ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/ies2rad.c
(Generate patch)

Comparing ray/src/cv/ies2rad.c (file contents):
Revision 2.5 by greg, Mon Feb 22 15:54:55 1993 UTC vs.
Revision 2.29 by greg, Mon Jun 4 18:53:09 2018 UTC

# Line 1 | Line 1
1 /* Copyright (c) 1992 Regents of the University of California */
2
1   #ifndef lint
2 < static char SCCSid[] = "$SunId$ LBL";
2 > static const char       RCSid[] = "$Id$";
3   #endif
6
4   /*
5 < * Convert IES luminaire data to Radiance description
5 > * ies2rad -- Convert IES luminaire data to Radiance description
6   *
7 + * ies2rad converts an IES LM-63 luminare description to a Radiance
8 + * luminaire description.  In addition, ies2rad manages a local
9 + * database of Radiance luminaire files.
10 + *
11 + * Ies2rad generates two or three files for each luminaire. For a
12 + * luminaire named LUM, ies2rad will generate LUM.rad, a Radiance
13 + * scene description file which describes the light source, LUM.dat,
14 + * which contains the photometric data from the IES LM-63 file, and
15 + * (if tilt data is provided) LUM%.dat, which contains the tilt data
16 + * from the IES file.
17 + *
18 + * Ies2rad is supported by the Radiance function files source.cal and
19 + * tilt.cal, which transform the coordinates in the IES data into
20 + * Radiance (θ,φ) luminaire coordinates and then apply photometric and
21 + * tilt data to generate Radiance light. θ is altitude from the
22 + * negative z-axis and φ is azimuth from the positive x-axis,
23 + * increasing towards the positive y-axis. [??? Greg, is there a
24 + * source for this convention?] This system matches none of the usual
25 + * goniophotometric conventions, but it is closest to IES type C; V in
26 + * type C photometry is θ in Radiance and L is -φ.
27 + *
28 + * The ies2rad scene description for a luminaire LUM, with tilt data,
29 + * uses the following Radiance scene description primitives:
30 + *
31 + *     void brightdata LUM_tilt
32 + *     …
33 + *     LUM_tilt brightdata LUM_dist
34 + *     …
35 + *     LUM_dist light LUM_light
36 + *     …
37 + *     LUM_light surface1 name1
38 + *     …
39 + *     LUM_light surface2 name2
40 + *     …
41 + *     LUM_light surface_n name_n
42 + *
43 + * Without tilt data, the primitives are:
44 + *
45 + *     void brightdata LUM_dist
46 + *     …
47 + *     LUM_dist light LUM_light
48 + *     …
49 + *     LUM_light surface1 name1
50 + *     …
51 + *     LUM_light surface2 name2
52 + *     …
53 + *     LUM_light surface_n name_n
54 + *
55 + * As many surfaces are given as required to describe the light
56 + * source. Illum may be used rather than light so that a visible form
57 + * (impostor) may be given to the luminaire, rather than a simple
58 + * glowing shape. If an impostor is provided, it must be wholly
59 + * contained within the illum and if it provides impostor light
60 + * sources, those must be given with glow, so that they do not
61 + * themselves illuminate the scene, providing incorrect results.
62 + *
63 + * The ies2rad code uses the "bsd" style. For emacs, this is set up
64 + * automatically in the "Local Variables" section at the end of the
65 + * file. For vim, use ":set tabstop=8 shiftwidth=8".
66 + *
67   *      07Apr90         Greg Ward
68 + *
69 + *  Fixed correction factor for flat sources 29Oct2001 GW
70 + *  Extensive comments added by Randolph Fritz May2018
71   */
72  
73   #include <stdio.h>
74 + #include <string.h>
75 + #include <math.h>
76 + #include <sys/types.h>
77   #include <ctype.h>
78 +
79 + #include "rtio.h"
80   #include "color.h"
81   #include "paths.h"
82  
83   #define PI              3.14159265358979323846
84 <                                        /* floating comparisons */
84 >
85 > /* floating comparisons -- floating point numbers within FTINY of each
86 > * other are considered equal */
87   #define FTINY           1e-6
88   #define FEQ(a,b)        ((a)<=(b)+FTINY&&(a)>=(b)-FTINY)
89 <                                        /* tilt specs */
89 >
90 >
91 > /* IESNA LM-63 keywords and constants */
92 > /* Since 1991, LM-63 files have begun with the magic keyword IESNA */
93 > #define MAGICID         "IESNA"
94 > #define LMAGICID        5
95 > /* ies2rad supports the 1986, 1991, and 1995 versions of
96 > * LM-63. FIRSTREV describes the first version; LASTREV describes the
97 > * 1995 version. */
98 > #define FIRSTREV        86
99 > #define LASTREV         95
100 >
101 > /* The following definitions support LM-63 file keyword reading and
102 > * analysis.
103 > *
104 > * This section defines two function-like macros: keymatch(i,s), which
105 > * checks to see if keyword i matches string s, and checklamp(s),
106 > * which checks to see if a string matches the keywords "LAMP" or
107 > * "LAMPCAT".
108 > *
109 > * LM-63-1986 files begin with a list of free-form label lines.
110 > * LM-63-1991 files begin with the identifying line "IESNA91" followed
111 > * by a list of formatted keywords.  LM-63-1995 files begin with the
112 > * identifying line "IESNA:LM-63-1995" followed by a list of formatted
113 > * keywords.
114 > *
115 > * The K_* #defines enumerate the keywords used in the different
116 > * versions of the file and give them symbolic names.
117 > *
118 > * The D86, D91, and D95 #defines validate the keywords in the 1986,
119 > * 1991, and 1995 versions of the standard, one bit per keyword.
120 > * Since the 1986 standard does not use keywords, D86 is zero.  The
121 > * 1991 standard has 13 keywords, and D91 has the lower 13 bits set.
122 > * The 1995 standard has 14 keywords, and D95 has the lower 14 bits
123 > * set.
124 > *
125 > */
126 > #define D86             0
127 >
128 > #define K_TST           0
129 > #define K_MAN           1
130 > #define K_LMC           2
131 > #define K_LMN           3
132 > #define K_LPC           4
133 > #define K_LMP           5
134 > #define K_BAL           6
135 > #define K_MTC           7
136 > #define K_OTH           8
137 > #define K_SCH           9
138 > #define K_MOR           10
139 > #define K_BLK           11
140 > #define K_EBK           12
141 >
142 > /* keywords defined in LM-63-1991 */
143 > #define D91             ((1L<<13)-1)
144 >
145 > #define K_LMG           13
146 >
147 > /* keywords defined in LM-63-1995 */
148 > #define D95             ((1L<<14)-1)
149 >
150 > char    k_kwd[][20] = {"TEST", "MANUFAC", "LUMCAT", "LUMINAIRE", "LAMPCAT",
151 >                        "LAMP", "BALLAST", "MAINTCAT", "OTHER", "SEARCH",
152 >                        "MORE", "BLOCK", "ENDBLOCK", "LUMINOUSGEOMETRY"};
153 >
154 > long k_defined[] = {D86, D86, D86, D86, D86, D91, D91, D91, D91, D95};
155 >
156 > int     filerev = FIRSTREV;
157 >
158 > #define keymatch(i,s)   (k_defined[filerev-FIRSTREV]&1L<<(i) &&\
159 >                                k_match(k_kwd[i],s))
160 >
161 > #define checklamp(s)    (!(k_defined[filerev-FIRSTREV]&(1<<K_LMP|1<<K_LPC)) ||\
162 >                                keymatch(K_LMP,s) || keymatch(K_LPC,s))
163 >
164 > /* tilt specs
165 > *
166 > * This next series of definitions address metal-halide lamps, which
167 > * change their brightness depending on the angle at which they are
168 > * mounted. The section begins with "TILT=".  The constants in this
169 > * section are all defined in LM-63.
170 > *
171 > */
172 >
173   #define TLTSTR          "TILT="
174   #define TLTSTRLEN       5
175   #define TLTNONE         "NONE"
# Line 27 | Line 177 | static char SCCSid[] = "$SunId$ LBL";
177   #define TLT_VERT        1
178   #define TLT_H0          2
179   #define TLT_H90         3
180 <                                        /* photometric types */
180 >
181 > /* Constants from LM-63 files */
182 >
183 > /* photometric types
184 > *
185 > * This enumeration reflects three different methods of measuring the
186 > * distribution of light from a luminaire -- "goniophotometry" -- and
187 > * the different coordinate systems related to these
188 > * goniophotometers.  All are described in IES standard LM-75-01.
189 > * Earlier and shorter descriptions may be found the LM-63 standards
190 > * from 1986, 1991, and 1995.
191 > *
192 > * ies2rad does not support type A photometry.
193 > *
194 > * In the 1986 file format, LM-63-86, 1 is used for type C and type A
195 > * photometric data.
196 > *
197 > */
198   #define PM_C            1
199   #define PM_B            2
200 <                                        /* unit types */
200 > #define PM_A            3
201 >
202 > /* unit types */
203   #define U_FEET          1
204   #define U_METERS        2
205 <                                        /* string lengths */
206 < #define MAXLINE         132
207 < #define MAXWORD         76
208 <                                        /* file types */
205 >
206 > /* string lengths */
207 > /* Maximum input line is 132 characters including CR LF at end. */
208 > #define MAXLINE         133
209 > #define RMAXWORD        76
210 >
211 > /* End of LM-63-related #defines */
212 >
213 > /* file extensions */
214   #define T_RAD           ".rad"
215   #define T_DST           ".dat"
216 < #define T_TLT           "+.dat"
217 <                                        /* shape types */
216 > #define T_TLT           "%.dat"
217 > #define T_OCT           ".oct"
218 >
219 > /* shape types
220 > * These #defines enumerate the shapes of the Radiance objects which
221 > * emit the light.
222 > */
223   #define RECT            1
224   #define DISK            2
225   #define SPHERE          3
226  
227 < #define MINDIM          .001            /* minimum dimension (point source) */
227 > /* The diameter of a point source luminaire model. Also the minimum
228 > * size (in meters) that the luminous opening of a luminaire must have
229 > * to be treated as other than a point source. */
230 > #define MINDIM          .001
231  
232 < #define F_M             .3048           /* feet to meters */
232 > /* feet to meters */
233 > /* length_in_meters = length_in_feet * F_M */
234 > #define F_M             .3048
235  
236 + /* abspath - return true if a path begins with a directory separator
237 + * or a '.' (current directory) */
238   #define abspath(p)      (ISDIRSEP((p)[0]) || (p)[0] == '.')
239  
240 + /* Global variables.
241 + *
242 + * Mostly, these are a way of communicating command line parameters to
243 + * the rest of the program.
244 + */
245   static char     default_name[] = "default";
246  
247   char    *libdir = NULL;                 /* library directory location */
# Line 64 | Line 255 | float  defcolor[3] = {1.,1.,1.};       /* default lamp color
255   float   *lampcolor = defcolor;          /* pointer to current lamp color */
256   double  multiplier = 1.0;               /* multiplier for all light sources */
257   char    units[64] = "meters";           /* output units */
258 + int     out2stdout = 0;                 /* put out to stdout r.t. file */
259 + int     instantiate = 0;                /* instantiate geometry */
260   double  illumrad = 0.0;                 /* radius for illum sphere */
261  
262 + /* This struct describes the Radiance source object */
263   typedef struct {
264 +        int     isillum;                        /* do as illum */
265          int     type;                           /* RECT, DISK, SPHERE */
266 +        double  mult;                           /* candela multiplier */
267          double  w, l, h;                        /* width, length, height */
268          double  area;                           /* max. projected area */
269 < } SHAPE;                                /* a source shape */
269 > } SRCINFO;                              /* a source shape (units=meters) */
270  
271 < int     gargc;                          /* global argc (minus filenames) */
271 > /* A count and pointer to the list of input file names */
272 > int     gargc;                          /* global argc */
273   char    **gargv;                        /* global argv */
274  
275 < extern char     *strcpy(), *strcat(), *stradd(), *tailtrunc(), *filetrunc(),
276 <                *filename(), *libname(), *fullname(), *malloc();
277 < extern float    *matchlamp();
275 > /* macros to scan numbers out of IES files
276 > *
277 > * fp is a file pointer.  scnint() places the number in the integer
278 > * indicated by ip; scnflt() places the number in the double indicated
279 > * by rp. The macros return 1 if successful, 0 if not.
280 > *
281 > */
282 > #define scnint(fp,ip)   cvtint(ip,getword(fp))
283 > #define scnflt(fp,rp)   cvtflt(rp,getword(fp))
284  
285 + /* The original (1986) version of LM-63 allows decimals points in
286 + * integers, so that, for instance, the number of lamps may be written
287 + * 3.0 (the number, obviously, must still be an integer.) This
288 + * confusing define accommodates that.  */
289 + #define isint           isflt
290  
291 < main(argc, argv)
292 < int     argc;
293 < char    *argv[];
291 > /* Function declarations */
292 > static int ies2rad(char *inpname, char *outname);
293 > static void initlamps(void);
294 > static int dosource(SRCINFO *sinf, FILE *in, FILE *out, char *mod, char *name);
295 > static int dotilt(FILE *in, FILE *out, char *dir, char *tltspec,
296 >                char *dfltname, char *tltid);
297 > static int cvgeometry(char *inpname, SRCINFO *sinf, char *outname, FILE *outfp);
298 > static int cvtint(int *ip, char *wrd);
299 > static int cvdata(FILE *in, FILE *out, int ndim, int npts[], double mult,
300 >                double lim[][2]);
301 > static int cvtflt(double *rp, char *wrd);
302 > static int makeshape(SRCINFO *shp, double width, double length, double height);
303 > static int putsource(SRCINFO *shp, FILE *fp, char *mod, char *name,
304 >                int dolower, int doupper, int dosides);
305 > static void putrectsrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up);
306 > static void putsides(SRCINFO *shp, FILE *fp, char *mod, char *name);
307 > static void putdisksrc(SRCINFO *shp, FILE *fp, char *mod, char *name, int up);
308 > static void putspheresrc(SRCINFO *shp, FILE *fp, char *mod, char *name);
309 > static void putrect(SRCINFO *shp, FILE *fp, char *mod, char *name, char *suffix,
310 >                int a, int b, int c, int d);
311 > static void putpoint(SRCINFO *shp, FILE *fp, int p);
312 > static void putcyl(SRCINFO *shp, FILE *fp, char *mod, char *name);
313 > static char * tailtrunc(char *name);
314 > static char * filename(char *path);
315 > static char * libname(char *path, char *fname, char *suffix);
316 > static char * getword(FILE *fp);
317 > static char * fullnam(char *path, char *fname, char *suffix);
318 >
319 > /* main - process arguments and run the conversion
320 > *
321 > * Refer to the man page for details of the arguments.
322 > *
323 > * Following Unix environment conventions, main() exits with 0 on
324 > * success and 1 on failure.
325 > *
326 > * ies2rad outputs either two or three files for a given IES
327 > * file. There is always a .rad file containing Radiance scene
328 > * description primitives and a .dat file for the photometric data. If
329 > * tilt data is given, that is placed in a separate .dat file.  So
330 > * ies2rad must have a filename to operate. Sometimes this name is the
331 > * input file name, shorn of its extension; sometimes it is given in
332 > * the -o option. But an output file name is required for ies2rad to
333 > * do its work.
334 > *
335 > * Older versions of the LM-63 standard allowed inclusion of multiple
336 > * luminaires in one IES file; this is not supported by ies2rad.
337 > *
338 > * This code sometimes does not check to make sure it has not run out
339 > * of arguments; this can lead to segmentation faults and perhaps
340 > * other errors.
341 > *
342 > */
343 > int
344 > main(
345 >        int     argc,
346 >        char    *argv[]
347 > )
348   {
349          char    *outfile = NULL;
350          int     status;
351 <        char    outname[MAXWORD];
351 >        char    outname[RMAXWORD];
352          double  d1;
353          int     i;
354 <        
354 >
355 >        /* Scan the options */
356          for (i = 1; i < argc && argv[i][0] == '-'; i++)
357                  switch (argv[i][1]) {
358                  case 'd':               /* dimensions */
# Line 151 | Line 414 | char   *argv[];
414                  case 'f':               /* lamp data file */
415                          lampdat = argv[++i];
416                          break;
417 <                case 'o':               /* output file name */
417 >                case 'o':               /* output file root name */
418                          outfile = argv[++i];
419                          break;
420 +                case 's':               /* output to stdout */
421 +                        out2stdout = !out2stdout;
422 +                        break;
423                  case 'i':               /* illum */
424                          illumrad = atof(argv[++i]);
159                        if (illumrad < MINDIM)
160                                illumrad = MINDIM;
425                          break;
426 +                case 'g':               /* instantiate geometry? */
427 +                        instantiate = !instantiate;
428 +                        break;
429                  case 't':               /* override lamp type */
430                          lamptype = argv[++i];
431                          break;
# Line 179 | Line 446 | char   *argv[];
446                                          argv[0], argv[i]);
447                          exit(1);
448                  }
449 +        /* Save pointers to the list of input file names */
450          gargc = i;
451          gargv = argv;
452 <        initlamps();                    /* get lamp data (if needed) */
453 <                                        /* convert ies file(s) */
452 >
453 >        /* get lamp data (if needed) */
454 >        initlamps();
455 >
456 >        /* convert ies file(s) */
457 >        /* If an output file name is specified */
458          if (outfile != NULL) {
459                  if (i == argc)
460 +                        /* If no input filename is given, use stdin as
461 +                         * the source for the IES file */
462                          exit(ies2rad(NULL, outfile) == 0 ? 0 : 1);
463                  else if (i == argc-1)
464 +                        /* If exactly one input file name is given, use it. */
465                          exit(ies2rad(argv[i], outfile) == 0 ? 0 : 1);
466 <                else {
467 <                        fprintf(stderr, "%s: single input file required\n",
193 <                                        argv[0]);
194 <                        exit(1);
195 <                }
466 >                else
467 >                        goto needsingle; /* Otherwise, error. */
468          } else if (i >= argc) {
469 +                /* If an output file and an input file are not give, error. */
470                  fprintf(stderr, "%s: missing output file specification\n",
471                                  argv[0]);
472                  exit(1);
473          }
474 +        /* If no input or output file is given, error. */
475 +        if (out2stdout && i != argc-1)
476 +                goto needsingle;
477 +        /* Otherwise, process each input file in turn. */
478          status = 0;
479          for ( ; i < argc; i++) {
480                  tailtrunc(strcpy(outname,filename(argv[i])));
# Line 205 | Line 482 | char   *argv[];
482                          status = 1;
483          }
484          exit(status);
485 + needsingle:
486 +        fprintf(stderr, "%s: single input file required\n", argv[0]);
487 +        exit(1);
488   }
489  
490 <
491 < initlamps()                             /* set up lamps */
490 > /* Initlamps -- If necessary, read lamp data table */
491 > void
492 > initlamps(void)                         /* set up lamps */
493   {
494          float   *lcol;
495          int     status;
496  
497 +        /* If the lamp name is set to default, don't bother to read
498 +         * the lamp data table. */
499          if (lamptype != NULL && !strcmp(lamptype, default_name) &&
500                          deflamp == NULL)
501 <                return;                         /* no need for data */
502 <                                                /* else load file */
503 <        if ((status = loadlamps(lampdat)) < 0)
504 <                exit(1);
501 >                return;
502 >
503 >        if ((status = loadlamps(lampdat)) < 0) /* Load the lamp data table */
504 >                exit(1);                       /* Exit if problems
505 >                                                * with the file. */
506          if (status == 0) {
507 +                /* If can't open the file, just use the standard default lamp */
508                  fprintf(stderr, "%s: warning - no lamp data\n", lampdat);
509                  lamptype = default_name;
510                  return;
511          }
512 <        if (deflamp != NULL) {                  /* match default type */
512 >        if (deflamp != NULL) {
513 >                /* Look up the specified default lamp type */
514                  if ((lcol = matchlamp(deflamp)) == NULL)
515 +                        /* If it can't be found, use the default */
516                          fprintf(stderr,
517                                  "%s: warning - unknown default lamp type\n",
518                                          deflamp);
519                  else
520 +                        /* Use the selected default lamp color */
521                          copycolor(defcolor, lcol);
522          }
523 <        if (lamptype != NULL) {                 /* match selected type */
523 >        /* If a lamp type is specified and can be found, use it, and
524 >         * release the lamp data table memory; it won't be needed any more. */
525 >        if (lamptype != NULL) {
526                  if (strcmp(lamptype, default_name)) {
527                          if ((lcol = matchlamp(lamptype)) == NULL) {
528                                  fprintf(stderr,
# Line 244 | Line 534 | initlamps()                            /* set up lamps */
534                  }
535                  freelamps();                    /* all done with data */
536          }
537 <                                                /* else keep lamp data */
537 >        /* else keep lamp data */
538   }
539  
540 + /*
541 + * File path operations
542 + *
543 + * These provide file path operations that operate on both MS-Windows
544 + * and *nix. They will ignore and pass, but will not necessarily
545 + * process correctly, Windows drive letters. Paths including Windows
546 + * UNC network names (\\server\folder\file) may also cause problems.
547 + *
548 + */
549  
550 + /*
551 + * stradd()
552 + *
553 + * Add a string to the end of a string, optionally concatenating a
554 + * file path separator character.  If the path already ends with a
555 + * path separator, no additional separator is appended.
556 + *
557 + */
558   char *
559 < stradd(dst, src, sep)                   /* add a string at dst */
560 < register char   *dst, *src;
561 < int     sep;
559 > stradd(                 /* add a string at dst */
560 >        char    *dst,
561 >        char    *src,
562 >        int     sep
563 > )
564   {
565          if (src && *src) {
566                  do
# Line 264 | Line 573 | int    sep;
573          return(dst);
574   }
575  
576 <
576 > /*
577 > * fullnam () - return a usable path name for an output file
578 > */
579   char *
580 < fullname(path, fname, suffix)           /* return full path name */
581 < char    *path, *fname, *suffix;
580 > fullnam(
581 >        char    *path,          /* The base directory path */
582 >        char    *fname,         /* The file name */
583 >        char    *suffix         /* A suffix, which usually contains
584 >                                 * a file name extension. */
585 > )
586   {
587 +        extern char *prefdir;
588 +        extern char *libdir;
589 +
590          if (prefdir != NULL && abspath(prefdir))
591 +                /* If the subdirectory path is absolute or '.', just
592 +                 * concatenate the names together */
593                  libname(path, fname, suffix);
594          else if (abspath(fname))
595 +                /* If there is no subdirectory, and the file name is
596 +                 * an absolute path or '.', concatenate the path,
597 +                 * filename, and suffix. */
598                  strcpy(stradd(path, fname, 0), suffix);
599          else
600 +                /* If the file name is relative, concatenate path,
601 +                 * library directory, directory separator, file name,
602 +                 * and suffix.  */
603                  libname(stradd(path, libdir, DIRSEP), fname, suffix);
604  
605          return(path);
606   }
607  
608  
609 + /*
610 + * libname - convert a file name to a path
611 + */
612   char *
613 < libname(path, fname, suffix)            /* return library relative name */
614 < char    *path, *fname, *suffix;
613 > libname(
614 >        char    *path,          /* The base directory path */
615 >        char    *fname,         /* The file name */
616 >        char    *suffix         /* A suffix, which usually contains
617 >                                 * a file name extension. */
618 > )
619   {
620 +        extern char *prefdir;   /* The subdirectory where the file
621 +                                 * name is stored. */
622 +
623          if (abspath(fname))
624 +                /* If the file name begins with '/' or '.', combine
625 +                 * it with the path and attach the suffix */
626                  strcpy(stradd(path, fname, 0), suffix);
627          else
628 +                /* If the file name is relative, attach it to the
629 +                 * path, include the subdirectory, and append the suffix. */
630                  strcpy(stradd(stradd(path, prefdir, DIRSEP), fname, 0), suffix);
631  
632          return(path);
633   }
634  
635 <
635 > /* filename - find the base file name in a buffer containing a path
636 > *
637 > * The pointer is to a character within the buffer, not a string in itself;
638 > * it will become invalid when the buffer is freed.
639 > *
640 > */
641   char *
642 < filename(path)                  /* get final component of pathname */
643 < register char   *path;
642 > filename(
643 >        char    *path
644 > )
645   {
646 <        register char   *cp;
646 >        char    *cp;
647  
648          for (cp = path; *path; path++)
649                  if (ISDIRSEP(*path))
# Line 306 | Line 652 | register char  *path;
652   }
653  
654  
655 + /* filetrunc() - return the directory portion of a path
656 + *
657 + * The path is passed in in a pointer to a buffer; a null character is
658 + * inserted in the buffer after the last directory separator
659 + *
660 + */
661   char *
662 < filetrunc(path)                         /* truncate filename at end of path */
663 < char    *path;
662 > filetrunc(
663 >        char    *path
664 > )
665   {
666 <        register char   *p1, *p2;
666 >        char    *p1, *p2;
667  
668          for (p1 = p2 = path; *p2; p2++)
669                  if (ISDIRSEP(*p2))
670                          p1 = p2;
671 +        if (p1 == path && ISDIRSEP(*p1))
672 +                p1++;
673          *p1 = '\0';
674          return(path);
675   }
676  
677 <
677 > /* tailtrunc() - trim a file name extension, if any.
678 > *
679 > * The file name is passed in in a buffer indicated by *name; the
680 > * period which begins the extension is replaced with a 0 byte.
681 > */
682   char *
683 < tailtrunc(name)                         /* truncate tail of filename */
684 < char    *name;
683 > tailtrunc(
684 >        char    *name
685 > )
686   {
687 <        register char   *p1, *p2;
687 >        char    *p1, *p2;
688  
689 +        /* Skip leading periods */
690          for (p1 = filename(name); *p1 == '.'; p1++)
691                  ;
692 +        /* Find the last period in a file name */
693          p2 = NULL;
694          for ( ; *p1; p1++)
695                  if (*p1 == '.')
696                          p2 = p1;
697 +        /* If present, trim the filename at that period */
698          if (p2 != NULL)
699                  *p2 = '\0';
700          return(name);
701   }
702  
703 <
704 < blanktrunc(s)                           /* truncate spaces at end of line */
705 < char    *s;
703 > /* blanktrunc() - trim spaces at the end of a string
704 > *
705 > * the string is passed in a character array, which is modified
706 > */
707 > void
708 > blanktrunc(
709 >        char    *s
710 > )
711   {
712 <        register char   *cp;
712 >        char    *cp;
713  
714          for (cp = s; *cp; cp++)
715                  ;
# Line 350 | Line 718 | char   *s;
718          *++cp = '\0';
719   }
720  
721 + /* k_match - return true if keyword matches header line */
722 + int
723 + k_match(
724 +        char    *kwd,           /* keyword */
725 +        char    *hdl            /* header line */
726 + )
727 + {
728 +        /* The line has to begin with '[' */
729 +        if (*hdl++ != '[')
730 +                return(0);
731 +        /* case-independent keyword match */
732 +        while (toupper(*hdl) == *kwd++)
733 +                if (!*hdl++)
734 +                        return(0);
735 +        /* If we have come to the end of the keyword, and the keyword
736 +         * at the beginning of the matched line is terminated with
737 +         * ']', return 1 */
738 +        return(!kwd[-1] & (*hdl == ']'));
739 + }
740  
741 < putheader(out)                          /* print header */
742 < FILE    *out;
741 > /* keyargs - return the argument of a keyword, without leading spaces
742 > *
743 > * keyargs is passed a pointer to a buffer; it returns a pointer to
744 > * where the argument starts in the buffer
745 > *
746 > */
747 > char *
748 > keyargs(
749 >        char    *hdl /* header line */
750 > )
751   {
752 <        register int    i;
753 <        
752 >        while (*hdl && *hdl++ != ']')
753 >                ;
754 >        while (isspace(*hdl))
755 >                hdl++;
756 >        return(hdl);
757 > }
758 >
759 >
760 > /* putheader - output the header of the .rad file
761 > *
762 > * Header is:
763 > *   # <file> <file> <file> (all files from input line)
764 > *   # Dimensions in [feet,meters,etc.]
765 > *
766 > * ??? Is listing all the input file names correct behavior?
767 > *
768 > */
769 > void
770 >
771 > putheader(
772 >        FILE    *out
773 > )
774 > {
775 >        int     i;
776 >
777          putc('#', out);
778          for (i = 0; i < gargc; i++) {
779                  putc(' ', out);
# Line 366 | Line 784 | FILE   *out;
784          putc('\n', out);
785   }
786  
787 <
788 < ies2rad(inpname, outname)               /* convert IES file */
789 < char    *inpname, *outname;
787 > /* ies2rad - convert an IES LM-63 file to a Radiance light source desc.
788 > *
789 > * Return -1 in case of failure, 0 in case of success.
790 > *
791 > * The file version recognition is confused and will treat 1995 and
792 > * 2002 version files as 1986 version files.
793 > *
794 > */
795 > int
796 > ies2rad(                /* convert IES file */
797 >        char    *inpname,
798 >        char    *outname
799 > )
800   {
801 <        char    buf[MAXLINE], tltid[MAXWORD];
801 >        SRCINFO srcinfo;
802 >        char    buf[MAXLINE], tltid[RMAXWORD];
803 >        char    geomfile[128];
804          FILE    *inpfp, *outfp;
805 +        int     lineno = 0;
806  
807 +        /* Open input and output files */
808 +        geomfile[0] = '\0';
809 +        srcinfo.isillum = 0;
810          if (inpname == NULL) {
811                  inpname = "<stdin>";
812                  inpfp = stdin;
# Line 380 | Line 814 | char   *inpname, *outname;
814                  perror(inpname);
815                  return(-1);
816          }
817 <        if ((outfp = fopen(fullname(buf,outname,T_RAD), "w")) == NULL) {
817 >        if (out2stdout)
818 >                outfp = stdout;
819 >        else if ((outfp = fopen(fullnam(buf,outname,T_RAD), "w")) == NULL) {
820                  perror(buf);
821                  fclose(inpfp);
822                  return(-1);
823          }
824 +
825 +        /* Output the output file header */
826          putheader(outfp);
827 +
828 +        /* If the lamp type wasn't given on the command line, mark
829 +         * the lamp color as missing */
830          if (lamptype == NULL)
831                  lampcolor = NULL;
832 +
833 +        /* Read the input file header, copying lines to the .rad file
834 +         * and looking for a lamp type. Stop at EOF or a line
835 +         * beginning with "TILT=". */
836          while (fgets(buf,sizeof(buf),inpfp) != NULL
837                          && strncmp(buf,TLTSTR,TLTSTRLEN)) {
838 <                blanktrunc(buf);
839 <                if (!buf[0])
838 >                blanktrunc(buf); /* Trim trailing spaces, CR, LF. */
839 >                if (!buf[0])     /* Skip blank lines */
840                          continue;
841 +                /* increment the header line count, and check for the
842 +                 * "TILT=" line that terminates the header */
843 +                if (!lineno++ && strncmp(buf, MAGICID, LMAGICID) == 0) {
844 +                        /* This code doesn't work for LM-63-95 and
845 +                         * LM-63-02 files and will instead default to
846 +                         * LM-63-86. */
847 +                        filerev = atoi(buf+LMAGICID);
848 +                        if (filerev < FIRSTREV)
849 +                                filerev = FIRSTREV;
850 +                        else if (filerev > LASTREV)
851 +                                filerev = LASTREV;
852 +                }
853 +                /* Output the header line as a comment in the .rad file. */
854                  fputs("#<", outfp);
855                  fputs(buf, outfp);
856                  putc('\n', outfp);
857 <                if (lampcolor == NULL)
858 <                        lampcolor = matchlamp(buf);
857 >
858 >                /* If the header line is a keyword line (file version
859 >                 * later than 1986 and begins with '['), check a lamp
860 >                 * in the "[LAMP]" and "[LAMPCAT]" keyword lines;
861 >                 * otherwise check all lines.  */
862 >                if (lampcolor == NULL && checklamp(buf))
863 >                        lampcolor = matchlamp( buf[0] == '[' ?
864 >                                                keyargs(buf) : buf );
865 >                /* Look for a materials and geometry file in the keywords. */
866 >                if (keymatch(K_LMG, buf)) {
867 >                        strcpy(geomfile, inpname);
868 >                        strcpy(filename(geomfile), keyargs(buf));
869 >                        srcinfo.isillum = 1;
870 >                }
871          }
872 +
873 +        /* Done reading header information. If a lamp color still
874 +         * hasn't been found, print a warning and use the default
875 +         * color; if a lamp type hasn't been found, but a color has
876 +         * been specified, used the specified color. */
877          if (lampcolor == NULL) {
878                  fprintf(stderr, "%s: warning - no lamp type\n", inpname);
879 +                fputs("# Unknown lamp type (used default)\n", outfp);
880                  lampcolor = defcolor;
881 <        }
881 >        } else if (lamptype == NULL)
882 >                fprintf(outfp,"# CIE(x,y) = (%f,%f)\n# Depreciation = %.1f%%\n",
883 >                                lampcolor[3], lampcolor[4], 100.*lampcolor[5]);
884 >        /* If the file ended before a "TILT=" line, that's an error. */
885          if (feof(inpfp)) {
886                  fprintf(stderr, "%s: not in IES format\n", inpname);
887                  goto readerr;
888          }
889 <        sscanf(buf+TLTSTRLEN, "%s", tltid);
889 >
890 >        /* Process the tilt section of the file. */
891 >        /* Get the tilt file name, or the keyword "INCLUDE". */
892 >        atos(tltid, RMAXWORD, buf+TLTSTRLEN);
893          if (inpfp == stdin)
894                  buf[0] = '\0';
895          else
896                  filetrunc(strcpy(buf, inpname));
897 +        /* Process the tilt data. */
898          if (dotilt(inpfp, outfp, buf, tltid, outname, tltid) != 0) {
899                  fprintf(stderr, "%s: bad tilt data\n", inpname);
900                  goto readerr;
901          }
902 <        if (dosource(inpfp, outfp, tltid, outname) != 0) {
902 >
903 >        /* Process the luminaire data. */
904 >        if (dosource(&srcinfo, inpfp, outfp, tltid, outname) != 0) {
905                  fprintf(stderr, "%s: bad luminaire data\n", inpname);
906                  goto readerr;
907          }
908 <        fclose(outfp);
908 >
909 >        /* Close the input file */
910          fclose(inpfp);
911 +
912 +        /* Process an MGF file, if present. cvgeometry() closes outfp. */
913 +        if (cvgeometry(geomfile, &srcinfo, outname, outfp) != 0) {
914 +                fprintf(stderr, "%s: bad geometry file\n", geomfile);
915 +                return(-1);
916 +        }
917          return(0);
918 +
919   readerr:
920 <        fclose(outfp);
920 >        /* If there is an error reading the file, close the input and
921 >         * .rad output files, and delete the .rad file, returning -1. */
922          fclose(inpfp);
923 <        unlink(fullname(buf,outname,T_RAD));
923 >        fclose(outfp);
924 >        unlink(fullnam(buf,outname,T_RAD));
925          return(-1);
926   }
927  
928 <
929 < dotilt(in, out, dir, tltspec, dfltname, tltid)  /* convert tilt data */
930 < FILE    *in, *out;
931 < char    *dir, *tltspec, *dfltname, *tltid;
928 > /* dotilt -- process tilt data
929 > *
930 > * Generate a brightdata primitive which describes the effect of
931 > * luminaire tilt on luminaire output and return its identifier in tltid.
932 > *
933 > * Tilt data (if present) is given as a number 1, 2, or 3, which
934 > * specifies the orientation of the lamp within the luminaire, a
935 > * number, n, of (angle, multiplier) pairs, followed by n angles and n
936 > * multipliers.
937 > *
938 > * returns 0 for success, -1 for error
939 > */
940 > int
941 > dotilt(
942 >        FILE    *in,
943 >        FILE    *out,
944 >        char    *dir,
945 >        char    *tltspec,
946 >        char    *dfltname,
947 >        char    *tltid
948 > )
949   {
950          int     nangles, tlt_type;
951 <        double  minmax[2];
952 <        char    buf[MAXPATH], tltname[MAXWORD];
951 >        double  minmax[1][2];
952 >        char    buf[PATH_MAX], tltname[RMAXWORD];
953          FILE    *datin, *datout;
954  
955 +        /* Decide where the tilt data is; if the luminaire description
956 +         * doesn't have a tilt section, set the identifier to "void". */
957          if (!strcmp(tltspec, TLTNONE)) {
958 +                /* If the line is "TILT=NONE", set the input file
959 +                 * pointer to NULL and the identifier to "void". */
960                  datin = NULL;
961                  strcpy(tltid, "void");
962          } else if (!strcmp(tltspec, TLTINCL)) {
963 +                /* If the line is "TILT=INCLUDE" use the main IES
964 +                 * file as the source of tilt data. */
965                  datin = in;
966                  strcpy(tltname, dfltname);
967          } else {
968 +                /* If the line is "TILE=<filename>", use that file
969 +                 * name as the source of tilt data. */
970                  if (ISDIRSEP(tltspec[0]))
971                          strcpy(buf, tltspec);
972                  else
# Line 457 | Line 977 | char   *dir, *tltspec, *dfltname, *tltid;
977                  }
978                  tailtrunc(strcpy(tltname,filename(tltspec)));
979          }
980 +        /* If tilt data is present, read, process, and output it. */
981          if (datin != NULL) {
982 <                if ((datout = fopen(fullname(buf,tltname,T_TLT),"w")) == NULL) {
982 >                /* Try to open the output file */
983 >                if ((datout = fopen(fullnam(buf,tltname,T_TLT),"w")) == NULL) {
984                          perror(buf);
985                          if (datin != in)
986                                  fclose(datin);
987                          return(-1);
988                  }
989 <                if (fscanf(datin, "%d %d", &tlt_type, &nangles) != 2
989 >                /* Try to copy the tilt data to the tilt data file */
990 >                if (!scnint(datin,&tlt_type) || !scnint(datin,&nangles)
991                          || cvdata(datin,datout,1,&nangles,1.,minmax) != 0) {
992                          fprintf(stderr, "%s: data format error\n", tltspec);
993                          fclose(datout);
994                          if (datin != in)
995                                  fclose(datin);
996 <                        unlink(fullname(buf,tltname,T_TLT));
996 >                        unlink(fullnam(buf,tltname,T_TLT));
997                          return(-1);
998                  }
999                  fclose(datout);
1000                  if (datin != in)
1001                          fclose(datin);
1002 +
1003 +                /* Generate the identifier of the brightdata; the filename
1004 +                 * with "_tilt" appended. */
1005                  strcat(strcpy(tltid, filename(tltname)), "_tilt");
1006 +                /* Write out the brightdata primitive */
1007                  fprintf(out, "\nvoid brightdata %s\n", tltid);
1008                  libname(buf,tltname,T_TLT);
1009 +                /* Generate the tilt description */
1010                  switch (tlt_type) {
1011 <                case TLT_VERT:                  /* vertical */
1011 >                case TLT_VERT:
1012 >                        /* The lamp is mounted vertically; either
1013 >                         * base up or base down. */
1014                          fprintf(out, "4 noop %s tilt.cal %s\n", buf,
1015 <                                minmax[1]>90.+FTINY ? "tilt_ang" : "tilt_ang2");
1015 >                                minmax[0][1]>90.+FTINY ? "tilt_ang" : "tilt_ang2");
1016                          break;
1017 <                case TLT_H0:                    /* horiz. in 0 deg. plane */
1017 >                case TLT_H0:
1018 >                        /* The lamp is mounted horizontally and
1019 >                         * rotates but does not tilt when the
1020 >                         * luminaire is tilted. */
1021                          fprintf(out, "6 noop %s tilt.cal %s -rz 90\n", buf,
1022 <                        minmax[1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1022 >                        minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1023                          break;
1024                  case TLT_H90:
1025 +                        /* The lamp is mounted horizontally, and
1026 +                         * tilts when the luminaire is tilted. */
1027                          fprintf(out, "4 noop %s tilt.cal %s\n", buf,
1028 <                        minmax[1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1028 >                        minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2");
1029                          break;
1030                  default:
1031 +                        /* otherwise, this is a bad IES file */
1032                          fprintf(stderr,
1033                                  "%s: illegal lamp to luminaire geometry (%d)\n",
1034                                  tltspec, tlt_type);
1035                          return(-1);
1036                  }
1037 +                /* And finally output the numbers of integer and real
1038 +                 * arguments, of which there are none. */
1039                  fprintf(out, "0\n0\n");
1040          }
1041          return(0);
1042   }
1043  
1044 <
1045 < dosource(in, out, mod, name)            /* create source and distribution */
1046 < FILE    *in, *out;
1047 < char    *mod, *name;
1044 > /* dosource -- create the source and distribution primitives */
1045 > int
1046 > dosource(
1047 >        SRCINFO *sinf,
1048 >        FILE    *in,
1049 >        FILE    *out,
1050 >        char    *mod,
1051 >        char    *name
1052 > )
1053   {
1054 <        SHAPE   srcshape;
512 <        char    buf[MAXPATH], id[MAXWORD];
1054 >        char    buf[PATH_MAX], id[RMAXWORD];
1055          FILE    *datout;
1056          double  mult, bfactor, pfactor, width, length, height, wattage;
1057          double  bounds[2][2];
1058          int     nangles[2], pmtype, unitype;
1059          double  d1;
1060 +        int     doupper, dolower, dosides;
1061  
1062 <        if (fscanf(in, "%*d %*f %lf %d %d %d %d %lf %lf %lf %lf %lf %lf",
1063 <                        &mult, &nangles[0], &nangles[1], &pmtype, &unitype,
1064 <                        &width, &length, &height, &bfactor, &pfactor,
1065 <                        &wattage) != 11) {
1062 >        /* Read in the luminaire description header */
1063 >        if (!isint(getword(in)) || !isflt(getword(in)) || !scnflt(in,&mult)
1064 >                        || !scnint(in,&nangles[0]) || !scnint(in,&nangles[1])
1065 >                        || !scnint(in,&pmtype) || !scnint(in,&unitype)
1066 >                        || !scnflt(in,&width) || !scnflt(in,&length)
1067 >                        || !scnflt(in,&height) || !scnflt(in,&bfactor)
1068 >                        || !scnflt(in,&pfactor) || !scnflt(in,&wattage)) {
1069                  fprintf(stderr, "dosource: bad lamp specification\n");
1070                  return(-1);
1071          }
1072 +        /* Type A photometry is not supported */
1073 +        if (pmtype != PM_C && pmtype != PM_B) {
1074 +                fprintf(stderr, "dosource: unsupported photometric type (%d)\n",
1075 +                                pmtype);
1076 +                return(-1);
1077 +        }
1078 +
1079 +        /* Multiplier = the multiplier from the -m option, times the
1080 +         * multiplier from the IES file, times the ballast factor,
1081 +         * times the "ballast lamp photometric factor," which was part
1082 +         * of the 1986 and 1991 standards. In the 1995 standard, it is
1083 +         * always supposed to be 1. */
1084 +        sinf->mult = multiplier*mult*bfactor*pfactor;
1085 +
1086 +        /* If the count of angles is wrong, raise an error and quit. */
1087          if (nangles[0] < 2 || nangles[1] < 1) {
1088                  fprintf(stderr, "dosource: too few measured angles\n");
1089                  return(-1);
1090          }
1091 +
1092 +        /* For internal computation, convert units to meters. */
1093          if (unitype == U_FEET) {
1094                  width *= F_M;
1095                  length *= F_M;
1096                  height *= F_M;
1097          }
1098 <        if (makeshape(&srcshape, width, length, height) != 0) {
1098 >
1099 >        /* Make decisions about the shape of the light source
1100 >         * geometry, and store them in sinf. */
1101 >        if (makeshape(sinf, width, length, height) != 0) {
1102                  fprintf(stderr, "dosource: illegal source dimensions");
1103                  return(-1);
1104          }
1105 <        if ((datout = fopen(fullname(buf,name,T_DST), "w")) == NULL) {
1105 >
1106 >        /* Copy the candela values into a Radiance data file. */
1107 >        if ((datout = fopen(fullnam(buf,name,T_DST), "w")) == NULL) {
1108                  perror(buf);
1109                  return(-1);
1110          }
1111          if (cvdata(in, datout, 2, nangles, 1./WHTEFFICACY, bounds) != 0) {
1112                  fprintf(stderr, "dosource: bad distribution data\n");
1113                  fclose(datout);
1114 <                unlink(fullname(buf,name,T_DST));
1114 >                unlink(fullnam(buf,name,T_DST));
1115                  return(-1);
1116          }
1117          fclose(datout);
1118 +
1119 +        /* Output explanatory comment */
1120          fprintf(out, "# %g watt luminaire, lamp*ballast factor = %g\n",
1121                          wattage, bfactor*pfactor);
1122 +        /* Output distribution "brightdata" primitive. Start handling
1123 +           the various cases of symmetry of the distribution. */
1124          strcat(strcpy(id, filename(name)), "_dist");
1125          fprintf(out, "\n%s brightdata %s\n", mod, id);
1126          if (nangles[1] < 2)
# Line 556 | Line 1128 | char   *mod, *name;
1128          else if (pmtype == PM_B)
1129                  fprintf(out, "5 ");
1130          else if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.))
1131 <                fprintf(out, "8 ");
1131 >                fprintf(out, "7 ");
1132          else
1133 <                fprintf(out, "6 ");
1133 >                fprintf(out, "5 ");
1134 >
1135 >        /* If the generated source geometry will be a box, a flat
1136 >         * rectangle, or a disk figure out if it needs a top, a
1137 >         * bottom, and/or sides. */
1138 >        dolower = (bounds[0][0] < 90.-FTINY); /* Bottom */
1139 >        doupper = (bounds[0][1] > 90.+FTINY); /* Top */
1140 >        dosides = (doupper & dolower && sinf->h > MINDIM); /* Sides */
1141 >
1142 >        /* Select the appropriate function and parameters from source.cal */
1143          fprintf(out, "%s %s source.cal ",
1144 <                        srcshape.type==SPHERE ? "corr" : "flatcorr",
1144 >                        sinf->type==SPHERE ? "corr" :
1145 >                        !dosides ? "flatcorr" :
1146 >                        sinf->type==DISK ? "cylcorr" : "boxcorr",
1147                          libname(buf,name,T_DST));
1148          if (pmtype == PM_B) {
1149                  if (FEQ(bounds[1][0],0.))
# Line 568 | Line 1151 | char   *mod, *name;
1151                  else
1152                          fprintf(out, "srcB_horiz ");
1153                  fprintf(out, "srcB_vert ");
1154 <        } else {
1154 >        } else /* pmtype == PM_C */ {
1155                  if (nangles[1] >= 2) {
1156                          d1 = bounds[1][1] - bounds[1][0];
1157                          if (d1 <= 90.+FTINY)
1158                                  fprintf(out, "src_phi4 ");
1159 <                        else if (d1 <= 180.+FTINY)
1160 <                                fprintf(out, "src_phi2 ");
1161 <                        else
1159 >                        else if (d1 <= 180.+FTINY) {
1160 >                                if (FEQ(bounds[1][0],90.))
1161 >                                        fprintf(out, "src_phi2+90 ");
1162 >                                else
1163 >                                        fprintf(out, "src_phi2 ");
1164 >                        } else
1165                                  fprintf(out, "src_phi ");
1166 <                        fprintf(out, "src_theta -my ");
1166 >                        fprintf(out, "src_theta ");
1167                          if (FEQ(bounds[1][0],90.) && FEQ(bounds[1][1],270.))
1168                                  fprintf(out, "-rz -90 ");
1169                  } else
1170                          fprintf(out, "src_theta ");
1171          }
1172 <        fprintf(out, "\n0\n1 %g\n", multiplier*mult*bfactor*pfactor);
1173 <        if (putsource(&srcshape, out, id, filename(name),
1174 <                        bounds[0][0]<90., bounds[0][1]>90.) != 0)
1172 >        /* finish the brightdata primitive with appropriate data */
1173 >        if (!dosides || sinf->type == SPHERE)
1174 >                fprintf(out, "\n0\n1 %g\n", sinf->mult/sinf->area);
1175 >        else if (sinf->type == DISK)
1176 >                fprintf(out, "\n0\n3 %g %g %g\n", sinf->mult,
1177 >                                sinf->w, sinf->h);
1178 >        else
1179 >                fprintf(out, "\n0\n4 %g %g %g %g\n", sinf->mult,
1180 >                                sinf->l, sinf->w, sinf->h);
1181 >        /* Brightdata primitive written out. */
1182 >
1183 >        /* Finally, output the descriptions of the actual radiant
1184 >         * surfaces. */
1185 >        if (putsource(sinf, out, id, filename(name),
1186 >                        dolower, doupper, dosides) != 0)
1187                  return(-1);
1188          return(0);
1189   }
1190  
1191 <
1192 < putsource(shp, fp, mod, name, dolower, doupper)         /* put out source */
1193 < SHAPE   *shp;
1194 < FILE    *fp;
1195 < char    *mod, *name;
1196 < int     dolower, doupper;
1191 > /* putsource - output the actual light emitting geometry
1192 > *
1193 > * Three kinds of geometry are produced: rectangles and boxes, disks
1194 > * ("ring" primitive, but the radius of the hole is always zero) and
1195 > * cylinders, and spheres.
1196 > */
1197 > int
1198 > putsource(
1199 >        SRCINFO *shp,
1200 >        FILE    *fp,
1201 >        char    *mod,
1202 >        char    *name,
1203 >        int     dolower,
1204 >        int     doupper,
1205 >        int     dosides
1206 > )
1207   {
1208 <        char    buf[MAXWORD];
1209 <        
1210 <        fprintf(fp, "\n%s %s %s_light\n", mod,
1211 <                        illumrad>=MINDIM/2. ? "illum" : "light",
1212 <                        name);
1208 >        char    lname[RMAXWORD];
1209 >
1210 >        /* First, describe the light. If a materials and geometry
1211 >         * file is given, generate an illum instead. */
1212 >        strcat(strcpy(lname, name), "_light");
1213 >        fprintf(fp, "\n%s %s %s\n", mod,
1214 >                        shp->isillum ? "illum" : "light", lname);
1215          fprintf(fp, "0\n0\n3 %g %g %g\n",
1216 <                        lampcolor[0]/shp->area,
607 <                        lampcolor[1]/shp->area,
608 <                        lampcolor[2]/shp->area);
609 <        if (doupper && dolower && shp->type != SPHERE && shp->h > MINDIM) {
610 <                fprintf(fp, "\n%s glow %s_glow\n", mod, name);
611 <                fprintf(fp, "0\n0\n4 %g %g %g -1\n",
612 <                                lampcolor[0]/shp->area,
613 <                                lampcolor[1]/shp->area,
614 <                                lampcolor[2]/shp->area);
615 <        }
1216 >                        lampcolor[0], lampcolor[1], lampcolor[2]);
1217          switch (shp->type) {
1218          case RECT:
1219 <                strcat(strcpy(buf, name), "_light");
1219 >                /* Output at least one rectangle. If light is radiated
1220 >                 * from the sides of the luminaire, output rectangular
1221 >                 * sides as well. */
1222                  if (dolower)
1223 <                        putrectsrc(shp, fp, buf, name, 0);
1223 >                        putrectsrc(shp, fp, lname, name, 0);
1224                  if (doupper)
1225 <                        putrectsrc(shp, fp, buf, name, 1);
1226 <                if (doupper && dolower && shp->h > MINDIM) {
1227 <                        strcat(strcpy(buf, name), "_glow");
625 <                        putsides(shp, fp, buf, name);
626 <                }
1225 >                        putrectsrc(shp, fp, lname, name, 1);
1226 >                if (dosides)
1227 >                        putsides(shp, fp, lname, name);
1228                  break;
1229          case DISK:
1230 <                strcat(strcpy(buf, name), "_light");
1230 >                /* Output at least one disk. If light is radiated from
1231 >                 * the sides of luminaire, output a cylinder as well. */
1232                  if (dolower)
1233 <                        putdisksrc(shp, fp, buf, name, 0);
1233 >                        putdisksrc(shp, fp, lname, name, 0);
1234                  if (doupper)
1235 <                        putdisksrc(shp, fp, buf, name, 1);
1236 <                if (doupper && dolower && shp->h > MINDIM) {
1237 <                        strcat(strcpy(buf, name), "_glow");
636 <                        putcyl(shp, fp, buf, name);
637 <                }
1235 >                        putdisksrc(shp, fp, lname, name, 1);
1236 >                if (dosides)
1237 >                        putcyl(shp, fp, lname, name);
1238                  break;
1239          case SPHERE:
1240 <                strcat(strcpy(buf, name), "_light");
1241 <                putspheresrc(shp, fp, buf, name);
1240 >                /* Output a sphere. */
1241 >                putspheresrc(shp, fp, lname, name);
1242                  break;
1243          }
1244          return(0);
1245   }
1246  
1247 <
1248 < makeshape(shp, width, length, height)           /* make source shape */
1249 < register SHAPE  *shp;
1250 < double  width, length, height;
1247 > /* makeshape -- decide what shape will be used
1248 > *
1249 > * makeshape decides what Radiance geometry will be used to represent
1250 > * the light source and stores information about it in shp.
1251 > */
1252 > int
1253 > makeshape(
1254 >        SRCINFO *shp,
1255 >        double  width,
1256 >        double  length,
1257 >        double  height
1258 > )
1259   {
1260 <        if (illumrad >= MINDIM/2.) {
1260 >        /* Categorize the shape */
1261 >        if (illumrad/meters2out >= MINDIM/2.) {
1262 >                /* If the -i command line option is used, and the
1263 >                 * object is not a point source, output an "illum"
1264 >                 * sphere */
1265 >                shp->isillum = 1;
1266                  shp->type = SPHERE;
1267 <                shp->w = shp->l = shp->h = 2.*illumrad;
1267 >                shp->w = shp->l = shp->h = 2.*illumrad / meters2out;
1268          } else if (width < MINDIM) {
1269 +                /* The width is either zero or negative. */
1270                  width = -width;
1271                  if (width < MINDIM) {
1272 +                        /* The width is zero. Use a tiny sphere to
1273 +                         * represent a point source. */
1274                          shp->type = SPHERE;
1275                          shp->w = shp->l = shp->h = MINDIM;
1276                  } else if (height < .5*width) {
1277 +                        /* The width is negative and the height is
1278 +                         * modest; output either a disk or a thin
1279 +                         * vertical cylinder. */
1280                          shp->type = DISK;
1281                          shp->w = shp->l = width;
1282                          if (height >= MINDIM)
# Line 665 | Line 1284 | double width, length, height;
1284                          else
1285                                  shp->h = .5*MINDIM;
1286                  } else {
1287 +                        /* The width is negative and the object is
1288 +                         * tall; output a sphere. */
1289                          shp->type = SPHERE;
1290                          shp->w = shp->l = shp->h = width;
1291                  }
1292          } else {
1293 +                /* The width is positive. Output a box, possibly very
1294 +                 * thin. */
1295                  shp->type = RECT;
1296                  shp->w = width;
1297                  if (length >= MINDIM)
# Line 680 | Line 1303 | double width, length, height;
1303                  else
1304                          shp->h = .5*MINDIM;
1305          }
1306 +
1307 +        /* Done choosing the shape; calculate its area in the x-y plane. */
1308          switch (shp->type) {
1309          case RECT:
1310                  shp->area = shp->w * shp->l;
# Line 692 | Line 1317 | double width, length, height;
1317          return(0);
1318   }
1319  
1320 + /* Rectangular or box-shaped light source.
1321 + *
1322 + * putrectsrc, putsides, putrect, and putpoint are used to output the
1323 + * Radiance description of a box.  The box is centered on the origin
1324 + * and has the dimensions given in the IES file.  The coordinates
1325 + * range from [-1/2*length, -1/2*width, -1/2*height] to [1/2*length,
1326 + * 1/2*width, 1/2*height].
1327 + *
1328 + * The location of the point is encoded in the low-order three bits of
1329 + * an integer. If the integer is p, then: bit 0 is (p & 1),
1330 + * representing length (x), bit 1 is (p & 2) representing width (y),
1331 + * and bit 2 is (p & 4), representing height (z).
1332 + *
1333 + * Looking down from above (towards -z), the vertices of the box or
1334 + * rectangle are numbered so:
1335 + *
1336 + *     2,6                                        3,7
1337 + *        +--------------------------------------+
1338 + *        |                                      |
1339 + *        |                                      |
1340 + *        |                                      |
1341 + *        |                                      |
1342 + *        +--------------------------------------+
1343 + *     0,4                                        1,5
1344 + *
1345 + * The higher number of each pair is above the x-y plane (positive z),
1346 + * the lower number is below the x-y plane (negative z.)
1347 + *
1348 + */
1349  
1350 < putrectsrc(shp, fp, mod, name, up)              /* rectangular source */
1351 < SHAPE   *shp;
1352 < FILE    *fp;
1353 < char    *mod, *name;
1354 < int     up;
1350 > /* putrecsrc - output a rectangle parallel to the x-y plane
1351 > *
1352 > * Putrecsrc calls out the vertices of a rectangle parallel to the x-y
1353 > * plane.  The order of the vertices is different for the upper and
1354 > * lower rectangles of a box, since a right-hand rule based on the
1355 > * order of the vertices is used to determine the surface normal of
1356 > * the rectangle, and the surface normal determines the direction the
1357 > * light radiated by the rectangle.
1358 > *
1359 > */
1360 > void
1361 > putrectsrc(
1362 >        SRCINFO *shp,
1363 >        FILE    *fp,
1364 >        char    *mod,
1365 >        char    *name,
1366 >        int     up
1367 > )
1368   {
1369          if (up)
1370                  putrect(shp, fp, mod, name, ".u", 4, 5, 7, 6);
# Line 705 | Line 1372 | int    up;
1372                  putrect(shp, fp, mod, name, ".d", 0, 2, 3, 1);
1373   }
1374  
1375 <
1376 < putsides(shp, fp, mod, name)                    /* put out sides of box */
1377 < register SHAPE  *shp;
1378 < FILE    *fp;
1379 < char    *mod, *name;
1375 > /* putsides - put out sides of box */
1376 > void
1377 > putsides(
1378 >        SRCINFO *shp,
1379 >        FILE    *fp,
1380 >        char    *mod,
1381 >        char    *name
1382 > )
1383   {
1384          putrect(shp, fp, mod, name, ".1", 0, 1, 5, 4);
1385          putrect(shp, fp, mod, name, ".2", 1, 3, 7, 5);
1386          putrect(shp, fp, mod, name, ".3", 3, 2, 6, 7);
1387          putrect(shp, fp, mod, name, ".4", 2, 0, 4, 6);
1388   }
719        
1389  
1390 < putrect(shp, fp, mod, name, suffix, a, b, c, d) /* put out a rectangle */
1391 < SHAPE   *shp;
1392 < FILE    *fp;
1393 < char    *mod, *name, *suffix;
1394 < int     a, b, c, d;
1390 > /* putrect - put out a rectangle
1391 > *
1392 > * putrect generates the "polygon" primitive which describes a
1393 > * rectangle.
1394 > */
1395 > void
1396 > putrect(
1397 >        SRCINFO *shp,
1398 >        FILE    *fp,
1399 >        char    *mod,
1400 >        char    *name,
1401 >        char    *suffix,
1402 >        int     a,
1403 >        int b,
1404 >        int c,
1405 >        int d
1406 > )
1407   {
1408          fprintf(fp, "\n%s polygon %s%s\n0\n0\n12\n", mod, name, suffix);
1409          putpoint(shp, fp, a);
# Line 731 | Line 1412 | int    a, b, c, d;
1412          putpoint(shp, fp, d);
1413   }
1414  
1415 <
1416 < putpoint(shp, fp, p)                            /* put out a point */
1417 < register SHAPE  *shp;
1418 < FILE    *fp;
1419 < int     p;
1415 > /* putpoint -- output a the coordinates of a vertex
1416 > *
1417 > * putpoint maps vertex numbers to coordinates and outputs the
1418 > * coordinates.
1419 > */
1420 > void
1421 > putpoint(
1422 >        SRCINFO *shp,
1423 >        FILE    *fp,
1424 >        int     p
1425 > )
1426   {
1427          static double   mult[2] = {-.5, .5};
1428  
# Line 745 | Line 1432 | int    p;
1432                          mult[p>>2]*shp->h*meters2out);
1433   }
1434  
1435 + /* End of routines to output a box-shaped light source */
1436  
1437 < putdisksrc(shp, fp, mod, name, up)              /* put out a disk source */
1438 < register SHAPE  *shp;
1439 < FILE    *fp;
1440 < char    *mod, *name;
1441 < int     up;
1437 > /* Routines to output a cylindrical or disk shaped light source
1438 > *
1439 > * As with other shapes, the light source is centered on the origin.
1440 > * The "ring" and "cylinder" primitives are used.
1441 > *
1442 > */
1443 > void
1444 > putdisksrc(             /* put out a disk source */
1445 >        SRCINFO *shp,
1446 >        FILE    *fp,
1447 >        char    *mod,
1448 >        char    *name,
1449 >        int     up
1450 > )
1451   {
1452          if (up) {
1453                  fprintf(fp, "\n%s ring %s.u\n", mod, name);
# Line 768 | Line 1465 | int    up;
1465   }
1466  
1467  
1468 < putcyl(shp, fp, mod, name)                      /* put out a cylinder */
1469 < register SHAPE  *shp;
1470 < FILE    *fp;
1471 < char    *mod, *name;
1468 > void
1469 > putcyl(                 /* put out a cylinder */
1470 >        SRCINFO *shp,
1471 >        FILE    *fp,
1472 >        char    *mod,
1473 >        char    *name
1474 > )
1475   {
1476          fprintf(fp, "\n%s cylinder %s.c\n", mod, name);
1477          fprintf(fp, "0\n0\n7\n");
# Line 780 | Line 1480 | char   *mod, *name;
1480          fprintf(fp, "\t%g\n", .5*shp->w*meters2out);
1481   }
1482  
1483 + /* end of of routines to output cylinders and disks */
1484  
1485 < putspheresrc(shp, fp, mod, name)                /* put out a sphere source */
1486 < SHAPE   *shp;
1487 < FILE    *fp;
1488 < char    *mod, *name;
1485 > void
1486 > putspheresrc(           /* put out a sphere source */
1487 >        SRCINFO *shp,
1488 >        FILE    *fp,
1489 >        char    *mod,
1490 >        char    *name
1491 > )
1492   {
1493          fprintf(fp, "\n%s sphere %s.s\n", mod, name);
1494          fprintf(fp, "0\n0\n4 0 0 0 %g\n", .5*shp->w*meters2out);
1495   }
1496  
1497 <
1498 < cvdata(in, out, ndim, npts, mult, lim)          /* convert data */
1499 < FILE    *in, *out;
1500 < int     ndim, npts[];
1501 < double  mult, lim[][2];
1497 > /* cvdata - convert LM-63 tilt and candela data to Radiance brightdata format
1498 > *
1499 > * The files created by this routine are intended for use with the Radiance
1500 > * "brightdata" material type.
1501 > *
1502 > * Two types of data are converted; one-dimensional tilt data, which
1503 > * is given in polar coordinates, and two-dimensional candela data,
1504 > * which is given in spherical co-ordinates.
1505 > *
1506 > * Return 0 for success, -1 for failure.
1507 > *
1508 > */
1509 > int
1510 > cvdata(
1511 >        FILE    *in,            /* Input file */
1512 >        FILE    *out,           /* Output file */
1513 >        int     ndim,           /* Number of dimensions; 1 for
1514 >                                 * tilt data, 2 for photometric data. */
1515 >        int     npts[],         /* Number of points in each dimension */
1516 >        double  mult,           /* Multiple each value by this
1517 >                                 * number. For tilt data, always
1518 >                                 * 1. For candela values, the
1519 >                                 * efficacy of white Radiance light.  */
1520 >        double  lim[][2]        /* The range of angles in each dimension. */
1521 > )
1522   {
1523 <        double  *pt[4];
1524 <        register int    i, j;
1523 >        double  *pt[4];         /* Four is the expected maximum of ndim. */
1524 >        int     i, j;
1525          double  val;
1526          int     total;
1527  
1528 +        /* Calculate and output the number of data values */
1529          total = 1; j = 0;
1530          for (i = 0; i < ndim; i++)
1531                  if (npts[i] > 1) {
# Line 808 | Line 1533 | double mult, lim[][2];
1533                          j++;
1534                  }
1535          fprintf(out, "%d\n", j);
1536 <                                        /* get coordinates */
1536 >
1537 >        /* Read in the angle values, and note the first and last in
1538 >         * each dimension, if there is a place to store them. In the
1539 >         * case of tilt data, there is only one list of angles. In the
1540 >         * case of candela values, vertical angles appear first, and
1541 >         * horizontal angles occur second. */
1542          for (i = 0; i < ndim; i++) {
1543 +                /* Allocate space for the angle values. */
1544                  pt[i] = (double *)malloc(npts[i]*sizeof(double));
1545                  for (j = 0; j < npts[i]; j++)
1546 <                        fscanf(in, "%lf", &pt[i][j]);
1546 >                        if (!scnflt(in, &pt[i][j]))
1547 >                                return(-1);
1548                  if (lim != NULL) {
1549                          lim[i][0] = pt[i][0];
1550                          lim[i][1] = pt[i][npts[i]-1];
1551                  }
1552          }
1553 <                                        /* write out in reverse */
1553 >
1554 >        /* Output the angles. If this is candela data, horizontal
1555 >         * angles output first. There are two cases: the first where
1556 >         * the angles are evenly spaced, the second where they are
1557 >         * not.
1558 >         *
1559 >         * When the angles are evenly spaced, three numbers are
1560 >         * output: the first angle, the last angle, and the number of
1561 >         * angles.  When the angles are not evenly spaced, instead
1562 >         * zero, zero, and the count of angles is given, followed by a
1563 >         * list of angles.  In this case, angles are output four to a line.
1564 >         */
1565          for (i = ndim-1; i >= 0; i--) {
1566                  if (npts[i] > 1) {
1567 +                        /* Determine if the angles are evenly spaces */
1568                          for (j = 1; j < npts[i]-1; j++)
1569                                  if (!FEQ(pt[i][j]-pt[i][j-1],
1570                                                  pt[i][j+1]-pt[i][j]))
1571                                          break;
1572 +                        /* If they are, output the first angle, the
1573 +                         * last angle, and a count */
1574                          if (j == npts[i]-1)
1575                                  fprintf(out, "%g %g %d\n", pt[i][0], pt[i][j],
1576                                                  npts[i]);
1577                          else {
1578 +                                /* otherwise, output 0, 0, and a
1579 +                                 * count, followed by the list of
1580 +                                 * angles, one to a line. */
1581                                  fprintf(out, "0 0 %d", npts[i]);
1582                                  for (j = 0; j < npts[i]; j++) {
1583                                          if (j%4 == 0)
# Line 838 | Line 1587 | double mult, lim[][2];
1587                                  putc('\n', out);
1588                          }
1589                  }
1590 <                free((char *)pt[i]);
1590 >                /* Free the storage containing the angle values. */
1591 >                free((void *)pt[i]);
1592          }
1593 +
1594 +        /* Finally, read in the data values (candela or multiplier values,
1595 +         * depending on the part of the file) and output them four to
1596 +         * a line. */
1597          for (i = 0; i < total; i++) {
1598                  if (i%4 == 0)
1599                          putc('\n', out);
1600 <                if (fscanf(in, "%lf", &val) != 1)
1600 >                if (!scnflt(in, &val))
1601                          return(-1);
1602                  fprintf(out, "\t%g", val*mult);
1603          }
1604          putc('\n', out);
1605          return(0);
1606   }
1607 +
1608 + /* getword - get an LM-63 delimited word from fp
1609 + *
1610 + * Getword gets a word from an IES file delimited by either white
1611 + * space or a comma surrounded by white space. A pointer to the word
1612 + * is returned, which will persist only until getword is called again.
1613 + * At EOF, return NULL instead.
1614 + *
1615 + */
1616 + char *
1617 + getword(                        /* scan a word from fp */
1618 +        FILE    *fp
1619 + )
1620 + {
1621 +        static char     wrd[RMAXWORD];
1622 +        char    *cp;
1623 +        int     c;
1624 +
1625 +        /* Skip initial spaces */
1626 +        while (isspace(c=getc(fp)))
1627 +                ;
1628 +        /* Get characters to a delimiter or until wrd is full */
1629 +        for (cp = wrd; c != EOF && cp < wrd+RMAXWORD-1;
1630 +                        *cp++ = c, c = getc(fp))
1631 +                if (isspace(c) || c == ',') {
1632 +                        /* If we find a delimiter */
1633 +                        /* Gobble up whitespace */
1634 +                        while (isspace(c))
1635 +                                c = getc(fp);
1636 +                        /* If it's not a comma, put the first
1637 +                         * character of the next data item back */
1638 +                        if ((c != EOF) & (c != ','))
1639 +                                ungetc(c, fp);
1640 +                        /* Close out the strimg */
1641 +                        *cp = '\0';
1642 +                        /* return it */
1643 +                        return(wrd);
1644 +                }
1645 +        /* If we ran out of space or are at the end of the file,
1646 +         * return either the word or NULL, as appropriate. */
1647 +        *cp = '\0';
1648 +        return(cp > wrd ? wrd : NULL);
1649 + }
1650 +
1651 + /* cvtint - convert an IES word to an integer
1652 + *
1653 + * A pointer to the word is passed in wrd; ip is expected to point to
1654 + * an integer.  cvtint() will silently truncate a floating point value
1655 + * to an integer; "1", "1.0", and "1.5" will all return 1.
1656 + *
1657 + * cvtint() returns 0 if it fails, 1 if it succeeds.
1658 + */
1659 + int
1660 + cvtint(
1661 +        int     *ip,
1662 +        char    *wrd
1663 + )
1664 + {
1665 +        if (wrd == NULL || !isint(wrd))
1666 +                return(0);
1667 +        *ip = atoi(wrd);
1668 +        return(1);
1669 + }
1670 +
1671 +
1672 + /* cvtflt - convert an IES word to a double precision floating-point number
1673 + *
1674 + * A pointer to the word is passed in wrd; rp is expected to point to
1675 + * a double.
1676 + *
1677 + * cvtflt returns 0 if it fails, 1 if it succeeds.
1678 + */
1679 + int
1680 + cvtflt(
1681 +        double  *rp,
1682 +        char    *wrd
1683 + )
1684 + {
1685 +        if (wrd == NULL || !isflt(wrd))
1686 +                return(0);
1687 +        *rp = atof(wrd);
1688 +        return(1);
1689 + }
1690 +
1691 + /* cvgeometry - process materials and geometry format luminaire data
1692 + *
1693 + * The materials and geometry format (MGF) for describing luminaires
1694 + * was a part of Radiance that was first adopted and then retracted by
1695 + * the IES as part of LM-63.  It provides a way of describing
1696 + * luminaire geometry similar to the Radiance scene description
1697 + * format.
1698 + *
1699 + * cvgeometry() generates an mgf2rad command and then, if "-g" is given
1700 + * on the command line, an oconv command, both of which are then
1701 + * executed with the system() function.
1702 + *
1703 + * The generated commands are:
1704 + *   mgf2rad -e <multiplier> -g <size> <mgf_filename> \
1705 + *     | xform -s <scale_factor> \
1706 + *     >> <luminare_scene_description_file
1707 + * or:
1708 + *   mgf2rad -e <multiplier> -g <size> <mgf_filename> \
1709 + *     oconv - > <instance_filename>
1710 + */
1711 + int
1712 + cvgeometry(
1713 +        char    *inpname,
1714 +        SRCINFO *sinf,
1715 +        char    *outname,
1716 +        FILE    *outfp                  /* close output file upon return */
1717 + )
1718 + {
1719 +        char    buf[256];
1720 +        char    *cp;
1721 +
1722 +        if (inpname == NULL || !inpname[0]) {   /* no geometry file */
1723 +                fclose(outfp);
1724 +                return(0);
1725 +        }
1726 +        putc('\n', outfp);
1727 +        strcpy(buf, "mgf2rad ");                /* build mgf2rad command */
1728 +        cp = buf+8;
1729 +        if (!FEQ(sinf->mult, 1.0)) {
1730 +                /* if there's an output multiplier, include in the
1731 +                 * mgf2rad command */
1732 +                sprintf(cp, "-e %f ", sinf->mult);
1733 +                cp += strlen(cp);
1734 +        }
1735 +        /* Include the glow distance for the geometry */
1736 +        sprintf(cp, "-g %f %s ",
1737 +                sqrt(sinf->w*sinf->w + sinf->h*sinf->h + sinf->l*sinf->l),
1738 +                        inpname);
1739 +        cp += strlen(cp);
1740 +        if (instantiate) {              /* instantiate octree */
1741 +                /* If "-g" is given on the command line, include an
1742 +                 * "oconv" command in the pipe. */
1743 +                strcpy(cp, "| oconv - > ");
1744 +                cp += 12;
1745 +                fullnam(cp,outname,T_OCT);
1746 +                /* Only update if the input file is newer than the
1747 +                 * output file */
1748 +                if (fdate(inpname) > fdate(outname) &&
1749 +                                system(buf)) {          /* create octree */
1750 +                        fclose(outfp);
1751 +                        return(-1);
1752 +                }
1753 +                /* Reference the instance file in the scene description */
1754 +                fprintf(outfp, "void instance %s_inst\n", outname);
1755 +                /* If the geometry isn't in meters, scale it appropriately. */
1756 +                if (!FEQ(meters2out, 1.0))
1757 +                        fprintf(outfp, "3 %s -s %f\n",
1758 +                                        libname(buf,outname,T_OCT),
1759 +                                        meters2out);
1760 +                else
1761 +                        fprintf(outfp, "1 %s\n", libname(buf,outname,T_OCT));
1762 +                /* Close off the "instance" primitive. */
1763 +                fprintf(outfp, "0\n0\n");
1764 +                /* And the Radiance scene description. */
1765 +                fclose(outfp);
1766 +        } else {                        /* else append to luminaire file */
1767 +                if (!FEQ(meters2out, 1.0)) {    /* apply scalefactor */
1768 +                        sprintf(cp, "| xform -s %f ", meters2out);
1769 +                        cp += strlen(cp);
1770 +                }
1771 +                if (!out2stdout) {
1772 +                        fclose(outfp);
1773 +                        strcpy(cp, ">> ");      /* append works for DOS? */
1774 +                        cp += 3;
1775 +                        fullnam(cp,outname,T_RAD);
1776 +                }
1777 +                if (system(buf))
1778 +                        return(-1);
1779 +        }
1780 +        return(0);
1781 + }
1782 +
1783 + /* Set up emacs indentation */
1784 + /* Local Variables: */
1785 + /*   c-file-style: "bsd" */
1786 + /* End: */
1787 +
1788 + /* For vim, use ":set tabstop=8 shiftwidth=8" */

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines