ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/ies2rad.c
(Generate patch)

Comparing ray/src/cv/ies2rad.c (file contents):
Revision 2.9 by greg, Mon Aug 23 10:22:42 1993 UTC vs.
Revision 2.32 by greg, Sat Dec 28 18:05:14 2019 UTC

# Line 1 | Line 1
1 /* Copyright (c) 1992 Regents of the University of California */
2
1   #ifndef lint
2 < static char SCCSid[] = "$SunId$ LBL";
2 > static const char       RCSid[] = "$Id$";
3   #endif
6
4   /*
5 < * Convert IES luminaire data to Radiance description
5 > * ies2rad -- Convert IES luminaire data to Radiance description
6   *
7 + * ies2rad converts an IES LM-63 luminare description to a Radiance
8 + * luminaire description.  In addition, ies2rad manages a local
9 + * database of Radiance luminaire files.
10 + *
11 + * Ies2rad generates two or three files for each luminaire. For a
12 + * luminaire named LUM, ies2rad will generate LUM.rad, a Radiance
13 + * scene description file which describes the light source, LUM.dat,
14 + * which contains the photometric data from the IES LM-63 file, and
15 + * (if tilt data is provided) LUM%.dat, which contains the tilt data
16 + * from the IES file.
17 + *
18 + * Ies2rad is supported by the Radiance function files source.cal and
19 + * tilt.cal, which transform the coordinates in the IES data into
20 + * Radiance (θ,φ) luminaire coordinates and then apply photometric and
21 + * tilt data to generate Radiance light. θ is altitude from the
22 + * negative z-axis and φ is azimuth from the positive x-axis,
23 + * increasing towards the positive y-axis. This system matches none of
24 + * the usual goniophotometric conventions, but it is closest to IES
25 + * type C; V in type C photometry is θ in Radiance and L is -φ.
26 + *
27 + * The ies2rad scene description for a luminaire LUM, with tilt data,
28 + * uses the following Radiance scene description primitives:
29 + *
30 + *     void brightdata LUM_tilt
31 + *     …
32 + *     LUM_tilt brightdata LUM_dist
33 + *     …
34 + *     LUM_dist light LUM_light
35 + *     …
36 + *     LUM_light surface1 name1
37 + *     …
38 + *     LUM_light surface2 name2
39 + *     …
40 + *     LUM_light surface_n name_n
41 + *
42 + * Without tilt data, the primitives are:
43 + *
44 + *     void brightdata LUM_dist
45 + *     …
46 + *     LUM_dist light LUM_light
47 + *     …
48 + *     LUM_light surface1 name1
49 + *     …
50 + *     LUM_light surface2 name2
51 + *     …
52 + *     LUM_light surface_n name_n
53 + *
54 + * As many surfaces are given as required to describe the light
55 + * source. Illum may be used rather than light so that a visible form
56 + * (impostor) may be given to the luminaire, rather than a simple
57 + * glowing shape. If an impostor is provided, it must be wholly
58 + * contained within the illum and if it provides impostor light
59 + * sources, those must be given with glow, so that they do not
60 + * themselves illuminate the scene, providing incorrect results.
61 + *
62 + * The ies2rad code uses the "bsd" style. For emacs, this is set up
63 + * automatically in the "Local Variables" section at the end of the
64 + * file. For vim, use ":set tabstop=8 shiftwidth=8".
65 + *
66   *      07Apr90         Greg Ward
67 + *
68 + *  Fixed correction factor for flat sources 29Oct2001 GW
69 + *  Extensive comments added by Randolph Fritz May2018
70   */
71  
13 #include <stdio.h>
72   #include <math.h>
73   #include <ctype.h>
74 +
75 + #include "rtio.h"
76   #include "color.h"
77   #include "paths.h"
78  
79   #define PI              3.14159265358979323846
80 <                                        /* floating comparisons */
80 >
81 > /* floating comparisons -- floating point numbers within FTINY of each
82 > * other are considered equal */
83   #define FTINY           1e-6
84   #define FEQ(a,b)        ((a)<=(b)+FTINY&&(a)>=(b)-FTINY)
85 <                                        /* tilt specs */
85 >
86 >
87 > /* IESNA LM-63 keywords and constants */
88 > /* Since 1991, LM-63 files have begun with the magic keyword IESNA */
89 > #define MAGICID         "IESNA"
90 > #define LMAGICID        5
91 > /* But newer files start with IESNA:LM-63- */
92 > #define MAGICID2        "IESNA:LM-63-"
93 > #define LMAGICID2       12
94 > /* ies2rad supports the 1986, 1991, and 1995 versions of
95 > * LM-63. FIRSTREV describes the first version; LASTREV describes the
96 > * 1995 version. */
97 > #define FIRSTREV        86
98 > #define LASTREV         95
99 >
100 > /* The following definitions support LM-63 file keyword reading and
101 > * analysis.
102 > *
103 > * This section defines two function-like macros: keymatch(i,s), which
104 > * checks to see if keyword i matches string s, and checklamp(s),
105 > * which checks to see if a string matches the keywords "LAMP" or
106 > * "LAMPCAT".
107 > *
108 > * LM-63-1986 files begin with a list of free-form label lines.
109 > * LM-63-1991 files begin with the identifying line "IESNA91" followed
110 > * by a list of formatted keywords.  LM-63-1995 files begin with the
111 > * identifying line "IESNA:LM-63-1995" followed by a list of formatted
112 > * keywords.
113 > *
114 > * The K_* #defines enumerate the keywords used in the different
115 > * versions of the file and give them symbolic names.
116 > *
117 > * The D86, D91, and D95 #defines validate the keywords in the 1986,
118 > * 1991, and 1995 versions of the standard, one bit per keyword.
119 > * Since the 1986 standard does not use keywords, D86 is zero.  The
120 > * 1991 standard has 13 keywords, and D91 has the lower 13 bits set.
121 > * The 1995 standard has 14 keywords, and D95 has the lower 14 bits
122 > * set.
123 > *
124 > */
125 > #define D86             0
126 >
127 > #define K_TST           0
128 > #define K_MAN           1
129 > #define K_LMC           2
130 > #define K_LMN           3
131 > #define K_LPC           4
132 > #define K_LMP           5
133 > #define K_BAL           6
134 > #define K_MTC           7
135 > #define K_OTH           8
136 > #define K_SCH           9
137 > #define K_MOR           10
138 > #define K_BLK           11
139 > #define K_EBK           12
140 >
141 > /* keywords defined in LM-63-1991 */
142 > #define D91             ((1L<<13)-1)
143 >
144 > #define K_LMG           13
145 >
146 > /* keywords defined in LM-63-1995 */
147 > #define D95             ((1L<<14)-1)
148 >
149 > char    k_kwd[][20] = {"TEST", "MANUFAC", "LUMCAT", "LUMINAIRE", "LAMPCAT",
150 >                        "LAMP", "BALLAST", "MAINTCAT", "OTHER", "SEARCH",
151 >                        "MORE", "BLOCK", "ENDBLOCK", "LUMINOUSGEOMETRY"};
152 >
153 > long k_defined[] = {D86, D86, D86, D86, D86, D91, D91, D91, D91, D95};
154 >
155 > int     filerev = FIRSTREV;
156 >
157 > #define keymatch(i,s)   (k_defined[filerev-FIRSTREV]&1L<<(i) &&\
158 >                                k_match(k_kwd[i],s))
159 >
160 > #define checklamp(s)    (!(k_defined[filerev-FIRSTREV]&(1<<K_LMP|1<<K_LPC)) ||\
161 >                                keymatch(K_LMP,s) || keymatch(K_LPC,s))
162 >
163 > /* tilt specs
164 > *
165 > * This next series of definitions address metal-halide lamps, which
166 > * change their brightness depending on the angle at which they are
167 > * mounted. The section begins with "TILT=".  The constants in this
168 > * section are all defined in LM-63.
169 > *
170 > */
171 >
172   #define TLTSTR          "TILT="
173   #define TLTSTRLEN       5
174   #define TLTNONE         "NONE"
# Line 28 | Line 176 | static char SCCSid[] = "$SunId$ LBL";
176   #define TLT_VERT        1
177   #define TLT_H0          2
178   #define TLT_H90         3
179 <                                        /* photometric types */
179 >
180 > /* Constants from LM-63 files */
181 >
182 > /* photometric types
183 > *
184 > * This enumeration reflects three different methods of measuring the
185 > * distribution of light from a luminaire -- "goniophotometry" -- and
186 > * the different coordinate systems related to these
187 > * goniophotometers.  All are described in IES standard LM-75-01.
188 > * Earlier and shorter descriptions may be found the LM-63 standards
189 > * from 1986, 1991, and 1995.
190 > *
191 > * ies2rad does not support type A photometry.
192 > *
193 > * In the 1986 file format, LM-63-86, 1 is used for type C and type A
194 > * photometric data.
195 > *
196 > */
197   #define PM_C            1
198   #define PM_B            2
199 <                                        /* unit types */
199 > #define PM_A            3
200 >
201 > /* unit types */
202   #define U_FEET          1
203   #define U_METERS        2
204 <                                        /* string lengths */
205 < #define MAXLINE         132
206 < #define MAXWORD         76
207 <                                        /* file types */
204 >
205 > /* string lengths */
206 > /* Maximum input line is 256 characters including CR LF at end. */
207 > #define MAXLINE         257
208 > #define RMAXWORD        76
209 >
210 > /* End of LM-63-related #defines */
211 >
212 > /* file extensions */
213   #define T_RAD           ".rad"
214   #define T_DST           ".dat"
215 < #define T_TLT           "+.dat"
216 <                                        /* shape types */
215 > #define T_TLT           "%.dat"
216 > #define T_OCT           ".oct"
217 >
218 > /* shape types
219 > * These #defines enumerate the shapes of the Radiance objects which
220 > * emit the light.
221 > */
222   #define RECT            1
223   #define DISK            2
224   #define SPHERE          3
225  
226 < #define MINDIM          .001            /* minimum dimension (point source) */
226 > /* The diameter of a point source luminaire model. Also the minimum
227 > * size (in meters) that the luminous opening of a luminaire must have
228 > * to be treated as other than a point source. */
229 > #define MINDIM          .001
230  
231 < #define F_M             .3048           /* feet to meters */
231 > /* feet to meters */
232 > /* length_in_meters = length_in_feet * F_M */
233 > #define F_M             .3048
234  
235 + /* abspath - return true if a path begins with a directory separator
236 + * or a '.' (current directory) */
237   #define abspath(p)      (ISDIRSEP((p)[0]) || (p)[0] == '.')
238  
239 + /* Global variables.
240 + *
241 + * Mostly, these are a way of communicating command line parameters to
242 + * the rest of the program.
243 + */
244   static char     default_name[] = "default";
245  
246   char    *libdir = NULL;                 /* library directory location */
# Line 65 | Line 254 | float  defcolor[3] = {1.,1.,1.};       /* default lamp color
254   float   *lampcolor = defcolor;          /* pointer to current lamp color */
255   double  multiplier = 1.0;               /* multiplier for all light sources */
256   char    units[64] = "meters";           /* output units */
257 + int     out2stdout = 0;                 /* put out to stdout r.t. file */
258 + int     instantiate = 0;                /* instantiate geometry */
259   double  illumrad = 0.0;                 /* radius for illum sphere */
260  
261 + /* This struct describes the Radiance source object */
262   typedef struct {
263 +        int     isillum;                        /* do as illum */
264          int     type;                           /* RECT, DISK, SPHERE */
265 +        double  mult;                           /* candela multiplier */
266          double  w, l, h;                        /* width, length, height */
267          double  area;                           /* max. projected area */
268 < } SHAPE;                                /* a source shape */
268 > } SRCINFO;                              /* a source shape (units=meters) */
269  
270 < int     gargc;                          /* global argc (minus filenames) */
270 > /* A count and pointer to the list of input file names */
271 > int     gargc;                          /* global argc */
272   char    **gargv;                        /* global argv */
273  
274 < extern char     *strcpy(), *strcat(), *stradd(), *tailtrunc(), *filetrunc(),
275 <                *filename(), *libname(), *fullname(), *malloc(),
276 <                *getword(), *atos();
277 < extern float    *matchlamp();
278 <
274 > /* macros to scan numbers out of IES files
275 > *
276 > * fp is a file pointer.  scnint() places the number in the integer
277 > * indicated by ip; scnflt() places the number in the double indicated
278 > * by rp. The macros return 1 if successful, 0 if not.
279 > *
280 > */
281   #define scnint(fp,ip)   cvtint(ip,getword(fp))
282   #define scnflt(fp,rp)   cvtflt(rp,getword(fp))
86 #define isint           isflt                   /* IES allows real as integer */
283  
284 + /* The original (1986) version of LM-63 allows decimals points in
285 + * integers, so that, for instance, the number of lamps may be written
286 + * 3.0 (the number, obviously, must still be an integer.) This
287 + * confusing define accommodates that.  */
288 + #define isint           isflt
289  
290 < main(argc, argv)
291 < int     argc;
292 < char    *argv[];
290 > /* Function declarations */
291 > static int ies2rad(char *inpname, char *outname);
292 > static void initlamps(void);
293 > static int dosource(SRCINFO *sinf, FILE *in, FILE *out, char *mod, char *name);
294 > static int dotilt(FILE *in, FILE *out, char *dir, char *tltspec,
295 >                char *dfltname, char *tltid);
296 > static int cvgeometry(char *inpname, SRCINFO *sinf, char *outname, FILE *outfp);
297 > static int cvtint(int *ip, char *wrd);
298 > static int cvdata(FILE *in, FILE *out, int ndim, int npts[], double mult,
299 >                double lim[][2]);
300 > static int cvtflt(double *rp, char *wrd);
301 > static int makeshape(SRCINFO *shp, double width, double length, double height);
302 > static int putsource(SRCINFO *shp, FILE *fp, char *mod, char *name,
303 >                int dolower, int doupper, int dosides);
304 > static void putrectsrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up);
305 > static void putsides(SRCINFO *shp, FILE *fp, char *mod, char *name);
306 > static void putdisksrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up);
307 > static void putspheresrc(SRCINFO *shp, FILE *fp, char *mod, char *name);
308 > static void putrect(SRCINFO *shp, FILE *fp, char *mod, char *name, char *suffix,
309 >                int a, int b, int c, int d);
310 > static void putpoint(SRCINFO *shp, FILE *fp, int p);
311 > static void putcyl(SRCINFO *shp, FILE *fp, char *mod, char *name);
312 > static char * tailtrunc(char *name);
313 > static char * filename(char *path);
314 > static char * libname(char *path, char *fname, char *suffix);
315 > static char * getword(FILE *fp);
316 > static char * fullnam(char *path, char *fname, char *suffix);
317 >
318 > /* main - process arguments and run the conversion
319 > *
320 > * Refer to the man page for details of the arguments.
321 > *
322 > * Following Unix environment conventions, main() exits with 0 on
323 > * success and 1 on failure.
324 > *
325 > * ies2rad outputs either two or three files for a given IES
326 > * file. There is always a .rad file containing Radiance scene
327 > * description primitives and a .dat file for the photometric data. If
328 > * tilt data is given, that is placed in a separate .dat file.  So
329 > * ies2rad must have a filename to operate. Sometimes this name is the
330 > * input file name, shorn of its extension; sometimes it is given in
331 > * the -o option. But an output file name is required for ies2rad to
332 > * do its work.
333 > *
334 > * Older versions of the LM-63 standard allowed inclusion of multiple
335 > * luminaires in one IES file; this is not supported by ies2rad.
336 > *
337 > * This code sometimes does not check to make sure it has not run out
338 > * of arguments; this can lead to segmentation faults and perhaps
339 > * other errors.
340 > *
341 > */
342 > int
343 > main(
344 >        int     argc,
345 >        char    *argv[]
346 > )
347   {
348          char    *outfile = NULL;
349          int     status;
350 <        char    outname[MAXWORD];
350 >        char    outname[RMAXWORD];
351          double  d1;
352          int     i;
353 <        
353 >
354 >        /* Scan the options */
355          for (i = 1; i < argc && argv[i][0] == '-'; i++)
356                  switch (argv[i][1]) {
357                  case 'd':               /* dimensions */
# Line 157 | Line 413 | char   *argv[];
413                  case 'f':               /* lamp data file */
414                          lampdat = argv[++i];
415                          break;
416 <                case 'o':               /* output file name */
416 >                case 'o':               /* output file root name */
417                          outfile = argv[++i];
418                          break;
419 +                case 's':               /* output to stdout */
420 +                        out2stdout = !out2stdout;
421 +                        break;
422                  case 'i':               /* illum */
423                          illumrad = atof(argv[++i]);
165                        if (illumrad < MINDIM)
166                                illumrad = MINDIM;
424                          break;
425 +                case 'g':               /* instantiate geometry? */
426 +                        instantiate = !instantiate;
427 +                        break;
428                  case 't':               /* override lamp type */
429                          lamptype = argv[++i];
430                          break;
# Line 185 | Line 445 | char   *argv[];
445                                          argv[0], argv[i]);
446                          exit(1);
447                  }
448 +        /* Save pointers to the list of input file names */
449          gargc = i;
450          gargv = argv;
451 <        initlamps();                    /* get lamp data (if needed) */
452 <                                        /* convert ies file(s) */
451 >
452 >        /* get lamp data (if needed) */
453 >        initlamps();
454 >
455 >        /* convert ies file(s) */
456 >        /* If an output file name is specified */
457          if (outfile != NULL) {
458                  if (i == argc)
459 +                        /* If no input filename is given, use stdin as
460 +                         * the source for the IES file */
461                          exit(ies2rad(NULL, outfile) == 0 ? 0 : 1);
462                  else if (i == argc-1)
463 +                        /* If exactly one input file name is given, use it. */
464                          exit(ies2rad(argv[i], outfile) == 0 ? 0 : 1);
465 <                else {
466 <                        fprintf(stderr, "%s: single input file required\n",
199 <                                        argv[0]);
200 <                        exit(1);
201 <                }
465 >                else
466 >                        goto needsingle; /* Otherwise, error. */
467          } else if (i >= argc) {
468 +                /* If an output file and an input file are not give, error. */
469                  fprintf(stderr, "%s: missing output file specification\n",
470                                  argv[0]);
471                  exit(1);
472          }
473 +        /* If no input or output file is given, error. */
474 +        if (out2stdout && i != argc-1)
475 +                goto needsingle;
476 +        /* Otherwise, process each input file in turn. */
477          status = 0;
478          for ( ; i < argc; i++) {
479                  tailtrunc(strcpy(outname,filename(argv[i])));
# Line 211 | Line 481 | char   *argv[];
481                          status = 1;
482          }
483          exit(status);
484 + needsingle:
485 +        fprintf(stderr, "%s: single input file required\n", argv[0]);
486 +        exit(1);
487   }
488  
489 <
490 < initlamps()                             /* set up lamps */
489 > /* Initlamps -- If necessary, read lamp data table */
490 > void
491 > initlamps(void)                         /* set up lamps */
492   {
493          float   *lcol;
494          int     status;
495  
496 +        /* If the lamp name is set to default, don't bother to read
497 +         * the lamp data table. */
498          if (lamptype != NULL && !strcmp(lamptype, default_name) &&
499                          deflamp == NULL)
500 <                return;                         /* no need for data */
501 <                                                /* else load file */
502 <        if ((status = loadlamps(lampdat)) < 0)
503 <                exit(1);
500 >                return;
501 >
502 >        if ((status = loadlamps(lampdat)) < 0) /* Load the lamp data table */
503 >                exit(1);                       /* Exit if problems
504 >                                                * with the file. */
505          if (status == 0) {
506 +                /* If can't open the file, just use the standard default lamp */
507                  fprintf(stderr, "%s: warning - no lamp data\n", lampdat);
508                  lamptype = default_name;
509                  return;
510          }
511 <        if (deflamp != NULL) {                  /* match default type */
511 >        if (deflamp != NULL) {
512 >                /* Look up the specified default lamp type */
513                  if ((lcol = matchlamp(deflamp)) == NULL)
514 +                        /* If it can't be found, use the default */
515                          fprintf(stderr,
516                                  "%s: warning - unknown default lamp type\n",
517                                          deflamp);
518                  else
519 +                        /* Use the selected default lamp color */
520                          copycolor(defcolor, lcol);
521          }
522 <        if (lamptype != NULL) {                 /* match selected type */
522 >        /* If a lamp type is specified and can be found, use it, and
523 >         * release the lamp data table memory; it won't be needed any more. */
524 >        if (lamptype != NULL) {
525                  if (strcmp(lamptype, default_name)) {
526                          if ((lcol = matchlamp(lamptype)) == NULL) {
527                                  fprintf(stderr,
# Line 250 | Line 533 | initlamps()                            /* set up lamps */
533                  }
534                  freelamps();                    /* all done with data */
535          }
536 <                                                /* else keep lamp data */
536 >        /* else keep lamp data */
537   }
538  
539 + /*
540 + * File path operations
541 + *
542 + * These provide file path operations that operate on both MS-Windows
543 + * and *nix. They will ignore and pass, but will not necessarily
544 + * process correctly, Windows drive letters. Paths including Windows
545 + * UNC network names (\\server\folder\file) may also cause problems.
546 + *
547 + */
548  
549 + /*
550 + * stradd()
551 + *
552 + * Add a string to the end of a string, optionally concatenating a
553 + * file path separator character.  If the path already ends with a
554 + * path separator, no additional separator is appended.
555 + *
556 + */
557   char *
558 < stradd(dst, src, sep)                   /* add a string at dst */
559 < register char   *dst, *src;
560 < int     sep;
558 > stradd(                 /* add a string at dst */
559 >        char    *dst,
560 >        char    *src,
561 >        int     sep
562 > )
563   {
564          if (src && *src) {
565                  do
# Line 270 | Line 572 | int    sep;
572          return(dst);
573   }
574  
575 <
575 > /*
576 > * fullnam () - return a usable path name for an output file
577 > */
578   char *
579 < fullname(path, fname, suffix)           /* return full path name */
580 < char    *path, *fname, *suffix;
579 > fullnam(
580 >        char    *path,          /* The base directory path */
581 >        char    *fname,         /* The file name */
582 >        char    *suffix         /* A suffix, which usually contains
583 >                                 * a file name extension. */
584 > )
585   {
586 +        extern char *prefdir;
587 +        extern char *libdir;
588 +
589          if (prefdir != NULL && abspath(prefdir))
590 +                /* If the subdirectory path is absolute or '.', just
591 +                 * concatenate the names together */
592                  libname(path, fname, suffix);
593          else if (abspath(fname))
594 +                /* If there is no subdirectory, and the file name is
595 +                 * an absolute path or '.', concatenate the path,
596 +                 * filename, and suffix. */
597                  strcpy(stradd(path, fname, 0), suffix);
598          else
599 +                /* If the file name is relative, concatenate path,
600 +                 * library directory, directory separator, file name,
601 +                 * and suffix.  */
602                  libname(stradd(path, libdir, DIRSEP), fname, suffix);
603  
604          return(path);
605   }
606  
607  
608 + /*
609 + * libname - convert a file name to a path
610 + */
611   char *
612 < libname(path, fname, suffix)            /* return library relative name */
613 < char    *path, *fname, *suffix;
612 > libname(
613 >        char    *path,          /* The base directory path */
614 >        char    *fname,         /* The file name */
615 >        char    *suffix         /* A suffix, which usually contains
616 >                                 * a file name extension. */
617 > )
618   {
619 +        extern char *prefdir;   /* The subdirectory where the file
620 +                                 * name is stored. */
621 +
622          if (abspath(fname))
623 +                /* If the file name begins with '/' or '.', combine
624 +                 * it with the path and attach the suffix */
625                  strcpy(stradd(path, fname, 0), suffix);
626          else
627 +                /* If the file name is relative, attach it to the
628 +                 * path, include the subdirectory, and append the suffix. */
629                  strcpy(stradd(stradd(path, prefdir, DIRSEP), fname, 0), suffix);
630  
631          return(path);
632   }
633  
634 <
634 > /* filename - find the base file name in a buffer containing a path
635 > *
636 > * The pointer is to a character within the buffer, not a string in itself;
637 > * it will become invalid when the buffer is freed.
638 > *
639 > */
640   char *
641 < filename(path)                  /* get final component of pathname */
642 < register char   *path;
641 > filename(
642 >        char    *path
643 > )
644   {
645 <        register char   *cp;
645 >        char    *cp;
646  
647          for (cp = path; *path; path++)
648                  if (ISDIRSEP(*path))
# Line 312 | Line 651 | register char  *path;
651   }
652  
653  
654 + /* filetrunc() - return the directory portion of a path
655 + *
656 + * The path is passed in in a pointer to a buffer; a null character is
657 + * inserted in the buffer after the last directory separator
658 + *
659 + */
660   char *
661 < filetrunc(path)                         /* truncate filename at end of path */
662 < char    *path;
661 > filetrunc(
662 >        char    *path
663 > )
664   {
665 <        register char   *p1, *p2;
665 >        char    *p1, *p2;
666  
667          for (p1 = p2 = path; *p2; p2++)
668                  if (ISDIRSEP(*p2))
669                          p1 = p2;
670 +        if (p1 == path && ISDIRSEP(*p1))
671 +                p1++;
672          *p1 = '\0';
673          return(path);
674   }
675  
676 <
676 > /* tailtrunc() - trim a file name extension, if any.
677 > *
678 > * The file name is passed in in a buffer indicated by *name; the
679 > * period which begins the extension is replaced with a 0 byte.
680 > */
681   char *
682 < tailtrunc(name)                         /* truncate tail of filename */
683 < char    *name;
682 > tailtrunc(
683 >        char    *name
684 > )
685   {
686 <        register char   *p1, *p2;
686 >        char    *p1, *p2;
687  
688 +        /* Skip leading periods */
689          for (p1 = filename(name); *p1 == '.'; p1++)
690                  ;
691 +        /* Find the last period in a file name */
692          p2 = NULL;
693          for ( ; *p1; p1++)
694                  if (*p1 == '.')
695                          p2 = p1;
696 +        /* If present, trim the filename at that period */
697          if (p2 != NULL)
698                  *p2 = '\0';
699          return(name);
700   }
701  
702 <
703 < blanktrunc(s)                           /* truncate spaces at end of line */
704 < char    *s;
702 > /* blanktrunc() - trim spaces at the end of a string
703 > *
704 > * the string is passed in a character array, which is modified
705 > */
706 > void
707 > blanktrunc(
708 >        char    *s
709 > )
710   {
711 <        register char   *cp;
711 >        char    *cp;
712  
713          for (cp = s; *cp; cp++)
714                  ;
# Line 356 | Line 717 | char   *s;
717          *++cp = '\0';
718   }
719  
720 + /* k_match - return true if keyword matches header line */
721 + int
722 + k_match(
723 +        char    *kwd,           /* keyword */
724 +        char    *hdl            /* header line */
725 + )
726 + {
727 +        /* Skip leading spaces */
728 +        while (isspace(*hdl))
729 +                hdl++;
730 +        /* The line has to begin with '[' */
731 +        if (*hdl++ != '[')
732 +                return(0);
733 +        /* case-independent keyword match */
734 +        while (toupper(*hdl) == *kwd++)
735 +                if (!*hdl++)
736 +                        return(0);
737 +        /* If we have come to the end of the keyword, and the keyword
738 +         * at the beginning of the matched line is terminated with
739 +         * ']', return 1 */
740 +        return(!kwd[-1] & (*hdl == ']'));
741 + }
742  
743 < putheader(out)                          /* print header */
744 < FILE    *out;
743 > /* keyargs - return the argument of a keyword, without leading spaces
744 > *
745 > * keyargs is passed a pointer to a buffer; it returns a pointer to
746 > * where the argument starts in the buffer
747 > *
748 > */
749 > char *
750 > keyargs(
751 >        char    *hdl /* header line */
752 > )
753   {
754 <        register int    i;
755 <        
754 >        while (*hdl && *hdl++ != ']')
755 >                ;
756 >        while (isspace(*hdl))
757 >                hdl++;
758 >        return(hdl);
759 > }
760 >
761 >
762 > /* putheader - output the header of the .rad file
763 > *
764 > * Header is:
765 > *   # <file> <file> <file> (all files from input line)
766 > *   # Dimensions in [feet,meters,etc.]
767 > *
768 > * ??? Is listing all the input file names correct behavior?
769 > *
770 > */
771 > void
772 >
773 > putheader(
774 >        FILE    *out
775 > )
776 > {
777 >        int     i;
778 >
779          putc('#', out);
780          for (i = 0; i < gargc; i++) {
781                  putc(' ', out);
# Line 372 | Line 786 | FILE   *out;
786          putc('\n', out);
787   }
788  
789 <
790 < ies2rad(inpname, outname)               /* convert IES file */
791 < char    *inpname, *outname;
789 > /* ies2rad - convert an IES LM-63 file to a Radiance light source desc.
790 > *
791 > * Return -1 in case of failure, 0 in case of success.
792 > *
793 > * The file version recognition is confused and will treat 1995 and
794 > * 2002 version files as 1986 version files.
795 > *
796 > */
797 > int
798 > ies2rad(                /* convert IES file */
799 >        char    *inpname,
800 >        char    *outname
801 > )
802   {
803 <        char    buf[MAXLINE], tltid[MAXWORD];
803 >        SRCINFO srcinfo;
804 >        char    buf[MAXLINE], tltid[RMAXWORD];
805 >        char    geomfile[128];
806          FILE    *inpfp, *outfp;
807 +        int     lineno = 0;
808  
809 +        /* Open input and output files */
810 +        geomfile[0] = '\0';
811 +        srcinfo.isillum = 0;
812          if (inpname == NULL) {
813                  inpname = "<stdin>";
814                  inpfp = stdin;
# Line 386 | Line 816 | char   *inpname, *outname;
816                  perror(inpname);
817                  return(-1);
818          }
819 <        if ((outfp = fopen(fullname(buf,outname,T_RAD), "w")) == NULL) {
819 >        if (out2stdout)
820 >                outfp = stdout;
821 >        else if ((outfp = fopen(fullnam(buf,outname,T_RAD), "w")) == NULL) {
822                  perror(buf);
823                  fclose(inpfp);
824                  return(-1);
825          }
826 +
827 +        /* Output the output file header */
828          putheader(outfp);
829 +
830 +        /* If the lamp type wasn't given on the command line, mark
831 +         * the lamp color as missing */
832          if (lamptype == NULL)
833                  lampcolor = NULL;
834 +
835 +        /* Read the input file header, copying lines to the .rad file
836 +         * and looking for a lamp type. Stop at EOF or a line
837 +         * beginning with "TILT=". */
838          while (fgets(buf,sizeof(buf),inpfp) != NULL
839                          && strncmp(buf,TLTSTR,TLTSTRLEN)) {
840 <                blanktrunc(buf);
841 <                if (!buf[0])
840 >                blanktrunc(buf); /* Trim trailing spaces, CR, LF. */
841 >                if (!buf[0])     /* Skip blank lines */
842                          continue;
843 +                /* increment the header line count, and check for the
844 +                 * "TILT=" line that terminates the header */
845 +                if (!lineno++) {        /* first line may be magic */
846 +                        if (!strncmp(buf, MAGICID2, LMAGICID2))
847 +                                filerev = atoi(buf+LMAGICID2) - 1900;
848 +                        else if (!strncmp(buf, MAGICID, LMAGICID))
849 +                                filerev = atoi(buf+LMAGICID);
850 +                        if (filerev < FIRSTREV)
851 +                                filerev = FIRSTREV;
852 +                        else if (filerev > LASTREV)
853 +                                filerev = LASTREV;
854 +                }
855 +                /* Output the header line as a comment in the .rad file. */
856                  fputs("#<", outfp);
857                  fputs(buf, outfp);
858                  putc('\n', outfp);
859 <                if (lampcolor == NULL)
860 <                        lampcolor = matchlamp(buf);
859 >
860 >                /* If the header line is a keyword line (file version
861 >                 * later than 1986 and begins with '['), check a lamp
862 >                 * in the "[LAMP]" and "[LAMPCAT]" keyword lines;
863 >                 * otherwise check all lines.  */
864 >                if (lampcolor == NULL && checklamp(buf))
865 >                        lampcolor = matchlamp(*sskip2(buf,0) == '[' ?
866 >                                                keyargs(buf) : buf );
867 >                /* Look for a materials and geometry file in the keywords. */
868 >                if (keymatch(K_LMG, buf)) {
869 >                        strcpy(geomfile, inpname);
870 >                        strcpy(filename(geomfile), keyargs(buf));
871 >                        srcinfo.isillum = 1;
872 >                }
873          }
874 +
875 +        /* Done reading header information. If a lamp color still
876 +         * hasn't been found, print a warning and use the default
877 +         * color; if a lamp type hasn't been found, but a color has
878 +         * been specified, used the specified color. */
879          if (lampcolor == NULL) {
880                  fprintf(stderr, "%s: warning - no lamp type\n", inpname);
881                  fputs("# Unknown lamp type (used default)\n", outfp);
# Line 412 | Line 883 | char   *inpname, *outname;
883          } else if (lamptype == NULL)
884                  fprintf(outfp,"# CIE(x,y) = (%f,%f)\n# Depreciation = %.1f%%\n",
885                                  lampcolor[3], lampcolor[4], 100.*lampcolor[5]);
886 +
887 +        /* If the file ended before a "TILT=" line, that's an error. */
888          if (feof(inpfp)) {
889                  fprintf(stderr, "%s: not in IES format\n", inpname);
890                  goto readerr;
891          }
892 <        atos(tltid, MAXWORD, buf+TLTSTRLEN);
892 >
893 >        /* Process the tilt section of the file. */
894 >        /* Get the tilt file name, or the keyword "INCLUDE". */
895 >        atos(tltid, RMAXWORD, buf+TLTSTRLEN);
896          if (inpfp == stdin)
897                  buf[0] = '\0';
898          else
899                  filetrunc(strcpy(buf, inpname));
900 +        /* Process the tilt data. */
901          if (dotilt(inpfp, outfp, buf, tltid, outname, tltid) != 0) {
902                  fprintf(stderr, "%s: bad tilt data\n", inpname);
903                  goto readerr;
904          }
905 <        if (dosource(inpfp, outfp, tltid, outname) != 0) {
905 >
906 >        /* Process the luminaire data. */
907 >        if (dosource(&srcinfo, inpfp, outfp, tltid, outname) != 0) {
908                  fprintf(stderr, "%s: bad luminaire data\n", inpname);
909                  goto readerr;
910          }
911 <        fclose(outfp);
911 >
912 >        /* Close the input file */
913          fclose(inpfp);
914 +
915 +        /* Process an MGF file, if present. cvgeometry() closes outfp. */
916 +        if (cvgeometry(geomfile, &srcinfo, outname, outfp) != 0) {
917 +                fprintf(stderr, "%s: bad geometry file\n", geomfile);
918 +                return(-1);
919 +        }
920          return(0);
921 +
922   readerr:
923 <        fclose(outfp);
923 >        /* If there is an error reading the file, close the input and
924 >         * .rad output files, and delete the .rad file, returning -1. */
925          fclose(inpfp);
926 <        unlink(fullname(buf,outname,T_RAD));
926 >        fclose(outfp);
927 >        unlink(fullnam(buf,outname,T_RAD));
928          return(-1);
929   }
930  
931 <
932 < dotilt(in, out, dir, tltspec, dfltname, tltid)  /* convert tilt data */
933 < FILE    *in, *out;
934 < char    *dir, *tltspec, *dfltname, *tltid;
931 > /* dotilt -- process tilt data
932 > *
933 > * Generate a brightdata primitive which describes the effect of
934 > * luminaire tilt on luminaire output and return its identifier in tltid.
935 > *
936 > * Tilt data (if present) is given as a number 1, 2, or 3, which
937 > * specifies the orientation of the lamp within the luminaire, a
938 > * number, n, of (angle, multiplier) pairs, followed by n angles and n
939 > * multipliers.
940 > *
941 > * returns 0 for success, -1 for error
942 > */
943 > int
944 > dotilt(
945 >        FILE    *in,
946 >        FILE    *out,
947 >        char    *dir,
948 >        char    *tltspec,
949 >        char    *dfltname,
950 >        char    *tltid
951 > )
952   {
953          int     nangles, tlt_type;
954 <        double  minmax[2];
955 <        char    buf[MAXPATH], tltname[MAXWORD];
954 >        double  minmax[1][2];
955 >        char    buf[PATH_MAX], tltname[RMAXWORD];
956          FILE    *datin, *datout;
957  
958 +        /* Decide where the tilt data is; if the luminaire description
959 +         * doesn't have a tilt section, set the identifier to "void". */
960          if (!strcmp(tltspec, TLTNONE)) {
961 +                /* If the line is "TILT=NONE", set the input file
962 +                 * pointer to NULL and the identifier to "void". */
963                  datin = NULL;
964                  strcpy(tltid, "void");
965          } else if (!strcmp(tltspec, TLTINCL)) {
966 +                /* If the line is "TILT=INCLUDE" use the main IES
967 +                 * file as the source of tilt data. */
968                  datin = in;
969                  strcpy(tltname, dfltname);
970          } else {
971 +                /* If the line is "TILE=<filename>", use that file
972 +                 * name as the source of tilt data. */
973                  if (ISDIRSEP(tltspec[0]))
974                          strcpy(buf, tltspec);
975                  else
# Line 466 | Line 980 | char   *dir, *tltspec, *dfltname, *tltid;
980                  }
981                  tailtrunc(strcpy(tltname,filename(tltspec)));
982          }
983 +        /* If tilt data is present, read, process, and output it. */
984          if (datin != NULL) {
985 <                if ((datout = fopen(fullname(buf,tltname,T_TLT),"w")) == NULL) {
985 >                /* Try to open the output file */
986 >                if ((datout = fopen(fullnam(buf,tltname,T_TLT),"w")) == NULL) {
987                          perror(buf);
988                          if (datin != in)
989                                  fclose(datin);
990                          return(-1);
991                  }
992 +                /* Try to copy the tilt data to the tilt data file */
993                  if (!scnint(datin,&tlt_type) || !scnint(datin,&nangles)
994                          || cvdata(datin,datout,1,&nangles,1.,minmax) != 0) {
995                          fprintf(stderr, "%s: data format error\n", tltspec);
996                          fclose(datout);
997                          if (datin != in)
998                                  fclose(datin);
999 <                        unlink(fullname(buf,tltname,T_TLT));
999 >                        unlink(fullnam(buf,tltname,T_TLT));
1000                          return(-1);
1001                  }
1002                  fclose(datout);
1003                  if (datin != in)
1004                          fclose(datin);
1005 +
1006 +                /* Generate the identifier of the brightdata; the filename
1007 +                 * with "_tilt" appended. */
1008                  strcat(strcpy(tltid, filename(tltname)), "_tilt");
1009 +                /* Write out the brightdata primitive */
1010                  fprintf(out, "\nvoid brightdata %s\n", tltid);
1011                  libname(buf,tltname,T_TLT);
1012 +                /* Generate the tilt description */
1013                  switch (tlt_type) {
1014 <                case TLT_VERT:                  /* vertical */
1014 >                case TLT_VERT:
1015 >                        /* The lamp is mounted vertically; either
1016 >                         * base up or base down. */
1017                          fprintf(out, "4 noop %s tilt.cal %s\n", buf,
1018 <                                minmax[1]>90.+FTINY ? "tilt_ang" : "tilt_ang2");
1018 >                                minmax[0][1]>90.+FTINY ? "tilt_ang" : "tilt_ang2");
1019                          break;
1020 <                case TLT_H0:                    /* horiz. in 0 deg. plane */
1020 >                case TLT_H0:
1021 >                        /* The lamp is mounted horizontally and
1022 >                         * rotates but does not tilt when the
1023 >                         * luminaire is tilted. */
1024                          fprintf(out, "6 noop %s tilt.cal %s -rz 90\n", buf,
1025 <                        minmax[1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1025 >                        minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1026                          break;
1027                  case TLT_H90:
1028 +                        /* The lamp is mounted horizontally, and
1029 +                         * tilts when the luminaire is tilted. */
1030                          fprintf(out, "4 noop %s tilt.cal %s\n", buf,
1031 <                        minmax[1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1031 >                        minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1032                          break;
1033                  default:
1034 +                        /* otherwise, this is a bad IES file */
1035                          fprintf(stderr,
1036                                  "%s: illegal lamp to luminaire geometry (%d)\n",
1037                                  tltspec, tlt_type);
1038                          return(-1);
1039                  }
1040 +                /* And finally output the numbers of integer and real
1041 +                 * arguments, of which there are none. */
1042                  fprintf(out, "0\n0\n");
1043          }
1044          return(0);
1045   }
1046  
1047 <
1048 < dosource(in, out, mod, name)            /* create source and distribution */
1049 < FILE    *in, *out;
1050 < char    *mod, *name;
1047 > /* dosource -- create the source and distribution primitives */
1048 > int
1049 > dosource(
1050 >        SRCINFO *sinf,
1051 >        FILE    *in,
1052 >        FILE    *out,
1053 >        char    *mod,
1054 >        char    *name
1055 > )
1056   {
1057 <        SHAPE   srcshape;
521 <        char    buf[MAXPATH], id[MAXWORD];
1057 >        char    buf[PATH_MAX], id[RMAXWORD];
1058          FILE    *datout;
1059          double  mult, bfactor, pfactor, width, length, height, wattage;
1060          double  bounds[2][2];
1061          int     nangles[2], pmtype, unitype;
1062          double  d1;
1063 +        int     doupper, dolower, dosides;
1064  
1065 +        /* Read in the luminaire description header */
1066          if (!isint(getword(in)) || !isflt(getword(in)) || !scnflt(in,&mult)
1067                          || !scnint(in,&nangles[0]) || !scnint(in,&nangles[1])
1068                          || !scnint(in,&pmtype) || !scnint(in,&unitype)
# Line 534 | Line 1072 | char   *mod, *name;
1072                  fprintf(stderr, "dosource: bad lamp specification\n");
1073                  return(-1);
1074          }
1075 +        /* Type A photometry is not supported */
1076 +        if (pmtype != PM_C && pmtype != PM_B) {
1077 +                fprintf(stderr, "dosource: unsupported photometric type (%d)\n",
1078 +                                pmtype);
1079 +                return(-1);
1080 +        }
1081 +
1082 +        /* Multiplier = the multiplier from the -m option, times the
1083 +         * multiplier from the IES file, times the ballast factor,
1084 +         * times the "ballast lamp photometric factor," which was part
1085 +         * of the 1986 and 1991 standards. In the 1995 standard, it is
1086 +         * always supposed to be 1. */
1087 +        sinf->mult = multiplier*mult*bfactor*pfactor;
1088 +
1089 +        /* If the count of angles is wrong, raise an error and quit. */
1090          if (nangles[0] < 2 || nangles[1] < 1) {
1091                  fprintf(stderr, "dosource: too few measured angles\n");
1092                  return(-1);
1093          }
1094 +
1095 +        /* For internal computation, convert units to meters. */
1096          if (unitype == U_FEET) {
1097                  width *= F_M;
1098                  length *= F_M;
1099                  height *= F_M;
1100          }
1101 <        if (makeshape(&srcshape, width, length, height) != 0) {
1101 >
1102 >        /* Make decisions about the shape of the light source
1103 >         * geometry, and store them in sinf. */
1104 >        if (makeshape(sinf, width, length, height) != 0) {
1105                  fprintf(stderr, "dosource: illegal source dimensions");
1106                  return(-1);
1107          }
1108 <        if ((datout = fopen(fullname(buf,name,T_DST), "w")) == NULL) {
1108 >
1109 >        /* Copy the candela values into a Radiance data file. */
1110 >        if ((datout = fopen(fullnam(buf,name,T_DST), "w")) == NULL) {
1111                  perror(buf);
1112                  return(-1);
1113          }
1114          if (cvdata(in, datout, 2, nangles, 1./WHTEFFICACY, bounds) != 0) {
1115                  fprintf(stderr, "dosource: bad distribution data\n");
1116                  fclose(datout);
1117 <                unlink(fullname(buf,name,T_DST));
1117 >                unlink(fullnam(buf,name,T_DST));
1118                  return(-1);
1119          }
1120          fclose(datout);
1121 +
1122 +        /* Output explanatory comment */
1123          fprintf(out, "# %g watt luminaire, lamp*ballast factor = %g\n",
1124                          wattage, bfactor*pfactor);
1125 +        /* Output distribution "brightdata" primitive. Start handling
1126 +           the various cases of symmetry of the distribution. */
1127          strcat(strcpy(id, filename(name)), "_dist");
1128          fprintf(out, "\n%s brightdata %s\n", mod, id);
1129          if (nangles[1] < 2)
# Line 570 | Line 1134 | char   *mod, *name;
1134                  fprintf(out, "7 ");
1135          else
1136                  fprintf(out, "5 ");
1137 +
1138 +        /* If the generated source geometry will be a box, a flat
1139 +         * rectangle, or a disk figure out if it needs a top, a
1140 +         * bottom, and/or sides. */
1141 +        dolower = (bounds[0][0] < 90.-FTINY); /* Bottom */
1142 +        doupper = (bounds[0][1] > 90.+FTINY); /* Top */
1143 +        dosides = (doupper & dolower && sinf->h > MINDIM); /* Sides */
1144 +
1145 +        /* Select the appropriate function and parameters from source.cal */
1146          fprintf(out, "%s %s source.cal ",
1147 <                        srcshape.type==SPHERE ? "corr" : "flatcorr",
1147 >                        sinf->type==SPHERE ? "corr" :
1148 >                        !dosides ? "flatcorr" :
1149 >                        sinf->type==DISK ? "cylcorr" : "boxcorr",
1150                          libname(buf,name,T_DST));
1151          if (pmtype == PM_B) {
1152                  if (FEQ(bounds[1][0],0.))
# Line 579 | Line 1154 | char   *mod, *name;
1154                  else
1155                          fprintf(out, "srcB_horiz ");
1156                  fprintf(out, "srcB_vert ");
1157 <        } else {
1157 >        } else /* pmtype == PM_C */ {
1158                  if (nangles[1] >= 2) {
1159                          d1 = bounds[1][1] - bounds[1][0];
1160                          if (d1 <= 90.+FTINY)
1161                                  fprintf(out, "src_phi4 ");
1162 <                        else if (d1 <= 180.+FTINY)
1163 <                                fprintf(out, "src_phi2 ");
1164 <                        else
1162 >                        else if (d1 <= 180.+FTINY) {
1163 >                                if (FEQ(bounds[1][0],90.))
1164 >                                        fprintf(out, "src_phi2+90 ");
1165 >                                else
1166 >                                        fprintf(out, "src_phi2 ");
1167 >                        } else
1168                                  fprintf(out, "src_phi ");
1169                          fprintf(out, "src_theta ");
1170                          if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.))
# Line 594 | Line 1172 | char   *mod, *name;
1172                  } else
1173                          fprintf(out, "src_theta ");
1174          }
1175 <        fprintf(out, "\n0\n1 %g\n", multiplier*mult*bfactor*pfactor);
1176 <        if (putsource(&srcshape, out, id, filename(name),
1177 <                        bounds[0][0]<90., bounds[0][1]>90.) != 0)
1175 >        /* finish the brightdata primitive with appropriate data */
1176 >        if (!dosides || sinf->type == SPHERE)
1177 >                fprintf(out, "\n0\n1 %g\n", sinf->mult/sinf->area);
1178 >        else if (sinf->type == DISK)
1179 >                fprintf(out, "\n0\n3 %g %g %g\n", sinf->mult,
1180 >                                sinf->w, sinf->h);
1181 >        else
1182 >                fprintf(out, "\n0\n4 %g %g %g %g\n", sinf->mult,
1183 >                                sinf->l, sinf->w, sinf->h);
1184 >        /* Brightdata primitive written out. */
1185 >
1186 >        /* Finally, output the descriptions of the actual radiant
1187 >         * surfaces. */
1188 >        if (putsource(sinf, out, id, filename(name),
1189 >                        dolower, doupper, dosides) != 0)
1190                  return(-1);
1191          return(0);
1192   }
1193  
1194 <
1195 < putsource(shp, fp, mod, name, dolower, doupper)         /* put out source */
1196 < SHAPE   *shp;
1197 < FILE    *fp;
1198 < char    *mod, *name;
1199 < int     dolower, doupper;
1194 > /* putsource - output the actual light emitting geometry
1195 > *
1196 > * Three kinds of geometry are produced: rectangles and boxes, disks
1197 > * ("ring" primitive, but the radius of the hole is always zero) and
1198 > * cylinders, and spheres.
1199 > */
1200 > int
1201 > putsource(
1202 >        SRCINFO *shp,
1203 >        FILE    *fp,
1204 >        char    *mod,
1205 >        char    *name,
1206 >        int     dolower,
1207 >        int     doupper,
1208 >        int     dosides
1209 > )
1210   {
1211 <        char    buf[MAXWORD];
1212 <        
1213 <        fprintf(fp, "\n%s %s %s_light\n", mod,
1214 <                        illumrad>=MINDIM/2. ? "illum" : "light",
1215 <                        name);
1211 >        char    lname[RMAXWORD];
1212 >
1213 >        /* First, describe the light. If a materials and geometry
1214 >         * file is given, generate an illum instead. */
1215 >        strcat(strcpy(lname, name), "_light");
1216 >        fprintf(fp, "\n%s %s %s\n", mod,
1217 >                        shp->isillum ? "illum" : "light", lname);
1218          fprintf(fp, "0\n0\n3 %g %g %g\n",
1219 <                        lampcolor[0]/shp->area,
618 <                        lampcolor[1]/shp->area,
619 <                        lampcolor[2]/shp->area);
620 <        if (doupper && dolower && shp->type != SPHERE && shp->h > MINDIM) {
621 <                fprintf(fp, "\n%s glow %s_glow\n", mod, name);
622 <                fprintf(fp, "0\n0\n4 %g %g %g -1\n",
623 <                                lampcolor[0]/shp->area,
624 <                                lampcolor[1]/shp->area,
625 <                                lampcolor[2]/shp->area);
626 <        }
1219 >                        lampcolor[0], lampcolor[1], lampcolor[2]);
1220          switch (shp->type) {
1221          case RECT:
1222 <                strcat(strcpy(buf, name), "_light");
1222 >                /* Output at least one rectangle. If light is radiated
1223 >                 * from the sides of the luminaire, output rectangular
1224 >                 * sides as well. */
1225                  if (dolower)
1226 <                        putrectsrc(shp, fp, buf, name, 0);
1226 >                        putrectsrc(shp, fp, lname, name, 0);
1227                  if (doupper)
1228 <                        putrectsrc(shp, fp, buf, name, 1);
1229 <                if (doupper && dolower && shp->h > MINDIM) {
1230 <                        strcat(strcpy(buf, name), "_glow");
636 <                        putsides(shp, fp, buf, name);
637 <                }
1228 >                        putrectsrc(shp, fp, lname, name, 1);
1229 >                if (dosides)
1230 >                        putsides(shp, fp, lname, name);
1231                  break;
1232          case DISK:
1233 <                strcat(strcpy(buf, name), "_light");
1233 >                /* Output at least one disk. If light is radiated from
1234 >                 * the sides of luminaire, output a cylinder as well. */
1235                  if (dolower)
1236 <                        putdisksrc(shp, fp, buf, name, 0);
1236 >                        putdisksrc(shp, fp, lname, name, 0);
1237                  if (doupper)
1238 <                        putdisksrc(shp, fp, buf, name, 1);
1239 <                if (doupper && dolower && shp->h > MINDIM) {
1240 <                        strcat(strcpy(buf, name), "_glow");
647 <                        putcyl(shp, fp, buf, name);
648 <                }
1238 >                        putdisksrc(shp, fp, lname, name, 1);
1239 >                if (dosides)
1240 >                        putcyl(shp, fp, lname, name);
1241                  break;
1242          case SPHERE:
1243 <                strcat(strcpy(buf, name), "_light");
1244 <                putspheresrc(shp, fp, buf, name);
1243 >                /* Output a sphere. */
1244 >                putspheresrc(shp, fp, lname, name);
1245                  break;
1246          }
1247          return(0);
1248   }
1249  
1250 <
1251 < makeshape(shp, width, length, height)           /* make source shape */
1252 < register SHAPE  *shp;
1253 < double  width, length, height;
1250 > /* makeshape -- decide what shape will be used
1251 > *
1252 > * makeshape decides what Radiance geometry will be used to represent
1253 > * the light source and stores information about it in shp.
1254 > */
1255 > int
1256 > makeshape(
1257 >        SRCINFO *shp,
1258 >        double  width,
1259 >        double  length,
1260 >        double  height
1261 > )
1262   {
1263 <        if (illumrad >= MINDIM/2.) {
1263 >        /* Categorize the shape */
1264 >        if (illumrad/meters2out >= MINDIM/2.) {
1265 >                /* If the -i command line option is used, and the
1266 >                 * object is not a point source, output an "illum"
1267 >                 * sphere */
1268 >                shp->isillum = 1;
1269                  shp->type = SPHERE;
1270 <                shp->w = shp->l = shp->h = 2.*illumrad;
1270 >                shp->w = shp->l = shp->h = 2.*illumrad / meters2out;
1271          } else if (width < MINDIM) {
1272 +                /* The width is either zero or negative. */
1273                  width = -width;
1274                  if (width < MINDIM) {
1275 +                        /* The width is zero. Use a tiny sphere to
1276 +                         * represent a point source. */
1277                          shp->type = SPHERE;
1278                          shp->w = shp->l = shp->h = MINDIM;
1279                  } else if (height < .5*width) {
1280 +                        /* The width is negative and the height is
1281 +                         * modest; output either a disk or a thin
1282 +                         * vertical cylinder. */
1283                          shp->type = DISK;
1284                          shp->w = shp->l = width;
1285                          if (height >= MINDIM)
# Line 676 | Line 1287 | double width, length, height;
1287                          else
1288                                  shp->h = .5*MINDIM;
1289                  } else {
1290 +                        /* The width is negative and the object is
1291 +                         * tall; output a sphere. */
1292                          shp->type = SPHERE;
1293                          shp->w = shp->l = shp->h = width;
1294                  }
1295          } else {
1296 +                /* The width is positive. Output a box, possibly very
1297 +                 * thin. */
1298                  shp->type = RECT;
1299                  shp->w = width;
1300                  if (length >= MINDIM)
# Line 691 | Line 1306 | double width, length, height;
1306                  else
1307                          shp->h = .5*MINDIM;
1308          }
1309 +
1310 +        /* Done choosing the shape; calculate its area in the x-y plane. */
1311          switch (shp->type) {
1312          case RECT:
1313                  shp->area = shp->w * shp->l;
# Line 703 | Line 1320 | double width, length, height;
1320          return(0);
1321   }
1322  
1323 + /* Rectangular or box-shaped light source.
1324 + *
1325 + * putrectsrc, putsides, putrect, and putpoint are used to output the
1326 + * Radiance description of a box.  The box is centered on the origin
1327 + * and has the dimensions given in the IES file.  The coordinates
1328 + * range from [-1/2*length, -1/2*width, -1/2*height] to [1/2*length,
1329 + * 1/2*width, 1/2*height].
1330 + *
1331 + * The location of the point is encoded in the low-order three bits of
1332 + * an integer. If the integer is p, then: bit 0 is (p & 1),
1333 + * representing length (x), bit 1 is (p & 2) representing width (y),
1334 + * and bit 2 is (p & 4), representing height (z).
1335 + *
1336 + * Looking down from above (towards -z), the vertices of the box or
1337 + * rectangle are numbered so:
1338 + *
1339 + *     2,6                                        3,7
1340 + *        +--------------------------------------+
1341 + *        |                                      |
1342 + *        |                                      |
1343 + *        |                                      |
1344 + *        |                                      |
1345 + *        +--------------------------------------+
1346 + *     0,4                                        1,5
1347 + *
1348 + * The higher number of each pair is above the x-y plane (positive z),
1349 + * the lower number is below the x-y plane (negative z.)
1350 + *
1351 + */
1352  
1353 < putrectsrc(shp, fp, mod, name, up)              /* rectangular source */
1354 < SHAPE   *shp;
1355 < FILE    *fp;
1356 < char    *mod, *name;
1357 < int     up;
1353 > /* putrecsrc - output a rectangle parallel to the x-y plane
1354 > *
1355 > * Putrecsrc calls out the vertices of a rectangle parallel to the x-y
1356 > * plane.  The order of the vertices is different for the upper and
1357 > * lower rectangles of a box, since a right-hand rule based on the
1358 > * order of the vertices is used to determine the surface normal of
1359 > * the rectangle, and the surface normal determines the direction the
1360 > * light radiated by the rectangle.
1361 > *
1362 > */
1363 > void
1364 > putrectsrc(
1365 >        SRCINFO *shp,
1366 >        FILE    *fp,
1367 >        char    *mod,
1368 >        char    *name,
1369 >        int     up
1370 > )
1371   {
1372          if (up)
1373                  putrect(shp, fp, mod, name, ".u", 4, 5, 7, 6);
# Line 716 | Line 1375 | int    up;
1375                  putrect(shp, fp, mod, name, ".d", 0, 2, 3, 1);
1376   }
1377  
1378 <
1379 < putsides(shp, fp, mod, name)                    /* put out sides of box */
1380 < register SHAPE  *shp;
1381 < FILE    *fp;
1382 < char    *mod, *name;
1378 > /* putsides - put out sides of box */
1379 > void
1380 > putsides(
1381 >        SRCINFO *shp,
1382 >        FILE    *fp,
1383 >        char    *mod,
1384 >        char    *name
1385 > )
1386   {
1387          putrect(shp, fp, mod, name, ".1", 0, 1, 5, 4);
1388          putrect(shp, fp, mod, name, ".2", 1, 3, 7, 5);
1389          putrect(shp, fp, mod, name, ".3", 3, 2, 6, 7);
1390          putrect(shp, fp, mod, name, ".4", 2, 0, 4, 6);
1391   }
730        
1392  
1393 < putrect(shp, fp, mod, name, suffix, a, b, c, d) /* put out a rectangle */
1394 < SHAPE   *shp;
1395 < FILE    *fp;
1396 < char    *mod, *name, *suffix;
1397 < int     a, b, c, d;
1393 > /* putrect - put out a rectangle
1394 > *
1395 > * putrect generates the "polygon" primitive which describes a
1396 > * rectangle.
1397 > */
1398 > void
1399 > putrect(
1400 >        SRCINFO *shp,
1401 >        FILE    *fp,
1402 >        char    *mod,
1403 >        char    *name,
1404 >        char    *suffix,
1405 >        int     a,
1406 >        int b,
1407 >        int c,
1408 >        int d
1409 > )
1410   {
1411          fprintf(fp, "\n%s polygon %s%s\n0\n0\n12\n", mod, name, suffix);
1412          putpoint(shp, fp, a);
# Line 742 | Line 1415 | int    a, b, c, d;
1415          putpoint(shp, fp, d);
1416   }
1417  
1418 <
1419 < putpoint(shp, fp, p)                            /* put out a point */
1420 < register SHAPE  *shp;
1421 < FILE    *fp;
1422 < int     p;
1418 > /* putpoint -- output a the coordinates of a vertex
1419 > *
1420 > * putpoint maps vertex numbers to coordinates and outputs the
1421 > * coordinates.
1422 > */
1423 > void
1424 > putpoint(
1425 >        SRCINFO *shp,
1426 >        FILE    *fp,
1427 >        int     p
1428 > )
1429   {
1430          static double   mult[2] = {-.5, .5};
1431  
# Line 756 | Line 1435 | int    p;
1435                          mult[p>>2]*shp->h*meters2out);
1436   }
1437  
1438 + /* End of routines to output a box-shaped light source */
1439  
1440 < putdisksrc(shp, fp, mod, name, up)              /* put out a disk source */
1441 < register SHAPE  *shp;
1442 < FILE    *fp;
1443 < char    *mod, *name;
1444 < int     up;
1440 > /* Routines to output a cylindrical or disk shaped light source
1441 > *
1442 > * As with other shapes, the light source is centered on the origin.
1443 > * The "ring" and "cylinder" primitives are used.
1444 > *
1445 > */
1446 > void
1447 > putdisksrc(             /* put out a disk source */
1448 >        SRCINFO *shp,
1449 >        FILE    *fp,
1450 >        char    *mod,
1451 >        char    *name,
1452 >        int     up
1453 > )
1454   {
1455          if (up) {
1456                  fprintf(fp, "\n%s ring %s.u\n", mod, name);
# Line 779 | Line 1468 | int    up;
1468   }
1469  
1470  
1471 < putcyl(shp, fp, mod, name)                      /* put out a cylinder */
1472 < register SHAPE  *shp;
1473 < FILE    *fp;
1474 < char    *mod, *name;
1471 > void
1472 > putcyl(                 /* put out a cylinder */
1473 >        SRCINFO *shp,
1474 >        FILE    *fp,
1475 >        char    *mod,
1476 >        char    *name
1477 > )
1478   {
1479          fprintf(fp, "\n%s cylinder %s.c\n", mod, name);
1480          fprintf(fp, "0\n0\n7\n");
# Line 791 | Line 1483 | char   *mod, *name;
1483          fprintf(fp, "\t%g\n", .5*shp->w*meters2out);
1484   }
1485  
1486 + /* end of of routines to output cylinders and disks */
1487  
1488 < putspheresrc(shp, fp, mod, name)                /* put out a sphere source */
1489 < SHAPE   *shp;
1490 < FILE    *fp;
1491 < char    *mod, *name;
1488 > void
1489 > putspheresrc(           /* put out a sphere source */
1490 >        SRCINFO *shp,
1491 >        FILE    *fp,
1492 >        char    *mod,
1493 >        char    *name
1494 > )
1495   {
1496          fprintf(fp, "\n%s sphere %s.s\n", mod, name);
1497          fprintf(fp, "0\n0\n4 0 0 0 %g\n", .5*shp->w*meters2out);
1498   }
1499  
1500 <
1501 < cvdata(in, out, ndim, npts, mult, lim)          /* convert data */
1502 < FILE    *in, *out;
1503 < int     ndim, npts[];
1504 < double  mult, lim[][2];
1500 > /* cvdata - convert LM-63 tilt and candela data to Radiance brightdata format
1501 > *
1502 > * The files created by this routine are intended for use with the Radiance
1503 > * "brightdata" material type.
1504 > *
1505 > * Two types of data are converted; one-dimensional tilt data, which
1506 > * is given in polar coordinates, and two-dimensional candela data,
1507 > * which is given in spherical co-ordinates.
1508 > *
1509 > * Return 0 for success, -1 for failure.
1510 > *
1511 > */
1512 > int
1513 > cvdata(
1514 >        FILE    *in,            /* Input file */
1515 >        FILE    *out,           /* Output file */
1516 >        int     ndim,           /* Number of dimensions; 1 for
1517 >                                 * tilt data, 2 for photometric data. */
1518 >        int     npts[],         /* Number of points in each dimension */
1519 >        double  mult,           /* Multiple each value by this
1520 >                                 * number. For tilt data, always
1521 >                                 * 1. For candela values, the
1522 >                                 * efficacy of white Radiance light.  */
1523 >        double  lim[][2]        /* The range of angles in each dimension. */
1524 > )
1525   {
1526 <        double  *pt[4];
1527 <        register int    i, j;
1526 >        double  *pt[4];         /* Four is the expected maximum of ndim. */
1527 >        int     i, j;
1528          double  val;
1529          int     total;
1530  
1531 +        /* Calculate and output the number of data values */
1532          total = 1; j = 0;
1533          for (i = 0; i < ndim; i++)
1534                  if (npts[i] > 1) {
# Line 819 | Line 1536 | double mult, lim[][2];
1536                          j++;
1537                  }
1538          fprintf(out, "%d\n", j);
1539 <                                        /* get coordinates */
1539 >
1540 >        /* Read in the angle values, and note the first and last in
1541 >         * each dimension, if there is a place to store them. In the
1542 >         * case of tilt data, there is only one list of angles. In the
1543 >         * case of candela values, vertical angles appear first, and
1544 >         * horizontal angles occur second. */
1545          for (i = 0; i < ndim; i++) {
1546 +                /* Allocate space for the angle values. */
1547                  pt[i] = (double *)malloc(npts[i]*sizeof(double));
1548                  for (j = 0; j < npts[i]; j++)
1549                          if (!scnflt(in, &pt[i][j]))
# Line 830 | Line 1553 | double mult, lim[][2];
1553                          lim[i][1] = pt[i][npts[i]-1];
1554                  }
1555          }
1556 <                                        /* write out in reverse */
1556 >
1557 >        /* Output the angles. If this is candela data, horizontal
1558 >         * angles output first. There are two cases: the first where
1559 >         * the angles are evenly spaced, the second where they are
1560 >         * not.
1561 >         *
1562 >         * When the angles are evenly spaced, three numbers are
1563 >         * output: the first angle, the last angle, and the number of
1564 >         * angles.  When the angles are not evenly spaced, instead
1565 >         * zero, zero, and the count of angles is given, followed by a
1566 >         * list of angles.  In this case, angles are output four to a line.
1567 >         */
1568          for (i = ndim-1; i >= 0; i--) {
1569                  if (npts[i] > 1) {
1570 +                        /* Determine if the angles are evenly spaces */
1571                          for (j = 1; j < npts[i]-1; j++)
1572                                  if (!FEQ(pt[i][j]-pt[i][j-1],
1573                                                  pt[i][j+1]-pt[i][j]))
1574                                          break;
1575 +                        /* If they are, output the first angle, the
1576 +                         * last angle, and a count */
1577                          if (j == npts[i]-1)
1578                                  fprintf(out, "%g %g %d\n", pt[i][0], pt[i][j],
1579                                                  npts[i]);
1580                          else {
1581 +                                /* otherwise, output 0, 0, and a
1582 +                                 * count, followed by the list of
1583 +                                 * angles, one to a line. */
1584                                  fprintf(out, "0 0 %d", npts[i]);
1585                                  for (j = 0; j < npts[i]; j++) {
1586                                          if (j%4 == 0)
# Line 850 | Line 1590 | double mult, lim[][2];
1590                                  putc('\n', out);
1591                          }
1592                  }
1593 <                free((char *)pt[i]);
1593 >                /* Free the storage containing the angle values. */
1594 >                free((void *)pt[i]);
1595          }
1596 +
1597 +        /* Finally, read in the data values (candela or multiplier values,
1598 +         * depending on the part of the file) and output them four to
1599 +         * a line. */
1600          for (i = 0; i < total; i++) {
1601                  if (i%4 == 0)
1602                          putc('\n', out);
# Line 863 | Line 1608 | double mult, lim[][2];
1608          return(0);
1609   }
1610  
1611 <
1611 > /* getword - get an LM-63 delimited word from fp
1612 > *
1613 > * Getword gets a word from an IES file delimited by either white
1614 > * space or a comma surrounded by white space. A pointer to the word
1615 > * is returned, which will persist only until getword is called again.
1616 > * At EOF, return NULL instead.
1617 > *
1618 > */
1619   char *
1620 < getword(fp)                     /* scan a word from fp */
1621 < register FILE   *fp;
1620 > getword(                        /* scan a word from fp */
1621 >        FILE    *fp
1622 > )
1623   {
1624 <        static char     word[MAXWORD];
1625 <        register char   *cp;
1626 <        register int    c;
1624 >        static char     wrd[RMAXWORD];
1625 >        char    *cp;
1626 >        int     c;
1627  
1628 +        /* Skip initial spaces */
1629          while (isspace(c=getc(fp)))
1630                  ;
1631 <        for (cp = word; c != EOF && cp < word+MAXWORD-1;
1631 >        /* Get characters to a delimiter or until wrd is full */
1632 >        for (cp = wrd; c != EOF && cp < wrd+RMAXWORD-1;
1633                          *cp++ = c, c = getc(fp))
1634                  if (isspace(c) || c == ',') {
1635 +                        /* If we find a delimiter */
1636 +                        /* Gobble up whitespace */
1637                          while (isspace(c))
1638                                  c = getc(fp);
1639 <                        if (c != EOF & c != ',')
1639 >                        /* If it's not a comma, put the first
1640 >                         * character of the next data item back */
1641 >                        if ((c != EOF) & (c != ','))
1642                                  ungetc(c, fp);
1643 +                        /* Close out the strimg */
1644                          *cp = '\0';
1645 <                        return(word);
1645 >                        /* return it */
1646 >                        return(wrd);
1647                  }
1648 +        /* If we ran out of space or are at the end of the file,
1649 +         * return either the word or NULL, as appropriate. */
1650          *cp = '\0';
1651 <        return(cp > word ? word : NULL);
1651 >        return(cp > wrd ? wrd : NULL);
1652   }
1653  
1654 <
1655 < cvtint(ip, word)                /* convert a word to an integer */
1656 < int     *ip;
1657 < char    *word;
1654 > /* cvtint - convert an IES word to an integer
1655 > *
1656 > * A pointer to the word is passed in wrd; ip is expected to point to
1657 > * an integer.  cvtint() will silently truncate a floating point value
1658 > * to an integer; "1", "1.0", and "1.5" will all return 1.
1659 > *
1660 > * cvtint() returns 0 if it fails, 1 if it succeeds.
1661 > */
1662 > int
1663 > cvtint(
1664 >        int     *ip,
1665 >        char    *wrd
1666 > )
1667   {
1668 <        if (word == NULL || !isint(word))
1668 >        if (wrd == NULL || !isint(wrd))
1669                  return(0);
1670 <        *ip = atoi(word);
1670 >        *ip = atoi(wrd);
1671          return(1);
1672   }
1673  
1674  
1675 < cvtflt(rp, word)                /* convert a word to a double */
1676 < double  *rp;
1677 < char    *word;
1675 > /* cvtflt - convert an IES word to a double precision floating-point number
1676 > *
1677 > * A pointer to the word is passed in wrd; rp is expected to point to
1678 > * a double.
1679 > *
1680 > * cvtflt returns 0 if it fails, 1 if it succeeds.
1681 > */
1682 > int
1683 > cvtflt(
1684 >        double  *rp,
1685 >        char    *wrd
1686 > )
1687   {
1688 <        if (word == NULL || !isflt(word))
1688 >        if (wrd == NULL || !isflt(wrd))
1689                  return(0);
1690 <        *rp = atof(word);
1690 >        *rp = atof(wrd);
1691          return(1);
1692   }
1693 +
1694 + /* cvgeometry - process materials and geometry format luminaire data
1695 + *
1696 + * The materials and geometry format (MGF) for describing luminaires
1697 + * was a part of Radiance that was first adopted and then retracted by
1698 + * the IES as part of LM-63.  It provides a way of describing
1699 + * luminaire geometry similar to the Radiance scene description
1700 + * format.
1701 + *
1702 + * cvgeometry() generates an mgf2rad command and then, if "-g" is given
1703 + * on the command line, an oconv command, both of which are then
1704 + * executed with the system() function.
1705 + *
1706 + * The generated commands are:
1707 + *   mgf2rad -e <multiplier> -g <size> <mgf_filename> \
1708 + *     | xform -s <scale_factor> \
1709 + *     >> <luminare_scene_description_file
1710 + * or:
1711 + *   mgf2rad -e <multiplier> -g <size> <mgf_filename> \
1712 + *     oconv - > <instance_filename>
1713 + */
1714 + int
1715 + cvgeometry(
1716 +        char    *inpname,
1717 +        SRCINFO *sinf,
1718 +        char    *outname,
1719 +        FILE    *outfp                  /* close output file upon return */
1720 + )
1721 + {
1722 +        char    buf[256];
1723 +        char    *cp;
1724 +
1725 +        if (inpname == NULL || !inpname[0]) {   /* no geometry file */
1726 +                fclose(outfp);
1727 +                return(0);
1728 +        }
1729 +        putc('\n', outfp);
1730 +        strcpy(buf, "mgf2rad ");                /* build mgf2rad command */
1731 +        cp = buf+8;
1732 +        if (!FEQ(sinf->mult, 1.0)) {
1733 +                /* if there's an output multiplier, include in the
1734 +                 * mgf2rad command */
1735 +                sprintf(cp, "-e %f ", sinf->mult);
1736 +                cp += strlen(cp);
1737 +        }
1738 +        /* Include the glow distance for the geometry */
1739 +        sprintf(cp, "-g %f %s ",
1740 +                sqrt(sinf->w*sinf->w + sinf->h*sinf->h + sinf->l*sinf->l),
1741 +                        inpname);
1742 +        cp += strlen(cp);
1743 +        if (instantiate) {              /* instantiate octree */
1744 +                /* If "-g" is given on the command line, include an
1745 +                 * "oconv" command in the pipe. */
1746 +                strcpy(cp, "| oconv - > ");
1747 +                cp += 12;
1748 +                fullnam(cp,outname,T_OCT);
1749 +                /* Only update if the input file is newer than the
1750 +                 * output file */
1751 +                if (fdate(inpname) > fdate(outname) &&
1752 +                                system(buf)) {          /* create octree */
1753 +                        fclose(outfp);
1754 +                        return(-1);
1755 +                }
1756 +                /* Reference the instance file in the scene description */
1757 +                fprintf(outfp, "void instance %s_inst\n", outname);
1758 +                /* If the geometry isn't in meters, scale it appropriately. */
1759 +                if (!FEQ(meters2out, 1.0))
1760 +                        fprintf(outfp, "3 %s -s %f\n",
1761 +                                        libname(buf,outname,T_OCT),
1762 +                                        meters2out);
1763 +                else
1764 +                        fprintf(outfp, "1 %s\n", libname(buf,outname,T_OCT));
1765 +                /* Close off the "instance" primitive. */
1766 +                fprintf(outfp, "0\n0\n");
1767 +                /* And the Radiance scene description. */
1768 +                fclose(outfp);
1769 +        } else {                        /* else append to luminaire file */
1770 +                if (!FEQ(meters2out, 1.0)) {    /* apply scalefactor */
1771 +                        sprintf(cp, "| xform -s %f ", meters2out);
1772 +                        cp += strlen(cp);
1773 +                }
1774 +                if (!out2stdout) {
1775 +                        fclose(outfp);
1776 +                        strcpy(cp, ">> ");      /* append works for DOS? */
1777 +                        cp += 3;
1778 +                        fullnam(cp,outname,T_RAD);
1779 +                }
1780 +                if (system(buf))
1781 +                        return(-1);
1782 +        }
1783 +        return(0);
1784 + }
1785 +
1786 + /* Set up emacs indentation */
1787 + /* Local Variables: */
1788 + /*   c-file-style: "bsd" */
1789 + /* End: */
1790 +
1791 + /* For vim, use ":set tabstop=8 shiftwidth=8" */

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines