uses the same encoding as the 1986 version, |
1551 |
* and the 2019 version uses the same encoding as the 2002 version, |
1552 |
* these are collapsed into the earlier years. |
1553 |
* |
1554 |
* In the cases of the switch() statement, further processing takes |
1555 |
* place. Circles and ellipses are distinguished by comparisons. Then |
1556 |
* routines are called to fill out the fields of the shp structure. |
1557 |
* |
1558 |
* As per the conventions of the rest of ies2rad, makeiesshape() |
1559 |
* returns 0 on success and -1 on failure. -1 reflects an error in |
1560 |
* the IES file and is unusual. |
1561 |
* |
1562 |
* By convention, the shape generating routines are always given |
1563 |
* positive values for dimensions and always succeed; all errors are |
1564 |
* caught before they are called. The absolute values of all three |
1565 |
* dimensions are calculated at the beginning of makeiesshape() and |
1566 |
* used throughout the function, this has a low cost and eliminates |
1567 |
* the chance of sign errors. |
1568 |
* |
1569 |
* There are two extensions to the ies standard here: |
1570 |
* |
1571 |
* 1. devised to accomdate wall-mounted fixtures; vertical rectangles, |
1572 |
* not formally supported by any version of LM-63, are treated as |
1573 |
* boxes. |
1574 |
* |
1575 |
* 2. A 2002-flagged file with only a negative width will be |
1576 |
* recognized as a disk. |
1577 |
* |
1578 |
* The code is complicated by the way that earlier versions of the |
1579 |
* standard (1986 and 1991) prioritize width in their discussions, and |
1580 |
* later versions prioritize length. It is not always clear which to |
1581 |
* write first and there is hesitation between the older code which |
1582 |
* invokes makeiesshape() and makeiesshape() itself. |
1583 |
*/ |
1584 |
int |
1585 |
makeiesshape(SRCINFO *shp, double l, double w, double h) { |
1586 |
int rc = SUCCESS; |
1587 |
int shape = IESNONE; |
1588 |
/* Get the last two digits of the standard year */ |
1589 |
int ver = shp->filerev % 100; |
1590 |
/* Make positive versions of all dimensions, for clarity in |
1591 |
* function calls. If you like, read this as l', w', and h'. */ |
1592 |
double lp = fabs(l), wp = fabs(w), hp = fabs(h); |
1593 |
int thumbprint; |
1594 |
|
1595 |
/* Change 1991 into 1986 and 2019 in 2002 */ |
1596 |
switch (ver) { |
1597 |
case 91: |
1598 |
ver = 86; |
1599 |
break; |
1600 |
case 19: |
1601 |
ver = 02; |
1602 |
break; |
1603 |
} |
1604 |
|
1605 |
thumbprint = TBPR(ver, l, w, h); |
1606 |
switch(thumbprint) { |
1607 |
case TBPR(86,0,0,0): case TBPR(95, 0, 0, 0): case TBPR(02, 0, 0, 0): |
1608 |
shp->iesshape = IESPT; |
1609 |
shp->type = SPHERE; |
1610 |
shp->w = shp->l = shp->h = MINDIM; |
1611 |
break; |
1612 |
case TBPR(86, 1, 1, 0): case TBPR(95, 1, 1, 0): case TBPR(02, 1, 1, 0): |
1613 |
shp->iesshape = IESRECT; |
1614 |
makeboxshape(shp, lp, wp, hp); |
1615 |
break; |
1616 |
case TBPR(86, 1, 1, 1): case TBPR(86, 0, 1, 1): case TBPR(86, 1, 0, 1): |
1617 |
case TBPR(95, 1, 1, 1): case TBPR(95, 0, 1, 1): case TBPR(95, 1, 0, 1): |
1618 |
case TBPR(02, 1, 1, 1): case TBPR(02, 0, 1, 1): case TBPR(02, 1, 0, 1): |
1619 |
shp->iesshape = IESBOX; |
1620 |
makeboxshape(shp, lp, wp, hp); |
1621 |
break; |
1622 |
case TBPR(86,0,-1,0): case TBPR(95,0,-1,0): case TBPR(02,0,-1,0): |
1623 |
shp->iesshape = IESDISK; |
1624 |
makecylshape(shp, wp, hp); |
1625 |
break; |
1626 |
case TBPR(86, 0, -1, 1): |
1627 |
shp->iesshape = IESVCYL; |
1628 |
makecylshape(shp, wp, hp); |
1629 |
break; |
1630 |
case TBPR(86, 1, -1, 0): |
1631 |
shp->iesshape = IESELLIPSE; |
1632 |
makeecylshape(shp, lp, wp, 0); |
1633 |
break; |
1634 |
case TBPR(86, 1, -1, 1): |
1635 |
shp->iesshape = IESELLIPSOID; |
1636 |
makeelshape(shp, wp, lp, hp); |
1637 |
break; |
1638 |
case TBPR(95, 0, -1, -1): |
1639 |
shp->iesshape = FEQ(lp,hp) ? IESSPHERE : IESNONE; |
1640 |
if (shp->iesshape == IESNONE) { |
1641 |
shp->warn = "makeshape: cannot determine shape\n"; |
1642 |
rc = FAIL; |
1643 |
break; |
1644 |
} |
1645 |
shp->type = SPHERE; |
1646 |
shp->w = shp->l = shp->h = wp; |
1647 |
break; |
1648 |
case TBPR(95, 0, -1, 1): |
1649 |
shp->iesshape = IESVCYL; |
1650 |
makecylshape(shp, wp, hp); |
1651 |
break; |
1652 |
case TBPR(95, 1, 0, -1): |
1653 |
shp->iesshape = IESHCYL_PH; |
1654 |
shp->warn = "makeshape: shape is a horizontal cylinder, which is not supported.\nmakeshape: replaced with box\n"; |
1655 |
makeboxshape(shp, lp, wp, hp); |
1656 |
break; |
1657 |
case TBPR(95, 0, 1, -1): |
1658 |
shp->iesshape = IESHCYL_PPH; |
1659 |
shp->warn = "makeshape: shape is a horizontal cylinder, which is not supported.\nmakeshape: replaced with box\n"; |
1660 |
makeboxshape(shp, lp, wp, hp); |
1661 |
break; |
1662 |
case TBPR(95, -1, 1, 1): case TBPR(95, 1, -1, 1): |
1663 |
shp->iesshape = IESVECYL; |
1664 |
makeecylshape(shp, lp, wp, hp); |
1665 |
break; |
1666 |
case TBPR(95, -1, 1, -1): case TBPR(95, 1, -1, -1): |
1667 |
shp->iesshape = IESELLIPSOID; |
1668 |
makeelshape(shp, lp, wp, hp); |
1669 |
break; |
1670 |
case TBPR(02, -1, -1, 0): |
1671 |
shp->iesshape = FEQ(l,w) ? IESDISK : IESELLIPSE; |
1672 |
if (shp->iesshape == IESDISK) |
1673 |
makecylshape(shp, wp, hp); |
1674 |
else |
1675 |
makeecylshape(shp, wp, lp, hp); |
1676 |
break; |
1677 |
case TBPR(02, -1, -1, 1): |
1678 |
shp->iesshape = FEQ(l,w) ? IESVCYL : IESVECYL; |
1679 |
if (shp->iesshape == IESVCYL) |
1680 |
makecylshape(shp, wp, hp); |
1681 |
else |
1682 |
makeecylshape(shp, wp, lp, hp); |
1683 |
break; |
1684 |
case TBPR(02, -1, -1, -1): |
1685 |
shp->iesshape = FEQ(l,w) && FEQ(l,h) ? IESSPHERE : IESELLIPSOID; |
1686 |
if (shp->iesshape == IESSPHERE) { |
1687 |
shp->type = SPHERE; |
1688 |
shp->w = shp->l = shp->h = wp; |
1689 |
} |
1690 |
else |
1691 |
makeelshape(shp, lp, wp, hp); |
1692 |
break; |
1693 |
case TBPR(02, 1, -1, -1): |
1694 |
shp->iesshape = FEQ(w,h) ? IESHCYL_PH : IESHECYL_PH; |
1695 |
shp->warn = "makeshape: shape is a horizontal cylinder, which is not supported.\nmakeshape: replaced with box\n"; |
1696 |
makeboxshape(shp, lp, wp, hp); |
1697 |
break; |
1698 |
case TBPR(02, -1, 1, -1): |
1699 |
shp->iesshape = FEQ(l,h) ? IESHCYL_PPH : IESHECYL_PPH; |
1700 |
shp->warn = "makeshape: shape is a horizontal cylinder, which is not supported.\nmakeshape: replaced with box\n"; |
1701 |
makeboxshape(shp, lp, wp, hp); |
1702 |
break; |
1703 |
case TBPR(02, -1, 0, -1): |
1704 |
shp->iesshape = FEQ(w,h) ? IESVDISK_PH : IESVEL_PH; |
1705 |
shp->warn = "makeshape: shape is a vertical ellipse, which is not supported.\nmakeshape: replaced with rectangle\n"; |
1706 |
makeboxshape(shp, lp, wp, hp); |
1707 |
break; |
1708 |
default: |
1709 |
/* We don't recognize the shape - report an error. */ |
1710 |
rc = FAIL; |
1711 |
} |
1712 |
return rc; |
1713 |
} |
1714 |
|
1715 |
/* makeillumsphere - create an illum sphere */ |
1716 |
int |
1717 |
makeillumsphere(SRCINFO *shp) { |
1718 |
/* If the size is too small or negative, error. */ |
1719 |
if (illumrad/meters2out < MINDIM/2.) { |
1720 |
fprintf(stderr, "makeillumsphere: -i argument is too small or negative\n"); |
1721 |
return FAIL; |
1722 |
} |
1723 |
shp->isillum = 1; |
1724 |
shp->type = SPHERE; |
1725 |
shp->w = shp->l = shp->h = 2.*illumrad / meters2out; |
1726 |
return SUCCESS; |
1727 |
} |
1728 |
|
1729 |
/* makeboxshape - create a box */ |
1730 |
void |
1731 |
makeboxshape(SRCINFO *shp, double l, double w, double h) { |
1732 |
shp->type = RECT; |
1733 |
shp->l = fmax(l, MINDIM); |
1734 |
shp->w = fmax(w, MINDIM); |
1735 |
shp->h = fmax(h, .5*MINDIM); |
1736 |
} |
1737 |
|
1738 |
/* makecylshape - output a vertical cylinder or disk |
1739 |
* |
1740 |
* If the shape has no height, make it a half-millimeter. |
1741 |
*/ |
1742 |
void |
1743 |
makecylshape(SRCINFO *shp, double diam, double height) { |
1744 |
shp->type = DISK; |
1745 |
shp->w = shp->l = diam; |
1746 |
shp->h = fmax(height, .5*MINDIM); |
1747 |
} |
1748 |
|
1749 |
/* makeelshape - create a substitute for an ellipsoid |
1750 |
* |
1751 |
* Because we don't actually support ellipsoids, and they don't seem |
1752 |
* to be common in actual IES files. |
1753 |
*/ |
1754 |
void |
1755 |
makeelshape(SRCINFO *shp, double w, double l, double h) { |
1756 |
float avg = (w + l + h) / 3; |
1757 |
float bot = .5 * avg; |
1758 |
float top = 1.5 * avg; |
1759 |
|
1760 |
if (bot < w && w < top |
1761 |
&& bot < l && l < top |
1762 |
&& bot < h && h > top) { |
1763 |
/* it's sort of spherical, replace it with a sphere */ |
1764 |
shp->warn = "makeshape: shape is an ellipsoid, which is not supported.\nmakeshape: replaced with sphere\n"; |
1765 |
shp->type = SPHERE; |
1766 |
shp->w = shp->l = shp->h = avg; |
1767 |
} else if (bot < w && w < top |
1768 |
&& bot < l && l < top |
1769 |
&& h <= .5*MINDIM) { |
1770 |
/* It's flat and sort of circular, replace it |
1771 |
* with a disk. */ |
1772 |
shp->warn = "makeshape: shape is an ellipse, which is not supported.\nmakeshape: replaced with disk\n"; |
1773 |
makecylshape(shp, w, 0); |
1774 |
} else { |
1775 |
shp->warn = "makeshape: shape is an ellipsoid, which is not supported.\nmakeshape: replaced with box\n"; |
1776 |
makeboxshape(shp, w, l, h); |
1777 |
} |
1778 |
} |
1779 |
|
1780 |
/* makeecylshape - create a substitute for an elliptical cylinder or disk */ |
1781 |
void |
1782 |
makeecylshape(SRCINFO *shp, double l, double w, double h) { |
1783 |
float avg = (w + l) / 2; |
1784 |
float bot = .5 * avg; |
1785 |
float top = 1.5 * avg; |
1786 |
|
1787 |
if (bot < w && w < top |
1788 |
&& bot < l && l < top) { |
1789 |
/* It's sort of circular, replace it |
1790 |
* with a circular cylinder. */ |
1791 |
shp->warn = "makeshape: shape is a vertical elliptical cylinder, which is not supported.\nmakeshape: replaced with circular cylinder\n"; |
1792 |
makecylshape(shp, w, h); |
1793 |
} else { |
1794 |
shp->warn = "makeshape: shape is a vertical elliptical cylinder, which is not supported.\nmakeshape: replaced with box\n"; |
1795 |
makeboxshape(shp, w, l, h); |
1796 |
} |
1797 |
} |
1798 |
|
1799 |
void |
1800 |
shapearea(SRCINFO *shp) { |
1801 |
switch (shp->type) { |
1802 |
case RECT: |
1803 |
shp->area = shp->w * shp->l; |
1804 |
break; |
1805 |
case DISK: |
1806 |
case SPHERE: |
1807 |
shp->area = PI/4. * shp->w * shp->w; |
1808 |
break; |
1809 |
} |
1810 |
} |
1811 |
|
1812 |
/* Rectangular or box-shaped light source. |
1813 |
* |
1814 |
* putrectsrc, putsides, putrect, and putpoint are used to output the |
1815 |
* Radiance description of a box. The box is centered on the origin |
1816 |
* and has the dimensions given in the IES file. The coordinates |
1817 |
* range from [-1/2*length, -1/2*width, -1/2*height] to [1/2*length, |
1818 |
* 1/2*width, 1/2*height]. |
1819 |
* |
1820 |
* The location of the point is encoded in the low-order three bits of |
1821 |
* an integer. If the integer is p, then: bit 0 is (p & 1), |
1822 |
* representing length (x), bit 1 is (p & 2) representing width (y), |
1823 |
* and bit 2 is (p & 4), representing height (z). |
1824 |
* |
1825 |
* Looking down from above (towards -z), the vertices of the box or |
1826 |
* rectangle are numbered so: |
1827 |
* |
1828 |
* 2,6 3,7 |
1829 |
* +--------------------------------------+ |
1830 |
* | | |
1831 |
* | | |
1832 |
* | | |
1833 |
* | | |
1834 |
* +--------------------------------------+ |
1835 |
* 0,4 1,5 |
1836 |
* |
1837 |
* The higher number of each pair is above the x-y plane (positive z), |
1838 |
* the lower number is below the x-y plane (negative z.) |
1839 |
* |
1840 |
*/ |
1841 |
|
1842 |
/* putrecsrc - output a rectangle parallel to the x-y plane |
1843 |
* |
1844 |
* Putrecsrc calls out the vertices of a rectangle parallel to the x-y |
1845 |
* plane. The order of the vertices is different for the upper and |
1846 |
* lower rectangles of a box, since a right-hand rule based on the |
1847 |
* order of the vertices is used to determine the surface normal of |
1848 |
* the rectangle, and the surface normal determines the direction the |
1849 |
* light radiated by the rectangle. |
1850 |
* |
1851 |
*/ |
1852 |
void |
1853 |
putrectsrc( |
1854 |
SRCINFO *shp, |
1855 |
FILE *fp, |
1856 |
char *mod, |
1857 |
char *name, |
1858 |
int up |
1859 |
) |
1860 |
{ |
1861 |
if (up) |
1862 |
putrect(shp, fp, mod, name, ".u", 4, 5, 7, 6); |
1863 |
else |
1864 |
putrect(shp, fp, mod, name, ".d", 0, 2, 3, 1); |
1865 |
} |
1866 |
|
1867 |
/* putsides - put out sides of box */ |
1868 |
void |
1869 |
putsides( |
1870 |
SRCINFO *shp, |
1871 |
FILE *fp, |
1872 |
char *mod, |
1873 |
char *name |
1874 |
) |
1875 |
{ |
1876 |
putrect(shp, fp, mod, name, ".1", 0, 1, 5, 4); |
1877 |
putrect(shp, fp, mod, name, ".2", 1, 3, 7, 5); |
1878 |
putrect(shp, fp, mod, name, ".3", 3, 2, 6, 7); |
1879 |
putrect(shp, fp, mod, name, ".4", 2, 0, 4, 6); |
1880 |
} |
1881 |
|
1882 |
/* putrect - put out a rectangle |
1883 |
* |
1884 |
* putrect generates the "polygon" primitive which describes a |
1885 |
* rectangle. |
1886 |
*/ |
1887 |
void |
1888 |
putrect( |
1889 |
SRCINFO *shp, |
1890 |
FILE *fp, |
1891 |
char *mod, |
1892 |
char *name, |
1893 |
char *suffix, |
1894 |
int a, |
1895 |
int b, |
1896 |
int c, |
1897 |
int d |
1898 |
) |
1899 |
{ |
1900 |
fprintf(fp, "\n'%s' polygon '%s%s'\n0\n0\n12\n", mod, name, suffix); |
1901 |
putpoint(shp, fp, a); |
1902 |
putpoint(shp, fp, b); |
1903 |
putpoint(shp, fp, c); |
1904 |
putpoint(shp, fp, d); |
1905 |
} |
1906 |
|
1907 |
/* putpoint -- output a the coordinates of a vertex |
1908 |
* |
1909 |
* putpoint maps vertex numbers to coordinates and outputs the |
1910 |
* coordinates. |
1911 |
*/ |
1912 |
void |
1913 |
putpoint( |
1914 |
SRCINFO *shp, |
1915 |
FILE *fp, |
1916 |
int p |
1917 |
) |
1918 |
{ |
1919 |
static double mult[2] = {-.5, .5}; |
1920 |
|
1921 |
fprintf(fp, "\t%g\t%g\t%g\n", |
1922 |
mult[p&1]*shp->l*meters2out, |
1923 |
mult[p>>1&1]*shp->w*meters2out, |
1924 |
mult[p>>2]*shp->h*meters2out); |
1925 |
} |
1926 |
|
1927 |
/* End of routines to output a box-shaped light source */ |
1928 |
|
1929 |
/* Routines to output a cylindrical or disk shaped light source |
1930 |
* |
1931 |
* As with other shapes, the light source is centered on the origin. |
1932 |
* The "ring" and "cylinder" primitives are used. |
1933 |
* |
1934 |
*/ |
1935 |
void |
1936 |
putdisksrc( /* put out a disk source */ |
1937 |
SRCINFO *shp, |
1938 |
FILE *fp, |
1939 |
char *mod, |
1940 |
char *name, |
1941 |
int up |
1942 |
) |
1943 |
{ |
1944 |
if (up) { |
1945 |
fprintf(fp, "\n'%s' ring '%s.u'\n", mod, name); |
1946 |
fprintf(fp, "0\n0\n8\n"); |
1947 |
fprintf(fp, "\t0 0 %g\n", .5*shp->h*meters2out); |
1948 |
fprintf(fp, "\t0 0 1\n"); |
1949 |
fprintf(fp, "\t0 %g\n", .5*shp->w*meters2out); |
1950 |
} else { |
1951 |
fprintf(fp, "\n'%s' ring '%s.d'\n", mod, name); |
1952 |
fprintf(fp, "0\n0\n8\n"); |
1953 |
fprintf(fp, "\t0 0 %g\n", -.5*shp->h*meters2out); |
1954 |
fprintf(fp, "\t0 0 -1\n"); |
1955 |
fprintf(fp, "\t0 %g\n", .5*shp->w*meters2out); |
1956 |
} |
1957 |
} |
1958 |
|
1959 |
|
1960 |
void |
1961 |
putcyl( /* put out a cylinder */ |
1962 |
SRCINFO *shp, |
1963 |
FILE *fp, |
1964 |
char *mod, |
1965 |
char *name |
1966 |
) |
1967 |
{ |
1968 |
fprintf(fp, "\n'%s' cylinder '%s.c'\n", mod, name); |
1969 |
fprintf(fp, "0\n0\n7\n"); |
1970 |
fprintf(fp, "\t0 0 %g\n", .5*shp->h*meters2out); |
1971 |
fprintf(fp, "\t0 0 %g\n", -.5*shp->h*meters2out); |
1972 |
fprintf(fp, "\t%g\n", .5*shp->w*meters2out); |
1973 |
} |
1974 |
|
1975 |
/* end of of routines to output cylinders and disks */ |
1976 |
|
1977 |
void |
1978 |
putspheresrc( /* put out a sphere source */ |
1979 |
SRCINFO *shp, |
1980 |
FILE *fp, |
1981 |
char *mod, |
1982 |
char *name |
1983 |
) |
1984 |
{ |
1985 |
fprintf(fp, "\n'%s' sphere '%s.s'\n", mod, name); |
1986 |
fprintf(fp, "0\n0\n4 0 0 0 %g\n", .5*shp->w*meters2out); |
1987 |
} |
1988 |
|
1989 |
/* cvdata - convert LM-63 tilt and candela data to Radiance brightdata format |
1990 |
* |
1991 |
* The files created by this routine are intended for use with the Radiance |
1992 |
* "brightdata" material type. |
1993 |
* |
1994 |
* Two types of data are converted; one-dimensional tilt data, which |
1995 |
* is given in polar coordinates, and two-dimensional candela data, |
1996 |
* which is given in spherical co-ordinates. |
1997 |
* |
1998 |
* Return 0 for success, -1 for failure. |
1999 |
* |
2000 |
*/ |
2001 |
int |
2002 |
cvdata( |
2003 |
FILE *in, /* Input file */ |
2004 |
FILE *out, /* Output file */ |
2005 |
int ndim, /* Number of dimensions; 1 for |
2006 |
* tilt data, 2 for photometric data. */ |
2007 |
int npts[], /* Number of points in each dimension */ |
2008 |
double mult, /* Multiple each value by this |
2009 |
* number. For tilt data, always |
2010 |
* 1. For candela values, the |
2011 |
* efficacy of white Radiance light. */ |
2012 |
double lim[][2] /* The range of angles in each dimension. */ |
2013 |
) |
2014 |
{ |
2015 |
double *pt[4]; /* Four is the expected maximum of ndim. */ |
2016 |
int i, j; |
2017 |
double val; |
2018 |
int total; |
2019 |
|
2020 |
/* Calculate and output the number of data values */ |
2021 |
total = 1; j = 0; |
2022 |
for (i = 0; i < ndim; i++) |
2023 |
if (npts[i] > 1) { |
2024 |
total *= npts[i]; |
2025 |
j++; |
2026 |
} |
2027 |
fprintf(out, "%d\n", j); |
2028 |
|
2029 |
/* Read in the angle values, and note the first and last in |
2030 |
* each dimension, if there is a place to store them. In the |
2031 |
* case of tilt data, there is only one list of angles. In the |
2032 |
* case of candela values, vertical angles appear first, and |
2033 |
* horizontal angles occur second. */ |
2034 |
for (i = 0; i < ndim; i++) { |
2035 |
/* Allocate space for the angle values. */ |
2036 |
pt[i] = (double *)malloc(npts[i]*sizeof(double)); |
2037 |
for (j = 0; j < npts[i]; j++) |
2038 |
if (!scnflt(in, &pt[i][j])) |
2039 |
return(-1); |
2040 |
if (lim != NULL) { |
2041 |
lim[i][0] = pt[i][0]; |
2042 |
lim[i][1] = pt[i][npts[i]-1]; |
2043 |
} |
2044 |
} |
2045 |
|
2046 |
/* Output the angles. If this is candela data, horizontal |
2047 |
* angles output first. There are two cases: the first where |
2048 |
* the angles are evenly spaced, the second where they are |
2049 |
* not. |
2050 |
* |
2051 |
* When the angles are evenly spaced, three numbers are |
2052 |
* output: the first angle, the last angle, and the number of |
2053 |
* angles. When the angles are not evenly spaced, instead |
2054 |
* zero, zero, and the count of angles is given, followed by a |
2055 |
* list of angles. In this case, angles are output four to a line. |
2056 |
*/ |
2057 |
for (i = ndim-1; i >= 0; i--) { |
2058 |
if (npts[i] > 1) { |
2059 |
/* Determine if the angles are evenly spaces */ |
2060 |
for (j = 1; j < npts[i]-1; j++) |
2061 |
if (!FEQ(pt[i][j]-pt[i][j-1], |
2062 |
pt[i][j+1]-pt[i][j])) |
2063 |
break; |
2064 |
/* If they are, output the first angle, the |
2065 |
* last angle, and a count */ |
2066 |
if (j == npts[i]-1) |
2067 |
fprintf(out, "%g %g %d\n", pt[i][0], pt[i][j], |
2068 |
npts[i]); |
2069 |
else { |
2070 |
/* otherwise, output 0, 0, and a |
2071 |
* count, followed by the list of |
2072 |
* angles, one to a line. */ |
2073 |
fprintf(out, "0 0 %d", npts[i]); |
2074 |
for (j = 0; j < npts[i]; j++) { |
2075 |
if (j%4 == 0) |
2076 |
putc('\n', out); |
2077 |
fprintf(out, "\t%g", pt[i][j]); |
2078 |
} |
2079 |
putc('\n', out); |
2080 |
} |
2081 |
} |
2082 |
/* Free the storage containing the angle values. */ |
2083 |
free((void *)pt[i]); |
2084 |
} |
2085 |
|
2086 |
/* Finally, read in the data values (candela or multiplier values, |
2087 |
* depending on the part of the file) and output them four to |
2088 |
* a line. */ |
2089 |
for (i = 0; i < total; i++) { |
2090 |
if (i%4 == 0) |
2091 |
putc('\n', out); |
2092 |
if (!scnflt(in, &val)) |
2093 |
return(-1); |
2094 |
fprintf(out, "\t%g", val*mult); |
2095 |
} |
2096 |
putc('\n', out); |
2097 |
return(0); |
2098 |
} |
2099 |
|
2100 |
/* getword - get an LM-63 delimited word from fp |
2101 |
* |
2102 |
* Getword gets a word from an IES file delimited by either white |
2103 |
* space or a comma surrounded by white space. A pointer to the word |
2104 |
* is returned, which will persist only until getword is called again. |
2105 |
* At EOF, return NULL instead. |
2106 |
* |
2107 |
*/ |
2108 |
char * |
2109 |
getword( /* scan a word from fp */ |
2110 |
FILE *fp |
2111 |
) |
2112 |
{ |
2113 |
static char wrd[RMAXWORD]; |
2114 |
char *cp; |
2115 |
int c; |
2116 |
|
2117 |
/* Skip initial spaces */ |
2118 |
while (isspace(c=getc(fp))) |
2119 |
; |
2120 |
/* Get characters to a delimiter or until wrd is full */ |
2121 |
for (cp = wrd; c != EOF && cp < wrd+RMAXWORD-1; |
2122 |
*cp++ = c, c = getc(fp)) |
2123 |
if (isspace(c) || c == ',') { |
2124 |
/* If we find a delimiter */ |
2125 |
/* Gobble up whitespace */ |
2126 |
while (isspace(c)) |
2127 |
c = getc(fp); |
2128 |
/* If it's not a comma, put the first |
2129 |
* character of the next data item back */ |
2130 |
if ((c != EOF) & (c != ',')) |
2131 |
ungetc(c, fp); |
2132 |
/* Close out the strimg */ |
2133 |
*cp = '\0'; |
2134 |
/* return it */ |
2135 |
return(wrd); |
2136 |
} |
2137 |
/* If we ran out of space or are at the end of the file, |
2138 |
* return either the word or NULL, as appropriate. */ |
2139 |
*cp = '\0'; |
2140 |
return(cp > wrd ? wrd : NULL); |
2141 |
} |
2142 |
|
2143 |
/* cvtint - convert an IES word to an integer |
2144 |
* |
2145 |
* A pointer to the word is passed in wrd; ip is expected to point to |
2146 |
* an integer. cvtint() will silently truncate a floating point value |
2147 |
* to an integer; "1", "1.0", and "1.5" will all return 1. |
2148 |
* |
2149 |
* cvtint() returns 0 if it fails, 1 if it succeeds. |
2150 |
*/ |
2151 |
int |
2152 |
cvtint( |
2153 |
int *ip, |
2154 |
char *wrd |
2155 |
) |
2156 |
{ |
2157 |
if (wrd == NULL || !isint(wrd)) |
2158 |
return(0); |
2159 |
*ip = atoi(wrd); |
2160 |
return(1); |
2161 |
} |
2162 |
|
2163 |
|
2164 |
/* cvtflt - convert an IES word to a double precision floating-point number |
2165 |
* |
2166 |
* A pointer to the word is passed in wrd; rp is expected to point to |
2167 |
* a double. |
2168 |
* |
2169 |
* cvtflt returns 0 if it fails, 1 if it succeeds. |
2170 |
*/ |
2171 |
int |
2172 |
cvtflt( |
2173 |
double *rp, |
2174 |
char *wrd |
2175 |
) |
2176 |
{ |
2177 |
if (wrd == NULL || !isflt(wrd)) |
2178 |
return(0); |
2179 |
*rp = atof(wrd); |
2180 |
return(1); |
2181 |
} |
2182 |
|
2183 |
/* cvgeometry - process materials and geometry format luminaire data |
2184 |
* |
2185 |
* The materials and geometry format (MGF) for describing luminaires |
2186 |
* was a part of Radiance that was first adopted and then retracted by |
2187 |
* the IES as part of LM-63. It provides a way of describing |
2188 |
* luminaire geometry similar to the Radiance scene description |
2189 |
* format. |
2190 |
* |
2191 |
* cvgeometry() generates an mgf2rad command and then, if "-g" is given |
2192 |
* on the command line, an oconv command, both of which are then |
2193 |
* executed with the system() function. |
2194 |
* |
2195 |
* The generated commands are: |
2196 |
* mgf2rad -e <multiplier> -g <size> <mgf_filename> \ |
2197 |
* | xform -s <scale_factor> \ |
2198 |
* >> <luminare_scene_description_file |
2199 |
* or: |
2200 |
* mgf2rad -e <multiplier> -g <size> <mgf_filename> \ |
2201 |
* oconv - > <instance_filename> |
2202 |
*/ |
2203 |
int |
2204 |
cvgeometry( |
2205 |
char *inpname, |
2206 |
SRCINFO *sinf, |
2207 |
char *outname, |
2208 |
FILE *outfp /* close output file upon return */ |
2209 |
) |
2210 |
{ |
2211 |
char buf[256]; |
2212 |
char *cp; |
2213 |
|
2214 |
if (inpname == NULL || !inpname[0]) { /* no geometry file */ |
2215 |
fclose(outfp); |
2216 |
return(0); |
2217 |
} |
2218 |
putc('\n', outfp); |
2219 |
strcpy(buf, "mgf2rad "); /* build mgf2rad command */ |
2220 |
cp = buf+8; |
2221 |
if (!FEQ(sinf->mult, 1.0)) { |
2222 |
/* if there's an output multiplier, include in the |
2223 |
* mgf2rad command */ |
2224 |
sprintf(cp, "-e %f ", sinf->mult); |
2225 |
cp += strlen(cp); |
2226 |
} |
2227 |
/* Include the glow distance for the geometry */ |
2228 |
sprintf(cp, "-g %f %s ", |
2229 |
sqrt(sinf->w*sinf->w + sinf->h*sinf->h + sinf->l*sinf->l), |
2230 |
inpname); |
2231 |
cp += strlen(cp); |
2232 |
if (instantiate) { /* instantiate octree */ |
2233 |
/* If "-g" is given on the command line, include an |
2234 |
* "oconv" command in the pipe. */ |
2235 |
strcpy(cp, "| oconv - > "); |
2236 |
cp += 12; |
2237 |
fullnam(cp,outname,T_OCT); |
2238 |
/* Only update if the input file is newer than the |
2239 |
* output file */ |
2240 |
if (fdate(inpname) > fdate(outname) && |
2241 |
system(buf)) { /* create octree */ |
2242 |
fclose(outfp); |
2243 |
return(-1); |
2244 |
} |
2245 |
/* Reference the instance file in the scene description */ |
2246 |
fprintf(outfp, "void instance %s_inst\n", outname); |
2247 |
/* If the geometry isn't in meters, scale it appropriately. */ |
2248 |
if (!FEQ(meters2out, 1.0)) |
2249 |
fprintf(outfp, "3 %s -s %f\n", |
2250 |
libname(buf,outname,T_OCT), |
2251 |
meters2out); |
2252 |
else |
2253 |
fprintf(outfp, "1 %s\n", libname(buf,outname,T_OCT)); |
2254 |
/* Close off the "instance" primitive. */ |
2255 |
fprintf(outfp, "0\n0\n"); |
2256 |
/* And the Radiance scene description. */ |
2257 |
fclose(outfp); |
2258 |
} else { /* else append to luminaire file */ |
2259 |
if (!FEQ(meters2out, 1.0)) { /* apply scalefactor */ |
2260 |
sprintf(cp, "| xform -s %f ", meters2out); |
2261 |
cp += strlen(cp); |
2262 |
} |
2263 |
if (!out2stdout) { |
2264 |
fclose(outfp); |
2265 |
strcpy(cp, ">> "); /* append works for DOS? */ |
2266 |
cp += 3; |
2267 |
fullnam(cp,outname,T_RAD); |
2268 |
} |
2269 |
if (system(buf)) |
2270 |
return(-1); |
2271 |
} |
2272 |
return(0); |
2273 |
} |
2274 |
|
2275 |
/* Set up emacs indentation */ |
2276 |
/* Local Variables: */ |
2277 |
/* c-file-style: "bsd" */ |
2278 |
/* End: */ |
2279 |
|
2280 |
/* For vim, use ":set tabstop=8 shiftwidth=8" */ |