| 1 | #ifndef lint | 
| 2 | static const char       RCSid[] = "$Id: ies2rad.c,v 2.31 2018/06/05 16:04:00 greg Exp $"; | 
| 3 | #endif | 
| 4 | /* | 
| 5 | * ies2rad -- Convert IES luminaire data to Radiance description | 
| 6 | * | 
| 7 | * ies2rad converts an IES LM-63 luminare description to a Radiance | 
| 8 | * luminaire description.  In addition, ies2rad manages a local | 
| 9 | * database of Radiance luminaire files. | 
| 10 | * | 
| 11 | * Ies2rad generates two or three files for each luminaire. For a | 
| 12 | * luminaire named LUM, ies2rad will generate LUM.rad, a Radiance | 
| 13 | * scene description file which describes the light source, LUM.dat, | 
| 14 | * which contains the photometric data from the IES LM-63 file, and | 
| 15 | * (if tilt data is provided) LUM%.dat, which contains the tilt data | 
| 16 | * from the IES file. | 
| 17 | * | 
| 18 | * Ies2rad is supported by the Radiance function files source.cal and | 
| 19 | * tilt.cal, which transform the coordinates in the IES data into | 
| 20 | * Radiance (θ,φ) luminaire coordinates and then apply photometric and | 
| 21 | * tilt data to generate Radiance light. θ is altitude from the | 
| 22 | * negative z-axis and φ is azimuth from the positive x-axis, | 
| 23 | * increasing towards the positive y-axis. This system matches none of | 
| 24 | * the usual goniophotometric conventions, but it is closest to IES | 
| 25 | * type C; V in type C photometry is θ in Radiance and L is -φ. | 
| 26 | * | 
| 27 | * The ies2rad scene description for a luminaire LUM, with tilt data, | 
| 28 | * uses the following Radiance scene description primitives: | 
| 29 | * | 
| 30 | *     void brightdata LUM_tilt | 
| 31 | *     … | 
| 32 | *     LUM_tilt brightdata LUM_dist | 
| 33 | *     … | 
| 34 | *     LUM_dist light LUM_light | 
| 35 | *     … | 
| 36 | *     LUM_light surface1 name1 | 
| 37 | *     … | 
| 38 | *     LUM_light surface2 name2 | 
| 39 | *     … | 
| 40 | *     LUM_light surface_n name_n | 
| 41 | * | 
| 42 | * Without tilt data, the primitives are: | 
| 43 | * | 
| 44 | *     void brightdata LUM_dist | 
| 45 | *     … | 
| 46 | *     LUM_dist light LUM_light | 
| 47 | *     … | 
| 48 | *     LUM_light surface1 name1 | 
| 49 | *     … | 
| 50 | *     LUM_light surface2 name2 | 
| 51 | *     … | 
| 52 | *     LUM_light surface_n name_n | 
| 53 | * | 
| 54 | * As many surfaces are given as required to describe the light | 
| 55 | * source. Illum may be used rather than light so that a visible form | 
| 56 | * (impostor) may be given to the luminaire, rather than a simple | 
| 57 | * glowing shape. If an impostor is provided, it must be wholly | 
| 58 | * contained within the illum and if it provides impostor light | 
| 59 | * sources, those must be given with glow, so that they do not | 
| 60 | * themselves illuminate the scene, providing incorrect results. | 
| 61 | * | 
| 62 | * The ies2rad code uses the "bsd" style. For emacs, this is set up | 
| 63 | * automatically in the "Local Variables" section at the end of the | 
| 64 | * file. For vim, use ":set tabstop=8 shiftwidth=8". | 
| 65 | * | 
| 66 | *      07Apr90         Greg Ward | 
| 67 | * | 
| 68 | *  Fixed correction factor for flat sources 29Oct2001 GW | 
| 69 | *  Extensive comments added by Randolph Fritz May2018 | 
| 70 | */ | 
| 71 |  | 
| 72 | #include <math.h> | 
| 73 | #include <ctype.h> | 
| 74 |  | 
| 75 | #include "rtio.h" | 
| 76 | #include "color.h" | 
| 77 | #include "paths.h" | 
| 78 |  | 
| 79 | #define PI              3.14159265358979323846 | 
| 80 |  | 
| 81 | /* floating comparisons -- floating point numbers within FTINY of each | 
| 82 | * other are considered equal */ | 
| 83 | #define FTINY           1e-6 | 
| 84 | #define FEQ(a,b)        ((a)<=(b)+FTINY&&(a)>=(b)-FTINY) | 
| 85 |  | 
| 86 |  | 
| 87 | /* IESNA LM-63 keywords and constants */ | 
| 88 | /* Since 1991, LM-63 files have begun with the magic keyword IESNA */ | 
| 89 | #define MAGICID         "IESNA" | 
| 90 | #define LMAGICID        5 | 
| 91 | /* But newer files start with IESNA:LM-63- */ | 
| 92 | #define MAGICID2        "IESNA:LM-63-" | 
| 93 | #define LMAGICID2       12 | 
| 94 | /* ies2rad supports the 1986, 1991, and 1995 versions of | 
| 95 | * LM-63. FIRSTREV describes the first version; LASTREV describes the | 
| 96 | * 1995 version. */ | 
| 97 | #define FIRSTREV        86 | 
| 98 | #define LASTREV         95 | 
| 99 |  | 
| 100 | /* The following definitions support LM-63 file keyword reading and | 
| 101 | * analysis. | 
| 102 | * | 
| 103 | * This section defines two function-like macros: keymatch(i,s), which | 
| 104 | * checks to see if keyword i matches string s, and checklamp(s), | 
| 105 | * which checks to see if a string matches the keywords "LAMP" or | 
| 106 | * "LAMPCAT". | 
| 107 | * | 
| 108 | * LM-63-1986 files begin with a list of free-form label lines. | 
| 109 | * LM-63-1991 files begin with the identifying line "IESNA91" followed | 
| 110 | * by a list of formatted keywords.  LM-63-1995 files begin with the | 
| 111 | * identifying line "IESNA:LM-63-1995" followed by a list of formatted | 
| 112 | * keywords. | 
| 113 | * | 
| 114 | * The K_* #defines enumerate the keywords used in the different | 
| 115 | * versions of the file and give them symbolic names. | 
| 116 | * | 
| 117 | * The D86, D91, and D95 #defines validate the keywords in the 1986, | 
| 118 | * 1991, and 1995 versions of the standard, one bit per keyword. | 
| 119 | * Since the 1986 standard does not use keywords, D86 is zero.  The | 
| 120 | * 1991 standard has 13 keywords, and D91 has the lower 13 bits set. | 
| 121 | * The 1995 standard has 14 keywords, and D95 has the lower 14 bits | 
| 122 | * set. | 
| 123 | * | 
| 124 | */ | 
| 125 | #define D86             0 | 
| 126 |  | 
| 127 | #define K_TST           0 | 
| 128 | #define K_MAN           1 | 
| 129 | #define K_LMC           2 | 
| 130 | #define K_LMN           3 | 
| 131 | #define K_LPC           4 | 
| 132 | #define K_LMP           5 | 
| 133 | #define K_BAL           6 | 
| 134 | #define K_MTC           7 | 
| 135 | #define K_OTH           8 | 
| 136 | #define K_SCH           9 | 
| 137 | #define K_MOR           10 | 
| 138 | #define K_BLK           11 | 
| 139 | #define K_EBK           12 | 
| 140 |  | 
| 141 | /* keywords defined in LM-63-1991 */ | 
| 142 | #define D91             ((1L<<13)-1) | 
| 143 |  | 
| 144 | #define K_LMG           13 | 
| 145 |  | 
| 146 | /* keywords defined in LM-63-1995 */ | 
| 147 | #define D95             ((1L<<14)-1) | 
| 148 |  | 
| 149 | char    k_kwd[][20] = {"TEST", "MANUFAC", "LUMCAT", "LUMINAIRE", "LAMPCAT", | 
| 150 | "LAMP", "BALLAST", "MAINTCAT", "OTHER", "SEARCH", | 
| 151 | "MORE", "BLOCK", "ENDBLOCK", "LUMINOUSGEOMETRY"}; | 
| 152 |  | 
| 153 | long k_defined[] = {D86, D86, D86, D86, D86, D91, D91, D91, D91, D95}; | 
| 154 |  | 
| 155 | int     filerev = FIRSTREV; | 
| 156 |  | 
| 157 | #define keymatch(i,s)   (k_defined[filerev-FIRSTREV]&1L<<(i) &&\ | 
| 158 | k_match(k_kwd[i],s)) | 
| 159 |  | 
| 160 | #define checklamp(s)    (!(k_defined[filerev-FIRSTREV]&(1<<K_LMP|1<<K_LPC)) ||\ | 
| 161 | keymatch(K_LMP,s) || keymatch(K_LPC,s)) | 
| 162 |  | 
| 163 | /* tilt specs | 
| 164 | * | 
| 165 | * This next series of definitions address metal-halide lamps, which | 
| 166 | * change their brightness depending on the angle at which they are | 
| 167 | * mounted. The section begins with "TILT=".  The constants in this | 
| 168 | * section are all defined in LM-63. | 
| 169 | * | 
| 170 | */ | 
| 171 |  | 
| 172 | #define TLTSTR          "TILT=" | 
| 173 | #define TLTSTRLEN       5 | 
| 174 | #define TLTNONE         "NONE" | 
| 175 | #define TLTINCL         "INCLUDE" | 
| 176 | #define TLT_VERT        1 | 
| 177 | #define TLT_H0          2 | 
| 178 | #define TLT_H90         3 | 
| 179 |  | 
| 180 | /* Constants from LM-63 files */ | 
| 181 |  | 
| 182 | /* photometric types | 
| 183 | * | 
| 184 | * This enumeration reflects three different methods of measuring the | 
| 185 | * distribution of light from a luminaire -- "goniophotometry" -- and | 
| 186 | * the different coordinate systems related to these | 
| 187 | * goniophotometers.  All are described in IES standard LM-75-01. | 
| 188 | * Earlier and shorter descriptions may be found the LM-63 standards | 
| 189 | * from 1986, 1991, and 1995. | 
| 190 | * | 
| 191 | * ies2rad does not support type A photometry. | 
| 192 | * | 
| 193 | * In the 1986 file format, LM-63-86, 1 is used for type C and type A | 
| 194 | * photometric data. | 
| 195 | * | 
| 196 | */ | 
| 197 | #define PM_C            1 | 
| 198 | #define PM_B            2 | 
| 199 | #define PM_A            3 | 
| 200 |  | 
| 201 | /* unit types */ | 
| 202 | #define U_FEET          1 | 
| 203 | #define U_METERS        2 | 
| 204 |  | 
| 205 | /* string lengths */ | 
| 206 | /* Maximum input line is 256 characters including CR LF at end. */ | 
| 207 | #define MAXLINE         257 | 
| 208 | #define RMAXWORD        76 | 
| 209 |  | 
| 210 | /* End of LM-63-related #defines */ | 
| 211 |  | 
| 212 | /* file extensions */ | 
| 213 | #define T_RAD           ".rad" | 
| 214 | #define T_DST           ".dat" | 
| 215 | #define T_TLT           "%.dat" | 
| 216 | #define T_OCT           ".oct" | 
| 217 |  | 
| 218 | /* shape types | 
| 219 | * These #defines enumerate the shapes of the Radiance objects which | 
| 220 | * emit the light. | 
| 221 | */ | 
| 222 | #define RECT            1 | 
| 223 | #define DISK            2 | 
| 224 | #define SPHERE          3 | 
| 225 |  | 
| 226 | /* The diameter of a point source luminaire model. Also the minimum | 
| 227 | * size (in meters) that the luminous opening of a luminaire must have | 
| 228 | * to be treated as other than a point source. */ | 
| 229 | #define MINDIM          .001 | 
| 230 |  | 
| 231 | /* feet to meters */ | 
| 232 | /* length_in_meters = length_in_feet * F_M */ | 
| 233 | #define F_M             .3048 | 
| 234 |  | 
| 235 | /* abspath - return true if a path begins with a directory separator | 
| 236 | * or a '.' (current directory) */ | 
| 237 | #define abspath(p)      (ISDIRSEP((p)[0]) || (p)[0] == '.') | 
| 238 |  | 
| 239 | /* Global variables. | 
| 240 | * | 
| 241 | * Mostly, these are a way of communicating command line parameters to | 
| 242 | * the rest of the program. | 
| 243 | */ | 
| 244 | static char     default_name[] = "default"; | 
| 245 |  | 
| 246 | char    *libdir = NULL;                 /* library directory location */ | 
| 247 | char    *prefdir = NULL;                /* subdirectory */ | 
| 248 | char    *lampdat = "lamp.tab";          /* lamp data file */ | 
| 249 |  | 
| 250 | double  meters2out = 1.0;               /* conversion from meters to output */ | 
| 251 | char    *lamptype = NULL;               /* selected lamp type */ | 
| 252 | char    *deflamp = NULL;                /* default lamp type */ | 
| 253 | float   defcolor[3] = {1.,1.,1.};       /* default lamp color */ | 
| 254 | float   *lampcolor = defcolor;          /* pointer to current lamp color */ | 
| 255 | double  multiplier = 1.0;               /* multiplier for all light sources */ | 
| 256 | char    units[64] = "meters";           /* output units */ | 
| 257 | int     out2stdout = 0;                 /* put out to stdout r.t. file */ | 
| 258 | int     instantiate = 0;                /* instantiate geometry */ | 
| 259 | double  illumrad = 0.0;                 /* radius for illum sphere */ | 
| 260 |  | 
| 261 | /* This struct describes the Radiance source object */ | 
| 262 | typedef struct { | 
| 263 | int     isillum;                        /* do as illum */ | 
| 264 | int     type;                           /* RECT, DISK, SPHERE */ | 
| 265 | double  mult;                           /* candela multiplier */ | 
| 266 | double  w, l, h;                        /* width, length, height */ | 
| 267 | double  area;                           /* max. projected area */ | 
| 268 | } SRCINFO;                              /* a source shape (units=meters) */ | 
| 269 |  | 
| 270 | /* A count and pointer to the list of input file names */ | 
| 271 | int     gargc;                          /* global argc */ | 
| 272 | char    **gargv;                        /* global argv */ | 
| 273 |  | 
| 274 | /* macros to scan numbers out of IES files | 
| 275 | * | 
| 276 | * fp is a file pointer.  scnint() places the number in the integer | 
| 277 | * indicated by ip; scnflt() places the number in the double indicated | 
| 278 | * by rp. The macros return 1 if successful, 0 if not. | 
| 279 | * | 
| 280 | */ | 
| 281 | #define scnint(fp,ip)   cvtint(ip,getword(fp)) | 
| 282 | #define scnflt(fp,rp)   cvtflt(rp,getword(fp)) | 
| 283 |  | 
| 284 | /* The original (1986) version of LM-63 allows decimals points in | 
| 285 | * integers, so that, for instance, the number of lamps may be written | 
| 286 | * 3.0 (the number, obviously, must still be an integer.) This | 
| 287 | * confusing define accommodates that.  */ | 
| 288 | #define isint           isflt | 
| 289 |  | 
| 290 | /* Function declarations */ | 
| 291 | static int ies2rad(char *inpname, char *outname); | 
| 292 | static void initlamps(void); | 
| 293 | static int dosource(SRCINFO *sinf, FILE *in, FILE *out, char *mod, char *name); | 
| 294 | static int dotilt(FILE *in, FILE *out, char *dir, char *tltspec, | 
| 295 | char *dfltname, char *tltid); | 
| 296 | static int cvgeometry(char *inpname, SRCINFO *sinf, char *outname, FILE *outfp); | 
| 297 | static int cvtint(int *ip, char *wrd); | 
| 298 | static int cvdata(FILE *in, FILE *out, int ndim, int npts[], double mult, | 
| 299 | double lim[][2]); | 
| 300 | static int cvtflt(double *rp, char *wrd); | 
| 301 | static int makeshape(SRCINFO *shp, double width, double length, double height); | 
| 302 | static int putsource(SRCINFO *shp, FILE *fp, char *mod, char *name, | 
| 303 | int dolower, int doupper, int dosides); | 
| 304 | static void putrectsrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up); | 
| 305 | static void putsides(SRCINFO *shp, FILE *fp, char *mod, char *name); | 
| 306 | static void putdisksrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up); | 
| 307 | static void putspheresrc(SRCINFO *shp, FILE *fp, char *mod, char *name); | 
| 308 | static void putrect(SRCINFO *shp, FILE *fp, char *mod, char *name, char *suffix, | 
| 309 | int a, int b, int c, int d); | 
| 310 | static void putpoint(SRCINFO *shp, FILE *fp, int p); | 
| 311 | static void putcyl(SRCINFO *shp, FILE *fp, char *mod, char *name); | 
| 312 | static char * tailtrunc(char *name); | 
| 313 | static char * filename(char *path); | 
| 314 | static char * libname(char *path, char *fname, char *suffix); | 
| 315 | static char * getword(FILE *fp); | 
| 316 | static char * fullnam(char *path, char *fname, char *suffix); | 
| 317 |  | 
| 318 | /* main - process arguments and run the conversion | 
| 319 | * | 
| 320 | * Refer to the man page for details of the arguments. | 
| 321 | * | 
| 322 | * Following Unix environment conventions, main() exits with 0 on | 
| 323 | * success and 1 on failure. | 
| 324 | * | 
| 325 | * ies2rad outputs either two or three files for a given IES | 
| 326 | * file. There is always a .rad file containing Radiance scene | 
| 327 | * description primitives and a .dat file for the photometric data. If | 
| 328 | * tilt data is given, that is placed in a separate .dat file.  So | 
| 329 | * ies2rad must have a filename to operate. Sometimes this name is the | 
| 330 | * input file name, shorn of its extension; sometimes it is given in | 
| 331 | * the -o option. But an output file name is required for ies2rad to | 
| 332 | * do its work. | 
| 333 | * | 
| 334 | * Older versions of the LM-63 standard allowed inclusion of multiple | 
| 335 | * luminaires in one IES file; this is not supported by ies2rad. | 
| 336 | * | 
| 337 | * This code sometimes does not check to make sure it has not run out | 
| 338 | * of arguments; this can lead to segmentation faults and perhaps | 
| 339 | * other errors. | 
| 340 | * | 
| 341 | */ | 
| 342 | int | 
| 343 | main( | 
| 344 | int     argc, | 
| 345 | char    *argv[] | 
| 346 | ) | 
| 347 | { | 
| 348 | char    *outfile = NULL; | 
| 349 | int     status; | 
| 350 | char    outname[RMAXWORD]; | 
| 351 | double  d1; | 
| 352 | int     i; | 
| 353 |  | 
| 354 | /* Scan the options */ | 
| 355 | for (i = 1; i < argc && argv[i][0] == '-'; i++) | 
| 356 | switch (argv[i][1]) { | 
| 357 | case 'd':               /* dimensions */ | 
| 358 | if (argv[i][2] == '\0') | 
| 359 | goto badopt; | 
| 360 | if (argv[i][3] == '\0') | 
| 361 | d1 = 1.0; | 
| 362 | else if (argv[i][3] == '/') { | 
| 363 | d1 = atof(argv[i]+4); | 
| 364 | if (d1 <= FTINY) | 
| 365 | goto badopt; | 
| 366 | } else | 
| 367 | goto badopt; | 
| 368 | switch (argv[i][2]) { | 
| 369 | case 'c':               /* centimeters */ | 
| 370 | if (FEQ(d1,10.)) | 
| 371 | strcpy(units,"millimeters"); | 
| 372 | else { | 
| 373 | strcpy(units,"centimeters"); | 
| 374 | strcat(units,argv[i]+3); | 
| 375 | } | 
| 376 | meters2out = 100.*d1; | 
| 377 | break; | 
| 378 | case 'm':               /* meters */ | 
| 379 | if (FEQ(d1,1000.)) | 
| 380 | strcpy(units,"millimeters"); | 
| 381 | else if (FEQ(d1,100.)) | 
| 382 | strcpy(units,"centimeters"); | 
| 383 | else { | 
| 384 | strcpy(units,"meters"); | 
| 385 | strcat(units,argv[i]+3); | 
| 386 | } | 
| 387 | meters2out = d1; | 
| 388 | break; | 
| 389 | case 'i':               /* inches */ | 
| 390 | strcpy(units,"inches"); | 
| 391 | strcat(units,argv[i]+3); | 
| 392 | meters2out = d1*(12./F_M); | 
| 393 | break; | 
| 394 | case 'f':               /* feet */ | 
| 395 | if (FEQ(d1,12.)) | 
| 396 | strcpy(units,"inches"); | 
| 397 | else { | 
| 398 | strcpy(units,"feet"); | 
| 399 | strcat(units,argv[i]+3); | 
| 400 | } | 
| 401 | meters2out = d1/F_M; | 
| 402 | break; | 
| 403 | default: | 
| 404 | goto badopt; | 
| 405 | } | 
| 406 | break; | 
| 407 | case 'l':               /* library directory */ | 
| 408 | libdir = argv[++i]; | 
| 409 | break; | 
| 410 | case 'p':               /* prefix subdirectory */ | 
| 411 | prefdir = argv[++i]; | 
| 412 | break; | 
| 413 | case 'f':               /* lamp data file */ | 
| 414 | lampdat = argv[++i]; | 
| 415 | break; | 
| 416 | case 'o':               /* output file root name */ | 
| 417 | outfile = argv[++i]; | 
| 418 | break; | 
| 419 | case 's':               /* output to stdout */ | 
| 420 | out2stdout = !out2stdout; | 
| 421 | break; | 
| 422 | case 'i':               /* illum */ | 
| 423 | illumrad = atof(argv[++i]); | 
| 424 | break; | 
| 425 | case 'g':               /* instantiate geometry? */ | 
| 426 | instantiate = !instantiate; | 
| 427 | break; | 
| 428 | case 't':               /* override lamp type */ | 
| 429 | lamptype = argv[++i]; | 
| 430 | break; | 
| 431 | case 'u':               /* default lamp type */ | 
| 432 | deflamp = argv[++i]; | 
| 433 | break; | 
| 434 | case 'c':               /* default lamp color */ | 
| 435 | defcolor[0] = atof(argv[++i]); | 
| 436 | defcolor[1] = atof(argv[++i]); | 
| 437 | defcolor[2] = atof(argv[++i]); | 
| 438 | break; | 
| 439 | case 'm':               /* multiplier */ | 
| 440 | multiplier = atof(argv[++i]); | 
| 441 | break; | 
| 442 | default: | 
| 443 | badopt: | 
| 444 | fprintf(stderr, "%s: bad option: %s\n", | 
| 445 | argv[0], argv[i]); | 
| 446 | exit(1); | 
| 447 | } | 
| 448 | /* Save pointers to the list of input file names */ | 
| 449 | gargc = i; | 
| 450 | gargv = argv; | 
| 451 |  | 
| 452 | /* get lamp data (if needed) */ | 
| 453 | initlamps(); | 
| 454 |  | 
| 455 | /* convert ies file(s) */ | 
| 456 | /* If an output file name is specified */ | 
| 457 | if (outfile != NULL) { | 
| 458 | if (i == argc) | 
| 459 | /* If no input filename is given, use stdin as | 
| 460 | * the source for the IES file */ | 
| 461 | exit(ies2rad(NULL, outfile) == 0 ? 0 : 1); | 
| 462 | else if (i == argc-1) | 
| 463 | /* If exactly one input file name is given, use it. */ | 
| 464 | exit(ies2rad(argv[i], outfile) == 0 ? 0 : 1); | 
| 465 | else | 
| 466 | goto needsingle; /* Otherwise, error. */ | 
| 467 | } else if (i >= argc) { | 
| 468 | /* If an output file and an input file are not give, error. */ | 
| 469 | fprintf(stderr, "%s: missing output file specification\n", | 
| 470 | argv[0]); | 
| 471 | exit(1); | 
| 472 | } | 
| 473 | /* If no input or output file is given, error. */ | 
| 474 | if (out2stdout && i != argc-1) | 
| 475 | goto needsingle; | 
| 476 | /* Otherwise, process each input file in turn. */ | 
| 477 | status = 0; | 
| 478 | for ( ; i < argc; i++) { | 
| 479 | tailtrunc(strcpy(outname,filename(argv[i]))); | 
| 480 | if (ies2rad(argv[i], outname) != 0) | 
| 481 | status = 1; | 
| 482 | } | 
| 483 | exit(status); | 
| 484 | needsingle: | 
| 485 | fprintf(stderr, "%s: single input file required\n", argv[0]); | 
| 486 | exit(1); | 
| 487 | } | 
| 488 |  | 
| 489 | /* Initlamps -- If necessary, read lamp data table */ | 
| 490 | void | 
| 491 | initlamps(void)                         /* set up lamps */ | 
| 492 | { | 
| 493 | float   *lcol; | 
| 494 | int     status; | 
| 495 |  | 
| 496 | /* If the lamp name is set to default, don't bother to read | 
| 497 | * the lamp data table. */ | 
| 498 | if (lamptype != NULL && !strcmp(lamptype, default_name) && | 
| 499 | deflamp == NULL) | 
| 500 | return; | 
| 501 |  | 
| 502 | if ((status = loadlamps(lampdat)) < 0) /* Load the lamp data table */ | 
| 503 | exit(1);                       /* Exit if problems | 
| 504 | * with the file. */ | 
| 505 | if (status == 0) { | 
| 506 | /* If can't open the file, just use the standard default lamp */ | 
| 507 | fprintf(stderr, "%s: warning - no lamp data\n", lampdat); | 
| 508 | lamptype = default_name; | 
| 509 | return; | 
| 510 | } | 
| 511 | if (deflamp != NULL) { | 
| 512 | /* Look up the specified default lamp type */ | 
| 513 | if ((lcol = matchlamp(deflamp)) == NULL) | 
| 514 | /* If it can't be found, use the default */ | 
| 515 | fprintf(stderr, | 
| 516 | "%s: warning - unknown default lamp type\n", | 
| 517 | deflamp); | 
| 518 | else | 
| 519 | /* Use the selected default lamp color */ | 
| 520 | copycolor(defcolor, lcol); | 
| 521 | } | 
| 522 | /* If a lamp type is specified and can be found, use it, and | 
| 523 | * release the lamp data table memory; it won't be needed any more. */ | 
| 524 | if (lamptype != NULL) { | 
| 525 | if (strcmp(lamptype, default_name)) { | 
| 526 | if ((lcol = matchlamp(lamptype)) == NULL) { | 
| 527 | fprintf(stderr, | 
| 528 | "%s: warning - unknown lamp type\n", | 
| 529 | lamptype); | 
| 530 | lamptype = default_name; | 
| 531 | } else | 
| 532 | copycolor(defcolor, lcol); | 
| 533 | } | 
| 534 | freelamps();                    /* all done with data */ | 
| 535 | } | 
| 536 | /* else keep lamp data */ | 
| 537 | } | 
| 538 |  | 
| 539 | /* | 
| 540 | * File path operations | 
| 541 | * | 
| 542 | * These provide file path operations that operate on both MS-Windows | 
| 543 | * and *nix. They will ignore and pass, but will not necessarily | 
| 544 | * process correctly, Windows drive letters. Paths including Windows | 
| 545 | * UNC network names (\\server\folder\file) may also cause problems. | 
| 546 | * | 
| 547 | */ | 
| 548 |  | 
| 549 | /* | 
| 550 | * stradd() | 
| 551 | * | 
| 552 | * Add a string to the end of a string, optionally concatenating a | 
| 553 | * file path separator character.  If the path already ends with a | 
| 554 | * path separator, no additional separator is appended. | 
| 555 | * | 
| 556 | */ | 
| 557 | char * | 
| 558 | stradd(                 /* add a string at dst */ | 
| 559 | char    *dst, | 
| 560 | char    *src, | 
| 561 | int     sep | 
| 562 | ) | 
| 563 | { | 
| 564 | if (src && *src) { | 
| 565 | do | 
| 566 | *dst++ = *src++; | 
| 567 | while (*src); | 
| 568 | if (sep && dst[-1] != sep) | 
| 569 | *dst++ = sep; | 
| 570 | } | 
| 571 | *dst = '\0'; | 
| 572 | return(dst); | 
| 573 | } | 
| 574 |  | 
| 575 | /* | 
| 576 | * fullnam () - return a usable path name for an output file | 
| 577 | */ | 
| 578 | char * | 
| 579 | fullnam( | 
| 580 | char    *path,          /* The base directory path */ | 
| 581 | char    *fname,         /* The file name */ | 
| 582 | char    *suffix         /* A suffix, which usually contains | 
| 583 | * a file name extension. */ | 
| 584 | ) | 
| 585 | { | 
| 586 | extern char *prefdir; | 
| 587 | extern char *libdir; | 
| 588 |  | 
| 589 | if (prefdir != NULL && abspath(prefdir)) | 
| 590 | /* If the subdirectory path is absolute or '.', just | 
| 591 | * concatenate the names together */ | 
| 592 | libname(path, fname, suffix); | 
| 593 | else if (abspath(fname)) | 
| 594 | /* If there is no subdirectory, and the file name is | 
| 595 | * an absolute path or '.', concatenate the path, | 
| 596 | * filename, and suffix. */ | 
| 597 | strcpy(stradd(path, fname, 0), suffix); | 
| 598 | else | 
| 599 | /* If the file name is relative, concatenate path, | 
| 600 | * library directory, directory separator, file name, | 
| 601 | * and suffix.  */ | 
| 602 | libname(stradd(path, libdir, DIRSEP), fname, suffix); | 
| 603 |  | 
| 604 | return(path); | 
| 605 | } | 
| 606 |  | 
| 607 |  | 
| 608 | /* | 
| 609 | * libname - convert a file name to a path | 
| 610 | */ | 
| 611 | char * | 
| 612 | libname( | 
| 613 | char    *path,          /* The base directory path */ | 
| 614 | char    *fname,         /* The file name */ | 
| 615 | char    *suffix         /* A suffix, which usually contains | 
| 616 | * a file name extension. */ | 
| 617 | ) | 
| 618 | { | 
| 619 | extern char *prefdir;   /* The subdirectory where the file | 
| 620 | * name is stored. */ | 
| 621 |  | 
| 622 | if (abspath(fname)) | 
| 623 | /* If the file name begins with '/' or '.', combine | 
| 624 | * it with the path and attach the suffix */ | 
| 625 | strcpy(stradd(path, fname, 0), suffix); | 
| 626 | else | 
| 627 | /* If the file name is relative, attach it to the | 
| 628 | * path, include the subdirectory, and append the suffix. */ | 
| 629 | strcpy(stradd(stradd(path, prefdir, DIRSEP), fname, 0), suffix); | 
| 630 |  | 
| 631 | return(path); | 
| 632 | } | 
| 633 |  | 
| 634 | /* filename - find the base file name in a buffer containing a path | 
| 635 | * | 
| 636 | * The pointer is to a character within the buffer, not a string in itself; | 
| 637 | * it will become invalid when the buffer is freed. | 
| 638 | * | 
| 639 | */ | 
| 640 | char * | 
| 641 | filename( | 
| 642 | char    *path | 
| 643 | ) | 
| 644 | { | 
| 645 | char    *cp; | 
| 646 |  | 
| 647 | for (cp = path; *path; path++) | 
| 648 | if (ISDIRSEP(*path)) | 
| 649 | cp = path+1; | 
| 650 | return(cp); | 
| 651 | } | 
| 652 |  | 
| 653 |  | 
| 654 | /* filetrunc() - return the directory portion of a path | 
| 655 | * | 
| 656 | * The path is passed in in a pointer to a buffer; a null character is | 
| 657 | * inserted in the buffer after the last directory separator | 
| 658 | * | 
| 659 | */ | 
| 660 | char * | 
| 661 | filetrunc( | 
| 662 | char    *path | 
| 663 | ) | 
| 664 | { | 
| 665 | char    *p1, *p2; | 
| 666 |  | 
| 667 | for (p1 = p2 = path; *p2; p2++) | 
| 668 | if (ISDIRSEP(*p2)) | 
| 669 | p1 = p2; | 
| 670 | if (p1 == path && ISDIRSEP(*p1)) | 
| 671 | p1++; | 
| 672 | *p1 = '\0'; | 
| 673 | return(path); | 
| 674 | } | 
| 675 |  | 
| 676 | /* tailtrunc() - trim a file name extension, if any. | 
| 677 | * | 
| 678 | * The file name is passed in in a buffer indicated by *name; the | 
| 679 | * period which begins the extension is replaced with a 0 byte. | 
| 680 | */ | 
| 681 | char * | 
| 682 | tailtrunc( | 
| 683 | char    *name | 
| 684 | ) | 
| 685 | { | 
| 686 | char    *p1, *p2; | 
| 687 |  | 
| 688 | /* Skip leading periods */ | 
| 689 | for (p1 = filename(name); *p1 == '.'; p1++) | 
| 690 | ; | 
| 691 | /* Find the last period in a file name */ | 
| 692 | p2 = NULL; | 
| 693 | for ( ; *p1; p1++) | 
| 694 | if (*p1 == '.') | 
| 695 | p2 = p1; | 
| 696 | /* If present, trim the filename at that period */ | 
| 697 | if (p2 != NULL) | 
| 698 | *p2 = '\0'; | 
| 699 | return(name); | 
| 700 | } | 
| 701 |  | 
| 702 | /* blanktrunc() - trim spaces at the end of a string | 
| 703 | * | 
| 704 | * the string is passed in a character array, which is modified | 
| 705 | */ | 
| 706 | void | 
| 707 | blanktrunc( | 
| 708 | char    *s | 
| 709 | ) | 
| 710 | { | 
| 711 | char    *cp; | 
| 712 |  | 
| 713 | for (cp = s; *cp; cp++) | 
| 714 | ; | 
| 715 | while (cp-- > s && isspace(*cp)) | 
| 716 | ; | 
| 717 | *++cp = '\0'; | 
| 718 | } | 
| 719 |  | 
| 720 | /* k_match - return true if keyword matches header line */ | 
| 721 | int | 
| 722 | k_match( | 
| 723 | char    *kwd,           /* keyword */ | 
| 724 | char    *hdl            /* header line */ | 
| 725 | ) | 
| 726 | { | 
| 727 | /* Skip leading spaces */ | 
| 728 | while (isspace(*hdl)) | 
| 729 | hdl++; | 
| 730 | /* The line has to begin with '[' */ | 
| 731 | if (*hdl++ != '[') | 
| 732 | return(0); | 
| 733 | /* case-independent keyword match */ | 
| 734 | while (toupper(*hdl) == *kwd++) | 
| 735 | if (!*hdl++) | 
| 736 | return(0); | 
| 737 | /* If we have come to the end of the keyword, and the keyword | 
| 738 | * at the beginning of the matched line is terminated with | 
| 739 | * ']', return 1 */ | 
| 740 | return(!kwd[-1] & (*hdl == ']')); | 
| 741 | } | 
| 742 |  | 
| 743 | /* keyargs - return the argument of a keyword, without leading spaces | 
| 744 | * | 
| 745 | * keyargs is passed a pointer to a buffer; it returns a pointer to | 
| 746 | * where the argument starts in the buffer | 
| 747 | * | 
| 748 | */ | 
| 749 | char * | 
| 750 | keyargs( | 
| 751 | char    *hdl /* header line */ | 
| 752 | ) | 
| 753 | { | 
| 754 | while (*hdl && *hdl++ != ']') | 
| 755 | ; | 
| 756 | while (isspace(*hdl)) | 
| 757 | hdl++; | 
| 758 | return(hdl); | 
| 759 | } | 
| 760 |  | 
| 761 |  | 
| 762 | /* putheader - output the header of the .rad file | 
| 763 | * | 
| 764 | * Header is: | 
| 765 | *   # <file> <file> <file> (all files from input line) | 
| 766 | *   # Dimensions in [feet,meters,etc.] | 
| 767 | * | 
| 768 | * ??? Is listing all the input file names correct behavior? | 
| 769 | * | 
| 770 | */ | 
| 771 | void | 
| 772 |  | 
| 773 | putheader( | 
| 774 | FILE    *out | 
| 775 | ) | 
| 776 | { | 
| 777 | int     i; | 
| 778 |  | 
| 779 | putc('#', out); | 
| 780 | for (i = 0; i < gargc; i++) { | 
| 781 | putc(' ', out); | 
| 782 | fputs(gargv[i], out); | 
| 783 | } | 
| 784 | fputs("\n# Dimensions in ", out); | 
| 785 | fputs(units, out); | 
| 786 | putc('\n', out); | 
| 787 | } | 
| 788 |  | 
| 789 | /* ies2rad - convert an IES LM-63 file to a Radiance light source desc. | 
| 790 | * | 
| 791 | * Return -1 in case of failure, 0 in case of success. | 
| 792 | * | 
| 793 | * The file version recognition is confused and will treat 1995 and | 
| 794 | * 2002 version files as 1986 version files. | 
| 795 | * | 
| 796 | */ | 
| 797 | int | 
| 798 | ies2rad(                /* convert IES file */ | 
| 799 | char    *inpname, | 
| 800 | char    *outname | 
| 801 | ) | 
| 802 | { | 
| 803 | SRCINFO srcinfo; | 
| 804 | char    buf[MAXLINE], tltid[RMAXWORD]; | 
| 805 | char    geomfile[128]; | 
| 806 | FILE    *inpfp, *outfp; | 
| 807 | int     lineno = 0; | 
| 808 |  | 
| 809 | /* Open input and output files */ | 
| 810 | geomfile[0] = '\0'; | 
| 811 | srcinfo.isillum = 0; | 
| 812 | if (inpname == NULL) { | 
| 813 | inpname = "<stdin>"; | 
| 814 | inpfp = stdin; | 
| 815 | } else if ((inpfp = fopen(inpname, "r")) == NULL) { | 
| 816 | perror(inpname); | 
| 817 | return(-1); | 
| 818 | } | 
| 819 | if (out2stdout) | 
| 820 | outfp = stdout; | 
| 821 | else if ((outfp = fopen(fullnam(buf,outname,T_RAD), "w")) == NULL) { | 
| 822 | perror(buf); | 
| 823 | fclose(inpfp); | 
| 824 | return(-1); | 
| 825 | } | 
| 826 |  | 
| 827 | /* Output the output file header */ | 
| 828 | putheader(outfp); | 
| 829 |  | 
| 830 | /* If the lamp type wasn't given on the command line, mark | 
| 831 | * the lamp color as missing */ | 
| 832 | if (lamptype == NULL) | 
| 833 | lampcolor = NULL; | 
| 834 |  | 
| 835 | /* Read the input file header, copying lines to the .rad file | 
| 836 | * and looking for a lamp type. Stop at EOF or a line | 
| 837 | * beginning with "TILT=". */ | 
| 838 | while (fgets(buf,sizeof(buf),inpfp) != NULL | 
| 839 | && strncmp(buf,TLTSTR,TLTSTRLEN)) { | 
| 840 | blanktrunc(buf); /* Trim trailing spaces, CR, LF. */ | 
| 841 | if (!buf[0])     /* Skip blank lines */ | 
| 842 | continue; | 
| 843 | /* increment the header line count, and check for the | 
| 844 | * "TILT=" line that terminates the header */ | 
| 845 | if (!lineno++) {        /* first line may be magic */ | 
| 846 | if (!strncmp(buf, MAGICID2, LMAGICID2)) | 
| 847 | filerev = atoi(buf+LMAGICID2) - 1900; | 
| 848 | else if (!strncmp(buf, MAGICID, LMAGICID)) | 
| 849 | filerev = atoi(buf+LMAGICID); | 
| 850 | if (filerev < FIRSTREV) | 
| 851 | filerev = FIRSTREV; | 
| 852 | else if (filerev > LASTREV) | 
| 853 | filerev = LASTREV; | 
| 854 | } | 
| 855 | /* Output the header line as a comment in the .rad file. */ | 
| 856 | fputs("#<", outfp); | 
| 857 | fputs(buf, outfp); | 
| 858 | putc('\n', outfp); | 
| 859 |  | 
| 860 | /* If the header line is a keyword line (file version | 
| 861 | * later than 1986 and begins with '['), check a lamp | 
| 862 | * in the "[LAMP]" and "[LAMPCAT]" keyword lines; | 
| 863 | * otherwise check all lines.  */ | 
| 864 | if (lampcolor == NULL && checklamp(buf)) | 
| 865 | lampcolor = matchlamp(*sskip2(buf,0) == '[' ? | 
| 866 | keyargs(buf) : buf ); | 
| 867 | /* Look for a materials and geometry file in the keywords. */ | 
| 868 | if (keymatch(K_LMG, buf)) { | 
| 869 | strcpy(geomfile, inpname); | 
| 870 | strcpy(filename(geomfile), keyargs(buf)); | 
| 871 | srcinfo.isillum = 1; | 
| 872 | } | 
| 873 | } | 
| 874 |  | 
| 875 | /* Done reading header information. If a lamp color still | 
| 876 | * hasn't been found, print a warning and use the default | 
| 877 | * color; if a lamp type hasn't been found, but a color has | 
| 878 | * been specified, used the specified color. */ | 
| 879 | if (lampcolor == NULL) { | 
| 880 | fprintf(stderr, "%s: warning - no lamp type\n", inpname); | 
| 881 | fputs("# Unknown lamp type (used default)\n", outfp); | 
| 882 | lampcolor = defcolor; | 
| 883 | } else if (lamptype == NULL) | 
| 884 | fprintf(outfp,"# CIE(x,y) = (%f,%f)\n# Depreciation = %.1f%%\n", | 
| 885 | lampcolor[3], lampcolor[4], 100.*lampcolor[5]); | 
| 886 |  | 
| 887 | /* If the file ended before a "TILT=" line, that's an error. */ | 
| 888 | if (feof(inpfp)) { | 
| 889 | fprintf(stderr, "%s: not in IES format\n", inpname); | 
| 890 | goto readerr; | 
| 891 | } | 
| 892 |  | 
| 893 | /* Process the tilt section of the file. */ | 
| 894 | /* Get the tilt file name, or the keyword "INCLUDE". */ | 
| 895 | atos(tltid, RMAXWORD, buf+TLTSTRLEN); | 
| 896 | if (inpfp == stdin) | 
| 897 | buf[0] = '\0'; | 
| 898 | else | 
| 899 | filetrunc(strcpy(buf, inpname)); | 
| 900 | /* Process the tilt data. */ | 
| 901 | if (dotilt(inpfp, outfp, buf, tltid, outname, tltid) != 0) { | 
| 902 | fprintf(stderr, "%s: bad tilt data\n", inpname); | 
| 903 | goto readerr; | 
| 904 | } | 
| 905 |  | 
| 906 | /* Process the luminaire data. */ | 
| 907 | if (dosource(&srcinfo, inpfp, outfp, tltid, outname) != 0) { | 
| 908 | fprintf(stderr, "%s: bad luminaire data\n", inpname); | 
| 909 | goto readerr; | 
| 910 | } | 
| 911 |  | 
| 912 | /* Close the input file */ | 
| 913 | fclose(inpfp); | 
| 914 |  | 
| 915 | /* Process an MGF file, if present. cvgeometry() closes outfp. */ | 
| 916 | if (cvgeometry(geomfile, &srcinfo, outname, outfp) != 0) { | 
| 917 | fprintf(stderr, "%s: bad geometry file\n", geomfile); | 
| 918 | return(-1); | 
| 919 | } | 
| 920 | return(0); | 
| 921 |  | 
| 922 | readerr: | 
| 923 | /* If there is an error reading the file, close the input and | 
| 924 | * .rad output files, and delete the .rad file, returning -1. */ | 
| 925 | fclose(inpfp); | 
| 926 | fclose(outfp); | 
| 927 | unlink(fullnam(buf,outname,T_RAD)); | 
| 928 | return(-1); | 
| 929 | } | 
| 930 |  | 
| 931 | /* dotilt -- process tilt data | 
| 932 | * | 
| 933 | * Generate a brightdata primitive which describes the effect of | 
| 934 | * luminaire tilt on luminaire output and return its identifier in tltid. | 
| 935 | * | 
| 936 | * Tilt data (if present) is given as a number 1, 2, or 3, which | 
| 937 | * specifies the orientation of the lamp within the luminaire, a | 
| 938 | * number, n, of (angle, multiplier) pairs, followed by n angles and n | 
| 939 | * multipliers. | 
| 940 | * | 
| 941 | * returns 0 for success, -1 for error | 
| 942 | */ | 
| 943 | int | 
| 944 | dotilt( | 
| 945 | FILE    *in, | 
| 946 | FILE    *out, | 
| 947 | char    *dir, | 
| 948 | char    *tltspec, | 
| 949 | char    *dfltname, | 
| 950 | char    *tltid | 
| 951 | ) | 
| 952 | { | 
| 953 | int     nangles, tlt_type; | 
| 954 | double  minmax[1][2]; | 
| 955 | char    buf[PATH_MAX], tltname[RMAXWORD]; | 
| 956 | FILE    *datin, *datout; | 
| 957 |  | 
| 958 | /* Decide where the tilt data is; if the luminaire description | 
| 959 | * doesn't have a tilt section, set the identifier to "void". */ | 
| 960 | if (!strcmp(tltspec, TLTNONE)) { | 
| 961 | /* If the line is "TILT=NONE", set the input file | 
| 962 | * pointer to NULL and the identifier to "void". */ | 
| 963 | datin = NULL; | 
| 964 | strcpy(tltid, "void"); | 
| 965 | } else if (!strcmp(tltspec, TLTINCL)) { | 
| 966 | /* If the line is "TILT=INCLUDE" use the main IES | 
| 967 | * file as the source of tilt data. */ | 
| 968 | datin = in; | 
| 969 | strcpy(tltname, dfltname); | 
| 970 | } else { | 
| 971 | /* If the line is "TILE=<filename>", use that file | 
| 972 | * name as the source of tilt data. */ | 
| 973 | if (ISDIRSEP(tltspec[0])) | 
| 974 | strcpy(buf, tltspec); | 
| 975 | else | 
| 976 | strcpy(stradd(buf, dir, DIRSEP), tltspec); | 
| 977 | if ((datin = fopen(buf, "r")) == NULL) { | 
| 978 | perror(buf); | 
| 979 | return(-1); | 
| 980 | } | 
| 981 | tailtrunc(strcpy(tltname,filename(tltspec))); | 
| 982 | } | 
| 983 | /* If tilt data is present, read, process, and output it. */ | 
| 984 | if (datin != NULL) { | 
| 985 | /* Try to open the output file */ | 
| 986 | if ((datout = fopen(fullnam(buf,tltname,T_TLT),"w")) == NULL) { | 
| 987 | perror(buf); | 
| 988 | if (datin != in) | 
| 989 | fclose(datin); | 
| 990 | return(-1); | 
| 991 | } | 
| 992 | /* Try to copy the tilt data to the tilt data file */ | 
| 993 | if (!scnint(datin,&tlt_type) || !scnint(datin,&nangles) | 
| 994 | || cvdata(datin,datout,1,&nangles,1.,minmax) != 0) { | 
| 995 | fprintf(stderr, "%s: data format error\n", tltspec); | 
| 996 | fclose(datout); | 
| 997 | if (datin != in) | 
| 998 | fclose(datin); | 
| 999 | unlink(fullnam(buf,tltname,T_TLT)); | 
| 1000 | return(-1); | 
| 1001 | } | 
| 1002 | fclose(datout); | 
| 1003 | if (datin != in) | 
| 1004 | fclose(datin); | 
| 1005 |  | 
| 1006 | /* Generate the identifier of the brightdata; the filename | 
| 1007 | * with "_tilt" appended. */ | 
| 1008 | strcat(strcpy(tltid, filename(tltname)), "_tilt"); | 
| 1009 | /* Write out the brightdata primitive */ | 
| 1010 | fprintf(out, "\nvoid brightdata %s\n", tltid); | 
| 1011 | libname(buf,tltname,T_TLT); | 
| 1012 | /* Generate the tilt description */ | 
| 1013 | switch (tlt_type) { | 
| 1014 | case TLT_VERT: | 
| 1015 | /* The lamp is mounted vertically; either | 
| 1016 | * base up or base down. */ | 
| 1017 | fprintf(out, "4 noop %s tilt.cal %s\n", buf, | 
| 1018 | minmax[0][1]>90.+FTINY ? "tilt_ang" : "tilt_ang2"); | 
| 1019 | break; | 
| 1020 | case TLT_H0: | 
| 1021 | /* The lamp is mounted horizontally and | 
| 1022 | * rotates but does not tilt when the | 
| 1023 | * luminaire is tilted. */ | 
| 1024 | fprintf(out, "6 noop %s tilt.cal %s -rz 90\n", buf, | 
| 1025 | minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); | 
| 1026 | break; | 
| 1027 | case TLT_H90: | 
| 1028 | /* The lamp is mounted horizontally, and | 
| 1029 | * tilts when the luminaire is tilted. */ | 
| 1030 | fprintf(out, "4 noop %s tilt.cal %s\n", buf, | 
| 1031 | minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); | 
| 1032 | break; | 
| 1033 | default: | 
| 1034 | /* otherwise, this is a bad IES file */ | 
| 1035 | fprintf(stderr, | 
| 1036 | "%s: illegal lamp to luminaire geometry (%d)\n", | 
| 1037 | tltspec, tlt_type); | 
| 1038 | return(-1); | 
| 1039 | } | 
| 1040 | /* And finally output the numbers of integer and real | 
| 1041 | * arguments, of which there are none. */ | 
| 1042 | fprintf(out, "0\n0\n"); | 
| 1043 | } | 
| 1044 | return(0); | 
| 1045 | } | 
| 1046 |  | 
| 1047 | /* dosource -- create the source and distribution primitives */ | 
| 1048 | int | 
| 1049 | dosource( | 
| 1050 | SRCINFO *sinf, | 
| 1051 | FILE    *in, | 
| 1052 | FILE    *out, | 
| 1053 | char    *mod, | 
| 1054 | char    *name | 
| 1055 | ) | 
| 1056 | { | 
| 1057 | char    buf[PATH_MAX], id[RMAXWORD]; | 
| 1058 | FILE    *datout; | 
| 1059 | double  mult, bfactor, pfactor, width, length, height, wattage; | 
| 1060 | double  bounds[2][2]; | 
| 1061 | int     nangles[2], pmtype, unitype; | 
| 1062 | double  d1; | 
| 1063 | int     doupper, dolower, dosides; | 
| 1064 |  | 
| 1065 | /* Read in the luminaire description header */ | 
| 1066 | if (!isint(getword(in)) || !isflt(getword(in)) || !scnflt(in,&mult) | 
| 1067 | || !scnint(in,&nangles[0]) || !scnint(in,&nangles[1]) | 
| 1068 | || !scnint(in,&pmtype) || !scnint(in,&unitype) | 
| 1069 | || !scnflt(in,&width) || !scnflt(in,&length) | 
| 1070 | || !scnflt(in,&height) || !scnflt(in,&bfactor) | 
| 1071 | || !scnflt(in,&pfactor) || !scnflt(in,&wattage)) { | 
| 1072 | fprintf(stderr, "dosource: bad lamp specification\n"); | 
| 1073 | return(-1); | 
| 1074 | } | 
| 1075 | /* Type A photometry is not supported */ | 
| 1076 | if (pmtype != PM_C && pmtype != PM_B) { | 
| 1077 | fprintf(stderr, "dosource: unsupported photometric type (%d)\n", | 
| 1078 | pmtype); | 
| 1079 | return(-1); | 
| 1080 | } | 
| 1081 |  | 
| 1082 | /* Multiplier = the multiplier from the -m option, times the | 
| 1083 | * multiplier from the IES file, times the ballast factor, | 
| 1084 | * times the "ballast lamp photometric factor," which was part | 
| 1085 | * of the 1986 and 1991 standards. In the 1995 standard, it is | 
| 1086 | * always supposed to be 1. */ | 
| 1087 | sinf->mult = multiplier*mult*bfactor*pfactor; | 
| 1088 |  | 
| 1089 | /* If the count of angles is wrong, raise an error and quit. */ | 
| 1090 | if (nangles[0] < 2 || nangles[1] < 1) { | 
| 1091 | fprintf(stderr, "dosource: too few measured angles\n"); | 
| 1092 | return(-1); | 
| 1093 | } | 
| 1094 |  | 
| 1095 | /* For internal computation, convert units to meters. */ | 
| 1096 | if (unitype == U_FEET) { | 
| 1097 | width *= F_M; | 
| 1098 | length *= F_M; | 
| 1099 | height *= F_M; | 
| 1100 | } | 
| 1101 |  | 
| 1102 | /* Make decisions about the shape of the light source | 
| 1103 | * geometry, and store them in sinf. */ | 
| 1104 | if (makeshape(sinf, width, length, height) != 0) { | 
| 1105 | fprintf(stderr, "dosource: illegal source dimensions"); | 
| 1106 | return(-1); | 
| 1107 | } | 
| 1108 |  | 
| 1109 | /* Copy the candela values into a Radiance data file. */ | 
| 1110 | if ((datout = fopen(fullnam(buf,name,T_DST), "w")) == NULL) { | 
| 1111 | perror(buf); | 
| 1112 | return(-1); | 
| 1113 | } | 
| 1114 | if (cvdata(in, datout, 2, nangles, 1./WHTEFFICACY, bounds) != 0) { | 
| 1115 | fprintf(stderr, "dosource: bad distribution data\n"); | 
| 1116 | fclose(datout); | 
| 1117 | unlink(fullnam(buf,name,T_DST)); | 
| 1118 | return(-1); | 
| 1119 | } | 
| 1120 | fclose(datout); | 
| 1121 |  | 
| 1122 | /* Output explanatory comment */ | 
| 1123 | fprintf(out, "# %g watt luminaire, lamp*ballast factor = %g\n", | 
| 1124 | wattage, bfactor*pfactor); | 
| 1125 | /* Output distribution "brightdata" primitive. Start handling | 
| 1126 | the various cases of symmetry of the distribution. */ | 
| 1127 | strcat(strcpy(id, filename(name)), "_dist"); | 
| 1128 | fprintf(out, "\n%s brightdata %s\n", mod, id); | 
| 1129 | if (nangles[1] < 2) | 
| 1130 | fprintf(out, "4 "); | 
| 1131 | else if (pmtype == PM_B) | 
| 1132 | fprintf(out, "5 "); | 
| 1133 | else if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.)) | 
| 1134 | fprintf(out, "7 "); | 
| 1135 | else | 
| 1136 | fprintf(out, "5 "); | 
| 1137 |  | 
| 1138 | /* If the generated source geometry will be a box, a flat | 
| 1139 | * rectangle, or a disk figure out if it needs a top, a | 
| 1140 | * bottom, and/or sides. */ | 
| 1141 | dolower = (bounds[0][0] < 90.-FTINY); /* Bottom */ | 
| 1142 | doupper = (bounds[0][1] > 90.+FTINY); /* Top */ | 
| 1143 | dosides = (doupper & dolower && sinf->h > MINDIM); /* Sides */ | 
| 1144 |  | 
| 1145 | /* Select the appropriate function and parameters from source.cal */ | 
| 1146 | fprintf(out, "%s %s source.cal ", | 
| 1147 | sinf->type==SPHERE ? "corr" : | 
| 1148 | !dosides ? "flatcorr" : | 
| 1149 | sinf->type==DISK ? "cylcorr" : "boxcorr", | 
| 1150 | libname(buf,name,T_DST)); | 
| 1151 | if (pmtype == PM_B) { | 
| 1152 | if (FEQ(bounds[1][0],0.)) | 
| 1153 | fprintf(out, "srcB_horiz2 "); | 
| 1154 | else | 
| 1155 | fprintf(out, "srcB_horiz "); | 
| 1156 | fprintf(out, "srcB_vert "); | 
| 1157 | } else /* pmtype == PM_C */ { | 
| 1158 | if (nangles[1] >= 2) { | 
| 1159 | d1 = bounds[1][1] - bounds[1][0]; | 
| 1160 | if (d1 <= 90.+FTINY) | 
| 1161 | fprintf(out, "src_phi4 "); | 
| 1162 | else if (d1 <= 180.+FTINY) { | 
| 1163 | if (FEQ(bounds[1][0],90.)) | 
| 1164 | fprintf(out, "src_phi2+90 "); | 
| 1165 | else | 
| 1166 | fprintf(out, "src_phi2 "); | 
| 1167 | } else | 
| 1168 | fprintf(out, "src_phi "); | 
| 1169 | fprintf(out, "src_theta "); | 
| 1170 | if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.)) | 
| 1171 | fprintf(out, "-rz -90 "); | 
| 1172 | } else | 
| 1173 | fprintf(out, "src_theta "); | 
| 1174 | } | 
| 1175 | /* finish the brightdata primitive with appropriate data */ | 
| 1176 | if (!dosides || sinf->type == SPHERE) | 
| 1177 | fprintf(out, "\n0\n1 %g\n", sinf->mult/sinf->area); | 
| 1178 | else if (sinf->type == DISK) | 
| 1179 | fprintf(out, "\n0\n3 %g %g %g\n", sinf->mult, | 
| 1180 | sinf->w, sinf->h); | 
| 1181 | else | 
| 1182 | fprintf(out, "\n0\n4 %g %g %g %g\n", sinf->mult, | 
| 1183 | sinf->l, sinf->w, sinf->h); | 
| 1184 | /* Brightdata primitive written out. */ | 
| 1185 |  | 
| 1186 | /* Finally, output the descriptions of the actual radiant | 
| 1187 | * surfaces. */ | 
| 1188 | if (putsource(sinf, out, id, filename(name), | 
| 1189 | dolower, doupper, dosides) != 0) | 
| 1190 | return(-1); | 
| 1191 | return(0); | 
| 1192 | } | 
| 1193 |  | 
| 1194 | /* putsource - output the actual light emitting geometry | 
| 1195 | * | 
| 1196 | * Three kinds of geometry are produced: rectangles and boxes, disks | 
| 1197 | * ("ring" primitive, but the radius of the hole is always zero) and | 
| 1198 | * cylinders, and spheres. | 
| 1199 | */ | 
| 1200 | int | 
| 1201 | putsource( | 
| 1202 | SRCINFO *shp, | 
| 1203 | FILE    *fp, | 
| 1204 | char    *mod, | 
| 1205 | char    *name, | 
| 1206 | int     dolower, | 
| 1207 | int     doupper, | 
| 1208 | int     dosides | 
| 1209 | ) | 
| 1210 | { | 
| 1211 | char    lname[RMAXWORD]; | 
| 1212 |  | 
| 1213 | /* First, describe the light. If a materials and geometry | 
| 1214 | * file is given, generate an illum instead. */ | 
| 1215 | strcat(strcpy(lname, name), "_light"); | 
| 1216 | fprintf(fp, "\n%s %s %s\n", mod, | 
| 1217 | shp->isillum ? "illum" : "light", lname); | 
| 1218 | fprintf(fp, "0\n0\n3 %g %g %g\n", | 
| 1219 | lampcolor[0], lampcolor[1], lampcolor[2]); | 
| 1220 | switch (shp->type) { | 
| 1221 | case RECT: | 
| 1222 | /* Output at least one rectangle. If light is radiated | 
| 1223 | * from the sides of the luminaire, output rectangular | 
| 1224 | * sides as well. */ | 
| 1225 | if (dolower) | 
| 1226 | putrectsrc(shp, fp, lname, name, 0); | 
| 1227 | if (doupper) | 
| 1228 | putrectsrc(shp, fp, lname, name, 1); | 
| 1229 | if (dosides) | 
| 1230 | putsides(shp, fp, lname, name); | 
| 1231 | break; | 
| 1232 | case DISK: | 
| 1233 | /* Output at least one disk. If light is radiated from | 
| 1234 | * the sides of luminaire, output a cylinder as well. */ | 
| 1235 | if (dolower) | 
| 1236 | putdisksrc(shp, fp, lname, name, 0); | 
| 1237 | if (doupper) | 
| 1238 | putdisksrc(shp, fp, lname, name, 1); | 
| 1239 | if (dosides) | 
| 1240 | putcyl(shp, fp, lname, name); | 
| 1241 | break; | 
| 1242 | case SPHERE: | 
| 1243 | /* Output a sphere. */ | 
| 1244 | putspheresrc(shp, fp, lname, name); | 
| 1245 | break; | 
| 1246 | } | 
| 1247 | return(0); | 
| 1248 | } | 
| 1249 |  | 
| 1250 | /* makeshape -- decide what shape will be used | 
| 1251 | * | 
| 1252 | * makeshape decides what Radiance geometry will be used to represent | 
| 1253 | * the light source and stores information about it in shp. | 
| 1254 | */ | 
| 1255 | int | 
| 1256 | makeshape( | 
| 1257 | SRCINFO *shp, | 
| 1258 | double  width, | 
| 1259 | double  length, | 
| 1260 | double  height | 
| 1261 | ) | 
| 1262 | { | 
| 1263 | /* Categorize the shape */ | 
| 1264 | if (illumrad/meters2out >= MINDIM/2.) { | 
| 1265 | /* If the -i command line option is used, and the | 
| 1266 | * object is not a point source, output an "illum" | 
| 1267 | * sphere */ | 
| 1268 | shp->isillum = 1; | 
| 1269 | shp->type = SPHERE; | 
| 1270 | shp->w = shp->l = shp->h = 2.*illumrad / meters2out; | 
| 1271 | } else if (width < MINDIM) { | 
| 1272 | /* The width is either zero or negative. */ | 
| 1273 | width = -width; | 
| 1274 | if (width < MINDIM) { | 
| 1275 | /* The width is zero. Use a tiny sphere to | 
| 1276 | * represent a point source. */ | 
| 1277 | shp->type = SPHERE; | 
| 1278 | shp->w = shp->l = shp->h = MINDIM; | 
| 1279 | } else if (height < .5*width) { | 
| 1280 | /* The width is negative and the height is | 
| 1281 | * modest; output either a disk or a thin | 
| 1282 | * vertical cylinder. */ | 
| 1283 | shp->type = DISK; | 
| 1284 | shp->w = shp->l = width; | 
| 1285 | if (height >= MINDIM) | 
| 1286 | shp->h = height; | 
| 1287 | else | 
| 1288 | shp->h = .5*MINDIM; | 
| 1289 | } else { | 
| 1290 | /* The width is negative and the object is | 
| 1291 | * tall; output a sphere. */ | 
| 1292 | shp->type = SPHERE; | 
| 1293 | shp->w = shp->l = shp->h = width; | 
| 1294 | } | 
| 1295 | } else { | 
| 1296 | /* The width is positive. Output a box, possibly very | 
| 1297 | * thin. */ | 
| 1298 | shp->type = RECT; | 
| 1299 | shp->w = width; | 
| 1300 | if (length >= MINDIM) | 
| 1301 | shp->l = length; | 
| 1302 | else | 
| 1303 | shp->l = MINDIM; | 
| 1304 | if (height >= MINDIM) | 
| 1305 | shp->h = height; | 
| 1306 | else | 
| 1307 | shp->h = .5*MINDIM; | 
| 1308 | } | 
| 1309 |  | 
| 1310 | /* Done choosing the shape; calculate its area in the x-y plane. */ | 
| 1311 | switch (shp->type) { | 
| 1312 | case RECT: | 
| 1313 | shp->area = shp->w * shp->l; | 
| 1314 | break; | 
| 1315 | case DISK: | 
| 1316 | case SPHERE: | 
| 1317 | shp->area = PI/4. * shp->w * shp->w; | 
| 1318 | break; | 
| 1319 | } | 
| 1320 | return(0); | 
| 1321 | } | 
| 1322 |  | 
| 1323 | /* Rectangular or box-shaped light source. | 
| 1324 | * | 
| 1325 | * putrectsrc, putsides, putrect, and putpoint are used to output the | 
| 1326 | * Radiance description of a box.  The box is centered on the origin | 
| 1327 | * and has the dimensions given in the IES file.  The coordinates | 
| 1328 | * range from [-1/2*length, -1/2*width, -1/2*height] to [1/2*length, | 
| 1329 | * 1/2*width, 1/2*height]. | 
| 1330 | * | 
| 1331 | * The location of the point is encoded in the low-order three bits of | 
| 1332 | * an integer. If the integer is p, then: bit 0 is (p & 1), | 
| 1333 | * representing length (x), bit 1 is (p & 2) representing width (y), | 
| 1334 | * and bit 2 is (p & 4), representing height (z). | 
| 1335 | * | 
| 1336 | * Looking down from above (towards -z), the vertices of the box or | 
| 1337 | * rectangle are numbered so: | 
| 1338 | * | 
| 1339 | *     2,6                                        3,7 | 
| 1340 | *        +--------------------------------------+ | 
| 1341 | *        |                                      | | 
| 1342 | *        |                                      | | 
| 1343 | *        |                                      | | 
| 1344 | *        |                                      | | 
| 1345 | *        +--------------------------------------+ | 
| 1346 | *     0,4                                        1,5 | 
| 1347 | * | 
| 1348 | * The higher number of each pair is above the x-y plane (positive z), | 
| 1349 | * the lower number is below the x-y plane (negative z.) | 
| 1350 | * | 
| 1351 | */ | 
| 1352 |  | 
| 1353 | /* putrecsrc - output a rectangle parallel to the x-y plane | 
| 1354 | * | 
| 1355 | * Putrecsrc calls out the vertices of a rectangle parallel to the x-y | 
| 1356 | * plane.  The order of the vertices is different for the upper and | 
| 1357 | * lower rectangles of a box, since a right-hand rule based on the | 
| 1358 | * order of the vertices is used to determine the surface normal of | 
| 1359 | * the rectangle, and the surface normal determines the direction the | 
| 1360 | * light radiated by the rectangle. | 
| 1361 | * | 
| 1362 | */ | 
| 1363 | void | 
| 1364 | putrectsrc( | 
| 1365 | SRCINFO *shp, | 
| 1366 | FILE    *fp, | 
| 1367 | char    *mod, | 
| 1368 | char    *name, | 
| 1369 | int     up | 
| 1370 | ) | 
| 1371 | { | 
| 1372 | if (up) | 
| 1373 | putrect(shp, fp, mod, name, ".u", 4, 5, 7, 6); | 
| 1374 | else | 
| 1375 | putrect(shp, fp, mod, name, ".d", 0, 2, 3, 1); | 
| 1376 | } | 
| 1377 |  | 
| 1378 | /* putsides - put out sides of box */ | 
| 1379 | void | 
| 1380 | putsides( | 
| 1381 | SRCINFO *shp, | 
| 1382 | FILE    *fp, | 
| 1383 | char    *mod, | 
| 1384 | char    *name | 
| 1385 | ) | 
| 1386 | { | 
| 1387 | putrect(shp, fp, mod, name, ".1", 0, 1, 5, 4); | 
| 1388 | putrect(shp, fp, mod, name, ".2", 1, 3, 7, 5); | 
| 1389 | putrect(shp, fp, mod, name, ".3", 3, 2, 6, 7); | 
| 1390 | putrect(shp, fp, mod, name, ".4", 2, 0, 4, 6); | 
| 1391 | } | 
| 1392 |  | 
| 1393 | /* putrect - put out a rectangle | 
| 1394 | * | 
| 1395 | * putrect generates the "polygon" primitive which describes a | 
| 1396 | * rectangle. | 
| 1397 | */ | 
| 1398 | void | 
| 1399 | putrect( | 
| 1400 | SRCINFO *shp, | 
| 1401 | FILE    *fp, | 
| 1402 | char    *mod, | 
| 1403 | char    *name, | 
| 1404 | char    *suffix, | 
| 1405 | int     a, | 
| 1406 | int b, | 
| 1407 | int c, | 
| 1408 | int d | 
| 1409 | ) | 
| 1410 | { | 
| 1411 | fprintf(fp, "\n%s polygon %s%s\n0\n0\n12\n", mod, name, suffix); | 
| 1412 | putpoint(shp, fp, a); | 
| 1413 | putpoint(shp, fp, b); | 
| 1414 | putpoint(shp, fp, c); | 
| 1415 | putpoint(shp, fp, d); | 
| 1416 | } | 
| 1417 |  | 
| 1418 | /* putpoint -- output a the coordinates of a vertex | 
| 1419 | * | 
| 1420 | * putpoint maps vertex numbers to coordinates and outputs the | 
| 1421 | * coordinates. | 
| 1422 | */ | 
| 1423 | void | 
| 1424 | putpoint( | 
| 1425 | SRCINFO *shp, | 
| 1426 | FILE    *fp, | 
| 1427 | int     p | 
| 1428 | ) | 
| 1429 | { | 
| 1430 | static double   mult[2] = {-.5, .5}; | 
| 1431 |  | 
| 1432 | fprintf(fp, "\t%g\t%g\t%g\n", | 
| 1433 | mult[p&1]*shp->l*meters2out, | 
| 1434 | mult[p>>1&1]*shp->w*meters2out, | 
| 1435 | mult[p>>2]*shp->h*meters2out); | 
| 1436 | } | 
| 1437 |  | 
| 1438 | /* End of routines to output a box-shaped light source */ | 
| 1439 |  | 
| 1440 | /* Routines to output a cylindrical or disk shaped light source | 
| 1441 | * | 
| 1442 | * As with other shapes, the light source is centered on the origin. | 
| 1443 | * The "ring" and "cylinder" primitives are used. | 
| 1444 | * | 
| 1445 | */ | 
| 1446 | void | 
| 1447 | putdisksrc(             /* put out a disk source */ | 
| 1448 | SRCINFO *shp, | 
| 1449 | FILE    *fp, | 
| 1450 | char    *mod, | 
| 1451 | char    *name, | 
| 1452 | int     up | 
| 1453 | ) | 
| 1454 | { | 
| 1455 | if (up) { | 
| 1456 | fprintf(fp, "\n%s ring %s.u\n", mod, name); | 
| 1457 | fprintf(fp, "0\n0\n8\n"); | 
| 1458 | fprintf(fp, "\t0 0 %g\n", .5*shp->h*meters2out); | 
| 1459 | fprintf(fp, "\t0 0 1\n"); | 
| 1460 | fprintf(fp, "\t0 %g\n", .5*shp->w*meters2out); | 
| 1461 | } else { | 
| 1462 | fprintf(fp, "\n%s ring %s.d\n", mod, name); | 
| 1463 | fprintf(fp, "0\n0\n8\n"); | 
| 1464 | fprintf(fp, "\t0 0 %g\n", -.5*shp->h*meters2out); | 
| 1465 | fprintf(fp, "\t0 0 -1\n"); | 
| 1466 | fprintf(fp, "\t0 %g\n", .5*shp->w*meters2out); | 
| 1467 | } | 
| 1468 | } | 
| 1469 |  | 
| 1470 |  | 
| 1471 | void | 
| 1472 | putcyl(                 /* put out a cylinder */ | 
| 1473 | SRCINFO *shp, | 
| 1474 | FILE    *fp, | 
| 1475 | char    *mod, | 
| 1476 | char    *name | 
| 1477 | ) | 
| 1478 | { | 
| 1479 | fprintf(fp, "\n%s cylinder %s.c\n", mod, name); | 
| 1480 | fprintf(fp, "0\n0\n7\n"); | 
| 1481 | fprintf(fp, "\t0 0 %g\n", .5*shp->h*meters2out); | 
| 1482 | fprintf(fp, "\t0 0 %g\n", -.5*shp->h*meters2out); | 
| 1483 | fprintf(fp, "\t%g\n", .5*shp->w*meters2out); | 
| 1484 | } | 
| 1485 |  | 
| 1486 | /* end of of routines to output cylinders and disks */ | 
| 1487 |  | 
| 1488 | void | 
| 1489 | putspheresrc(           /* put out a sphere source */ | 
| 1490 | SRCINFO *shp, | 
| 1491 | FILE    *fp, | 
| 1492 | char    *mod, | 
| 1493 | char    *name | 
| 1494 | ) | 
| 1495 | { | 
| 1496 | fprintf(fp, "\n%s sphere %s.s\n", mod, name); | 
| 1497 | fprintf(fp, "0\n0\n4 0 0 0 %g\n", .5*shp->w*meters2out); | 
| 1498 | } | 
| 1499 |  | 
| 1500 | /* cvdata - convert LM-63 tilt and candela data to Radiance brightdata format | 
| 1501 | * | 
| 1502 | * The files created by this routine are intended for use with the Radiance | 
| 1503 | * "brightdata" material type. | 
| 1504 | * | 
| 1505 | * Two types of data are converted; one-dimensional tilt data, which | 
| 1506 | * is given in polar coordinates, and two-dimensional candela data, | 
| 1507 | * which is given in spherical co-ordinates. | 
| 1508 | * | 
| 1509 | * Return 0 for success, -1 for failure. | 
| 1510 | * | 
| 1511 | */ | 
| 1512 | int | 
| 1513 | cvdata( | 
| 1514 | FILE    *in,            /* Input file */ | 
| 1515 | FILE    *out,           /* Output file */ | 
| 1516 | int     ndim,           /* Number of dimensions; 1 for | 
| 1517 | * tilt data, 2 for photometric data. */ | 
| 1518 | int     npts[],         /* Number of points in each dimension */ | 
| 1519 | double  mult,           /* Multiple each value by this | 
| 1520 | * number. For tilt data, always | 
| 1521 | * 1. For candela values, the | 
| 1522 | * efficacy of white Radiance light.  */ | 
| 1523 | double  lim[][2]        /* The range of angles in each dimension. */ | 
| 1524 | ) | 
| 1525 | { | 
| 1526 | double  *pt[4];         /* Four is the expected maximum of ndim. */ | 
| 1527 | int     i, j; | 
| 1528 | double  val; | 
| 1529 | int     total; | 
| 1530 |  | 
| 1531 | /* Calculate and output the number of data values */ | 
| 1532 | total = 1; j = 0; | 
| 1533 | for (i = 0; i < ndim; i++) | 
| 1534 | if (npts[i] > 1) { | 
| 1535 | total *= npts[i]; | 
| 1536 | j++; | 
| 1537 | } | 
| 1538 | fprintf(out, "%d\n", j); | 
| 1539 |  | 
| 1540 | /* Read in the angle values, and note the first and last in | 
| 1541 | * each dimension, if there is a place to store them. In the | 
| 1542 | * case of tilt data, there is only one list of angles. In the | 
| 1543 | * case of candela values, vertical angles appear first, and | 
| 1544 | * horizontal angles occur second. */ | 
| 1545 | for (i = 0; i < ndim; i++) { | 
| 1546 | /* Allocate space for the angle values. */ | 
| 1547 | pt[i] = (double *)malloc(npts[i]*sizeof(double)); | 
| 1548 | for (j = 0; j < npts[i]; j++) | 
| 1549 | if (!scnflt(in, &pt[i][j])) | 
| 1550 | return(-1); | 
| 1551 | if (lim != NULL) { | 
| 1552 | lim[i][0] = pt[i][0]; | 
| 1553 | lim[i][1] = pt[i][npts[i]-1]; | 
| 1554 | } | 
| 1555 | } | 
| 1556 |  | 
| 1557 | /* Output the angles. If this is candela data, horizontal | 
| 1558 | * angles output first. There are two cases: the first where | 
| 1559 | * the angles are evenly spaced, the second where they are | 
| 1560 | * not. | 
| 1561 | * | 
| 1562 | * When the angles are evenly spaced, three numbers are | 
| 1563 | * output: the first angle, the last angle, and the number of | 
| 1564 | * angles.  When the angles are not evenly spaced, instead | 
| 1565 | * zero, zero, and the count of angles is given, followed by a | 
| 1566 | * list of angles.  In this case, angles are output four to a line. | 
| 1567 | */ | 
| 1568 | for (i = ndim-1; i >= 0; i--) { | 
| 1569 | if (npts[i] > 1) { | 
| 1570 | /* Determine if the angles are evenly spaces */ | 
| 1571 | for (j = 1; j < npts[i]-1; j++) | 
| 1572 | if (!FEQ(pt[i][j]-pt[i][j-1], | 
| 1573 | pt[i][j+1]-pt[i][j])) | 
| 1574 | break; | 
| 1575 | /* If they are, output the first angle, the | 
| 1576 | * last angle, and a count */ | 
| 1577 | if (j == npts[i]-1) | 
| 1578 | fprintf(out, "%g %g %d\n", pt[i][0], pt[i][j], | 
| 1579 | npts[i]); | 
| 1580 | else { | 
| 1581 | /* otherwise, output 0, 0, and a | 
| 1582 | * count, followed by the list of | 
| 1583 | * angles, one to a line. */ | 
| 1584 | fprintf(out, "0 0 %d", npts[i]); | 
| 1585 | for (j = 0; j < npts[i]; j++) { | 
| 1586 | if (j%4 == 0) | 
| 1587 | putc('\n', out); | 
| 1588 | fprintf(out, "\t%g", pt[i][j]); | 
| 1589 | } | 
| 1590 | putc('\n', out); | 
| 1591 | } | 
| 1592 | } | 
| 1593 | /* Free the storage containing the angle values. */ | 
| 1594 | free((void *)pt[i]); | 
| 1595 | } | 
| 1596 |  | 
| 1597 | /* Finally, read in the data values (candela or multiplier values, | 
| 1598 | * depending on the part of the file) and output them four to | 
| 1599 | * a line. */ | 
| 1600 | for (i = 0; i < total; i++) { | 
| 1601 | if (i%4 == 0) | 
| 1602 | putc('\n', out); | 
| 1603 | if (!scnflt(in, &val)) | 
| 1604 | return(-1); | 
| 1605 | fprintf(out, "\t%g", val*mult); | 
| 1606 | } | 
| 1607 | putc('\n', out); | 
| 1608 | return(0); | 
| 1609 | } | 
| 1610 |  | 
| 1611 | /* getword - get an LM-63 delimited word from fp | 
| 1612 | * | 
| 1613 | * Getword gets a word from an IES file delimited by either white | 
| 1614 | * space or a comma surrounded by white space. A pointer to the word | 
| 1615 | * is returned, which will persist only until getword is called again. | 
| 1616 | * At EOF, return NULL instead. | 
| 1617 | * | 
| 1618 | */ | 
| 1619 | char * | 
| 1620 | getword(                        /* scan a word from fp */ | 
| 1621 | FILE    *fp | 
| 1622 | ) | 
| 1623 | { | 
| 1624 | static char     wrd[RMAXWORD]; | 
| 1625 | char    *cp; | 
| 1626 | int     c; | 
| 1627 |  | 
| 1628 | /* Skip initial spaces */ | 
| 1629 | while (isspace(c=getc(fp))) | 
| 1630 | ; | 
| 1631 | /* Get characters to a delimiter or until wrd is full */ | 
| 1632 | for (cp = wrd; c != EOF && cp < wrd+RMAXWORD-1; | 
| 1633 | *cp++ = c, c = getc(fp)) | 
| 1634 | if (isspace(c) || c == ',') { | 
| 1635 | /* If we find a delimiter */ | 
| 1636 | /* Gobble up whitespace */ | 
| 1637 | while (isspace(c)) | 
| 1638 | c = getc(fp); | 
| 1639 | /* If it's not a comma, put the first | 
| 1640 | * character of the next data item back */ | 
| 1641 | if ((c != EOF) & (c != ',')) | 
| 1642 | ungetc(c, fp); | 
| 1643 | /* Close out the strimg */ | 
| 1644 | *cp = '\0'; | 
| 1645 | /* return it */ | 
| 1646 | return(wrd); | 
| 1647 | } | 
| 1648 | /* If we ran out of space or are at the end of the file, | 
| 1649 | * return either the word or NULL, as appropriate. */ | 
| 1650 | *cp = '\0'; | 
| 1651 | return(cp > wrd ? wrd : NULL); | 
| 1652 | } | 
| 1653 |  | 
| 1654 | /* cvtint - convert an IES word to an integer | 
| 1655 | * | 
| 1656 | * A pointer to the word is passed in wrd; ip is expected to point to | 
| 1657 | * an integer.  cvtint() will silently truncate a floating point value | 
| 1658 | * to an integer; "1", "1.0", and "1.5" will all return 1. | 
| 1659 | * | 
| 1660 | * cvtint() returns 0 if it fails, 1 if it succeeds. | 
| 1661 | */ | 
| 1662 | int | 
| 1663 | cvtint( | 
| 1664 | int     *ip, | 
| 1665 | char    *wrd | 
| 1666 | ) | 
| 1667 | { | 
| 1668 | if (wrd == NULL || !isint(wrd)) | 
| 1669 | return(0); | 
| 1670 | *ip = atoi(wrd); | 
| 1671 | return(1); | 
| 1672 | } | 
| 1673 |  | 
| 1674 |  | 
| 1675 | /* cvtflt - convert an IES word to a double precision floating-point number | 
| 1676 | * | 
| 1677 | * A pointer to the word is passed in wrd; rp is expected to point to | 
| 1678 | * a double. | 
| 1679 | * | 
| 1680 | * cvtflt returns 0 if it fails, 1 if it succeeds. | 
| 1681 | */ | 
| 1682 | int | 
| 1683 | cvtflt( | 
| 1684 | double  *rp, | 
| 1685 | char    *wrd | 
| 1686 | ) | 
| 1687 | { | 
| 1688 | if (wrd == NULL || !isflt(wrd)) | 
| 1689 | return(0); | 
| 1690 | *rp = atof(wrd); | 
| 1691 | return(1); | 
| 1692 | } | 
| 1693 |  | 
| 1694 | /* cvgeometry - process materials and geometry format luminaire data | 
| 1695 | * | 
| 1696 | * The materials and geometry format (MGF) for describing luminaires | 
| 1697 | * was a part of Radiance that was first adopted and then retracted by | 
| 1698 | * the IES as part of LM-63.  It provides a way of describing | 
| 1699 | * luminaire geometry similar to the Radiance scene description | 
| 1700 | * format. | 
| 1701 | * | 
| 1702 | * cvgeometry() generates an mgf2rad command and then, if "-g" is given | 
| 1703 | * on the command line, an oconv command, both of which are then | 
| 1704 | * executed with the system() function. | 
| 1705 | * | 
| 1706 | * The generated commands are: | 
| 1707 | *   mgf2rad -e <multiplier> -g <size> <mgf_filename> \ | 
| 1708 | *     | xform -s <scale_factor> \ | 
| 1709 | *     >> <luminare_scene_description_file | 
| 1710 | * or: | 
| 1711 | *   mgf2rad -e <multiplier> -g <size> <mgf_filename> \ | 
| 1712 | *     oconv - > <instance_filename> | 
| 1713 | */ | 
| 1714 | int | 
| 1715 | cvgeometry( | 
| 1716 | char    *inpname, | 
| 1717 | SRCINFO *sinf, | 
| 1718 | char    *outname, | 
| 1719 | FILE    *outfp                  /* close output file upon return */ | 
| 1720 | ) | 
| 1721 | { | 
| 1722 | char    buf[256]; | 
| 1723 | char    *cp; | 
| 1724 |  | 
| 1725 | if (inpname == NULL || !inpname[0]) {   /* no geometry file */ | 
| 1726 | fclose(outfp); | 
| 1727 | return(0); | 
| 1728 | } | 
| 1729 | putc('\n', outfp); | 
| 1730 | strcpy(buf, "mgf2rad ");                /* build mgf2rad command */ | 
| 1731 | cp = buf+8; | 
| 1732 | if (!FEQ(sinf->mult, 1.0)) { | 
| 1733 | /* if there's an output multiplier, include in the | 
| 1734 | * mgf2rad command */ | 
| 1735 | sprintf(cp, "-e %f ", sinf->mult); | 
| 1736 | cp += strlen(cp); | 
| 1737 | } | 
| 1738 | /* Include the glow distance for the geometry */ | 
| 1739 | sprintf(cp, "-g %f %s ", | 
| 1740 | sqrt(sinf->w*sinf->w + sinf->h*sinf->h + sinf->l*sinf->l), | 
| 1741 | inpname); | 
| 1742 | cp += strlen(cp); | 
| 1743 | if (instantiate) {              /* instantiate octree */ | 
| 1744 | /* If "-g" is given on the command line, include an | 
| 1745 | * "oconv" command in the pipe. */ | 
| 1746 | strcpy(cp, "| oconv - > "); | 
| 1747 | cp += 12; | 
| 1748 | fullnam(cp,outname,T_OCT); | 
| 1749 | /* Only update if the input file is newer than the | 
| 1750 | * output file */ | 
| 1751 | if (fdate(inpname) > fdate(outname) && | 
| 1752 | system(buf)) {          /* create octree */ | 
| 1753 | fclose(outfp); | 
| 1754 | return(-1); | 
| 1755 | } | 
| 1756 | /* Reference the instance file in the scene description */ | 
| 1757 | fprintf(outfp, "void instance %s_inst\n", outname); | 
| 1758 | /* If the geometry isn't in meters, scale it appropriately. */ | 
| 1759 | if (!FEQ(meters2out, 1.0)) | 
| 1760 | fprintf(outfp, "3 %s -s %f\n", | 
| 1761 | libname(buf,outname,T_OCT), | 
| 1762 | meters2out); | 
| 1763 | else | 
| 1764 | fprintf(outfp, "1 %s\n", libname(buf,outname,T_OCT)); | 
| 1765 | /* Close off the "instance" primitive. */ | 
| 1766 | fprintf(outfp, "0\n0\n"); | 
| 1767 | /* And the Radiance scene description. */ | 
| 1768 | fclose(outfp); | 
| 1769 | } else {                        /* else append to luminaire file */ | 
| 1770 | if (!FEQ(meters2out, 1.0)) {    /* apply scalefactor */ | 
| 1771 | sprintf(cp, "| xform -s %f ", meters2out); | 
| 1772 | cp += strlen(cp); | 
| 1773 | } | 
| 1774 | if (!out2stdout) { | 
| 1775 | fclose(outfp); | 
| 1776 | strcpy(cp, ">> ");      /* append works for DOS? */ | 
| 1777 | cp += 3; | 
| 1778 | fullnam(cp,outname,T_RAD); | 
| 1779 | } | 
| 1780 | if (system(buf)) | 
| 1781 | return(-1); | 
| 1782 | } | 
| 1783 | return(0); | 
| 1784 | } | 
| 1785 |  | 
| 1786 | /* Set up emacs indentation */ | 
| 1787 | /* Local Variables: */ | 
| 1788 | /*   c-file-style: "bsd" */ | 
| 1789 | /* End: */ | 
| 1790 |  | 
| 1791 | /* For vim, use ":set tabstop=8 shiftwidth=8" */ |