2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
|
/* |
5 |
< |
* Convert IES luminaire data to Radiance description |
5 |
> |
* ies2rad -- Convert IES luminaire data to Radiance description |
6 |
|
* |
7 |
+ |
* ies2rad converts an IES LM-63 luminare description to a Radiance |
8 |
+ |
* luminaire description. In addition, ies2rad manages a local |
9 |
+ |
* database of Radiance luminaire files. |
10 |
+ |
* |
11 |
+ |
* Ies2rad generates two or three files for each luminaire. For a |
12 |
+ |
* luminaire named LUM, ies2rad will generate LUM.rad, a Radiance |
13 |
+ |
* scene description file which describes the light source, LUM.dat, |
14 |
+ |
* which contains the photometric data from the IES LM-63 file, and |
15 |
+ |
* (if tilt data is provided) LUM%.dat, which contains the tilt data |
16 |
+ |
* from the IES file. |
17 |
+ |
* |
18 |
+ |
* Ies2rad is supported by the Radiance function files source.cal and |
19 |
+ |
* tilt.cal, which transform the coordinates in the IES data into |
20 |
+ |
* Radiance (θ,φ) luminaire coordinates and then apply photometric and |
21 |
+ |
* tilt data to generate Radiance light. θ is altitude from the |
22 |
+ |
* negative z-axis and φ is azimuth from the positive x-axis, |
23 |
+ |
* increasing towards the positive y-axis. [??? Greg, is there a |
24 |
+ |
* source for this convention?] This system matches none of the usual |
25 |
+ |
* goniophotometric conventions, but it is closest to IES type C; V in |
26 |
+ |
* type C photometry is θ in Radiance and L is -φ. |
27 |
+ |
* |
28 |
+ |
* The ies2rad scene description for a luminaire LUM, with tilt data, |
29 |
+ |
* uses the following Radiance scene description primitives: |
30 |
+ |
* |
31 |
+ |
* void brightdata LUM_tilt |
32 |
+ |
* … |
33 |
+ |
* LUM_tilt brightdata LUM_dist |
34 |
+ |
* … |
35 |
+ |
* LUM_dist light LUM_light |
36 |
+ |
* … |
37 |
+ |
* LUM_light surface1 name1 |
38 |
+ |
* … |
39 |
+ |
* LUM_light surface2 name2 |
40 |
+ |
* … |
41 |
+ |
* LUM_light surface_n name_n |
42 |
+ |
* |
43 |
+ |
* Without tilt data, the primitives are: |
44 |
+ |
* |
45 |
+ |
* void brightdata LUM_dist |
46 |
+ |
* … |
47 |
+ |
* LUM_dist light LUM_light |
48 |
+ |
* … |
49 |
+ |
* LUM_light surface1 name1 |
50 |
+ |
* … |
51 |
+ |
* LUM_light surface2 name2 |
52 |
+ |
* … |
53 |
+ |
* LUM_light surface_n name_n |
54 |
+ |
* |
55 |
+ |
* As many surfaces are given as required to describe the light |
56 |
+ |
* source. Illum may be used rather than light so that a visible form |
57 |
+ |
* (impostor) may be given to the luminaire, rather than a simple |
58 |
+ |
* glowing shape. If an impostor is provided, it must be wholly |
59 |
+ |
* contained within the illum and if it provides impostor light |
60 |
+ |
* sources, those must be given with glow, so that they do not |
61 |
+ |
* themselves illuminate the scene, providing incorrect results. |
62 |
+ |
* |
63 |
+ |
* The ies2rad code uses the "bsd" style. For emacs, this is set up |
64 |
+ |
* automatically in the "Local Variables" section at the end of the |
65 |
+ |
* file. For vim, use ":set tabstop=8 shiftwidth=8". |
66 |
+ |
* |
67 |
|
* 07Apr90 Greg Ward |
68 |
|
* |
69 |
|
* Fixed correction factor for flat sources 29Oct2001 GW |
70 |
+ |
* Extensive comments added by Randolph Fritz May2018 |
71 |
|
*/ |
72 |
|
|
73 |
|
#include <stdio.h> |
81 |
|
#include "paths.h" |
82 |
|
|
83 |
|
#define PI 3.14159265358979323846 |
84 |
< |
/* floating comparisons */ |
84 |
> |
|
85 |
> |
/* floating comparisons -- floating point numbers within FTINY of each |
86 |
> |
* other are considered equal */ |
87 |
|
#define FTINY 1e-6 |
88 |
|
#define FEQ(a,b) ((a)<=(b)+FTINY&&(a)>=(b)-FTINY) |
89 |
< |
/* keywords */ |
89 |
> |
|
90 |
> |
|
91 |
> |
/* IESNA LM-63 keywords and constants */ |
92 |
> |
/* Since 1991, LM-63 files have begun with the magic keyword IESNA */ |
93 |
|
#define MAGICID "IESNA" |
94 |
|
#define LMAGICID 5 |
95 |
+ |
/* ies2rad supports the 1986, 1991, and 1995 versions of |
96 |
+ |
* LM-63. FIRSTREV describes the first version; LASTREV describes the |
97 |
+ |
* 1995 version. */ |
98 |
|
#define FIRSTREV 86 |
99 |
|
#define LASTREV 95 |
100 |
|
|
101 |
< |
#define D86 0 /* keywords defined in LM-63-1986 */ |
101 |
> |
/* The following definitions support LM-63 file keyword reading and |
102 |
> |
* analysis. |
103 |
> |
* |
104 |
> |
* This section defines two function-like macros: keymatch(i,s), which |
105 |
> |
* checks to see if keyword i matches string s, and checklamp(s), |
106 |
> |
* which checks to see if a string matches the keywords "LAMP" or |
107 |
> |
* "LAMPCAT". |
108 |
> |
* |
109 |
> |
* LM-63-1986 files begin with a list of free-form label lines. |
110 |
> |
* LM-63-1991 files begin with the identifying line "IESNA91" followed |
111 |
> |
* by a list of formatted keywords. LM-63-1995 files begin with the |
112 |
> |
* identifying line "IESNA:LM-63-1995" followed by a list of formatted |
113 |
> |
* keywords. |
114 |
> |
* |
115 |
> |
* The K_* #defines enumerate the keywords used in the different |
116 |
> |
* versions of the file and give them symbolic names. |
117 |
> |
* |
118 |
> |
* The D86, D91, and D95 #defines validate the keywords in the 1986, |
119 |
> |
* 1991, and 1995 versions of the standard, one bit per keyword. |
120 |
> |
* Since the 1986 standard does not use keywords, D86 is zero. The |
121 |
> |
* 1991 standard has 13 keywords, and D91 has the lower 13 bits set. |
122 |
> |
* The 1995 standard has 14 keywords, and D95 has the lower 14 bits |
123 |
> |
* set. |
124 |
> |
* |
125 |
> |
*/ |
126 |
> |
#define D86 0 |
127 |
|
|
128 |
|
#define K_TST 0 |
129 |
|
#define K_MAN 1 |
139 |
|
#define K_BLK 11 |
140 |
|
#define K_EBK 12 |
141 |
|
|
142 |
< |
#define D91 ((1L<<13)-1) /* keywords defined in LM-63-1991 */ |
142 |
> |
/* keywords defined in LM-63-1991 */ |
143 |
> |
#define D91 ((1L<<13)-1) |
144 |
|
|
145 |
|
#define K_LMG 13 |
146 |
|
|
147 |
< |
#define D95 ((1L<<14)-1) /* keywords defined in LM-63-1995 */ |
147 |
> |
/* keywords defined in LM-63-1995 */ |
148 |
> |
#define D95 ((1L<<14)-1) |
149 |
|
|
150 |
|
char k_kwd[][20] = {"TEST", "MANUFAC", "LUMCAT", "LUMINAIRE", "LAMPCAT", |
151 |
|
"LAMP", "BALLAST", "MAINTCAT", "OTHER", "SEARCH", |
161 |
|
#define checklamp(s) (!(k_defined[filerev-FIRSTREV]&(1<<K_LMP|1<<K_LPC)) ||\ |
162 |
|
keymatch(K_LMP,s) || keymatch(K_LPC,s)) |
163 |
|
|
164 |
< |
/* tilt specs */ |
164 |
> |
/* tilt specs |
165 |
> |
* |
166 |
> |
* This next series of definitions address metal-halide lamps, which |
167 |
> |
* change their brightness depending on the angle at which they are |
168 |
> |
* mounted. The section begins with "TILT=". The constants in this |
169 |
> |
* section are all defined in LM-63. |
170 |
> |
* |
171 |
> |
*/ |
172 |
> |
|
173 |
|
#define TLTSTR "TILT=" |
174 |
|
#define TLTSTRLEN 5 |
175 |
|
#define TLTNONE "NONE" |
177 |
|
#define TLT_VERT 1 |
178 |
|
#define TLT_H0 2 |
179 |
|
#define TLT_H90 3 |
180 |
< |
/* photometric types */ |
180 |
> |
|
181 |
> |
/* Constants from LM-63 files */ |
182 |
> |
|
183 |
> |
/* photometric types |
184 |
> |
* |
185 |
> |
* This enumeration reflects three different methods of measuring the |
186 |
> |
* distribution of light from a luminaire -- "goniophotometry" -- and |
187 |
> |
* the different coordinate systems related to these |
188 |
> |
* goniophotometers. All are described in IES standard LM-75-01. |
189 |
> |
* Earlier and shorter descriptions may be found the LM-63 standards |
190 |
> |
* from 1986, 1991, and 1995. |
191 |
> |
* |
192 |
> |
* ies2rad does not support type A photometry. |
193 |
> |
* |
194 |
> |
* In the 1986 file format, LM-63-86, 1 is used for type C and type A |
195 |
> |
* photometric data. |
196 |
> |
* |
197 |
> |
*/ |
198 |
|
#define PM_C 1 |
199 |
|
#define PM_B 2 |
200 |
|
#define PM_A 3 |
201 |
< |
/* unit types */ |
201 |
> |
|
202 |
> |
/* unit types */ |
203 |
|
#define U_FEET 1 |
204 |
|
#define U_METERS 2 |
205 |
< |
/* string lengths */ |
206 |
< |
#define MAXLINE 132 |
205 |
> |
|
206 |
> |
/* string lengths */ |
207 |
> |
/* Maximum input line is 132 characters including CR LF at end. */ |
208 |
> |
#define MAXLINE 133 |
209 |
|
#define RMAXWORD 76 |
210 |
< |
/* file types */ |
210 |
> |
|
211 |
> |
/* End of LM-63-related #defines */ |
212 |
> |
|
213 |
> |
/* file extensions */ |
214 |
|
#define T_RAD ".rad" |
215 |
|
#define T_DST ".dat" |
216 |
|
#define T_TLT "%.dat" |
217 |
|
#define T_OCT ".oct" |
218 |
< |
/* shape types */ |
218 |
> |
|
219 |
> |
/* shape types |
220 |
> |
* These #defines enumerate the shapes of the Radiance objects which |
221 |
> |
* emit the light. |
222 |
> |
*/ |
223 |
|
#define RECT 1 |
224 |
|
#define DISK 2 |
225 |
|
#define SPHERE 3 |
226 |
|
|
227 |
< |
#define MINDIM .001 /* minimum dimension (point source) */ |
227 |
> |
/* The diameter of a point source luminaire model. Also the minimum |
228 |
> |
* size (in meters) that the luminous opening of a luminaire must have |
229 |
> |
* to be treated as other than a point source. */ |
230 |
> |
#define MINDIM .001 |
231 |
|
|
232 |
< |
#define F_M .3048 /* feet to meters */ |
232 |
> |
/* feet to meters */ |
233 |
> |
/* length_in_meters = length_in_feet * F_M */ |
234 |
> |
#define F_M .3048 |
235 |
|
|
236 |
+ |
/* abspath - return true if a path begins with a directory separator |
237 |
+ |
* or a '.' (current directory) */ |
238 |
|
#define abspath(p) (ISDIRSEP((p)[0]) || (p)[0] == '.') |
239 |
|
|
240 |
+ |
/* Global variables. |
241 |
+ |
* |
242 |
+ |
* Mostly, these are a way of communicating command line parameters to |
243 |
+ |
* the rest of the program. |
244 |
+ |
*/ |
245 |
|
static char default_name[] = "default"; |
246 |
|
|
247 |
|
char *libdir = NULL; /* library directory location */ |
259 |
|
int instantiate = 0; /* instantiate geometry */ |
260 |
|
double illumrad = 0.0; /* radius for illum sphere */ |
261 |
|
|
262 |
+ |
/* This struct describes the Radiance source object */ |
263 |
|
typedef struct { |
264 |
|
int isillum; /* do as illum */ |
265 |
|
int type; /* RECT, DISK, SPHERE */ |
268 |
|
double area; /* max. projected area */ |
269 |
|
} SRCINFO; /* a source shape (units=meters) */ |
270 |
|
|
271 |
< |
int gargc; /* global argc (minus filenames) */ |
271 |
> |
/* A count and pointer to the list of input file names */ |
272 |
> |
int gargc; /* global argc */ |
273 |
|
char **gargv; /* global argv */ |
274 |
|
|
275 |
< |
|
275 |
> |
/* macros to scan numbers out of IES files |
276 |
> |
* |
277 |
> |
* fp is a file pointer. scnint() places the number in the integer |
278 |
> |
* indicated by ip; scnflt() places the number in the double indicated |
279 |
> |
* by rp. The macros return 1 if successful, 0 if not. |
280 |
> |
* |
281 |
> |
*/ |
282 |
|
#define scnint(fp,ip) cvtint(ip,getword(fp)) |
283 |
|
#define scnflt(fp,rp) cvtflt(rp,getword(fp)) |
133 |
– |
#define isint isflt /* IES allows real as integer */ |
284 |
|
|
285 |
+ |
/* The original (1986) version of LM-63 allows decimals points in |
286 |
+ |
* integers, so that, for instance, the number of lamps may be written |
287 |
+ |
* 3.0 (the number, obviously, must still be an integer.) This |
288 |
+ |
* confusing define accommodates that. */ |
289 |
+ |
#define isint isflt |
290 |
|
|
291 |
+ |
/* Function declarations */ |
292 |
|
static int ies2rad(char *inpname, char *outname); |
293 |
|
static void initlamps(void); |
294 |
|
static int dosource(SRCINFO *sinf, FILE *in, FILE *out, char *mod, char *name); |
316 |
|
static char * getword(FILE *fp); |
317 |
|
static char * fullnam(char *path, char *fname, char *suffix); |
318 |
|
|
319 |
< |
|
319 |
> |
/* main - process arguments and run the conversion |
320 |
> |
* |
321 |
> |
* Refer to the man page for details of the arguments. |
322 |
> |
* |
323 |
> |
* Following Unix environment conventions, main() exits with 0 on |
324 |
> |
* success and 1 on failure. |
325 |
> |
* |
326 |
> |
* ies2rad outputs either two or three files for a given IES |
327 |
> |
* file. There is always a .rad file containing Radiance scene |
328 |
> |
* description primitives and a .dat file for the photometric data. If |
329 |
> |
* tilt data is given, that is placed in a separate .dat file. So |
330 |
> |
* ies2rad must have a filename to operate. Sometimes this name is the |
331 |
> |
* input file name, shorn of its extension; sometimes it is given in |
332 |
> |
* the -o option. But an output file name is required for ies2rad to |
333 |
> |
* do its work. |
334 |
> |
* |
335 |
> |
* Older versions of the LM-63 standard allowed inclusion of multiple |
336 |
> |
* luminaires in one IES file; this is not supported by ies2rad. |
337 |
> |
* |
338 |
> |
* This code sometimes does not check to make sure it has not run out |
339 |
> |
* of arguments; this can lead to segmentation faults and perhaps |
340 |
> |
* other errors. |
341 |
> |
* |
342 |
> |
*/ |
343 |
|
int |
344 |
|
main( |
345 |
|
int argc, |
351 |
|
char outname[RMAXWORD]; |
352 |
|
double d1; |
353 |
|
int i; |
354 |
< |
|
354 |
> |
|
355 |
> |
/* Scan the options */ |
356 |
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
357 |
|
switch (argv[i][1]) { |
358 |
|
case 'd': /* dimensions */ |
423 |
|
case 'i': /* illum */ |
424 |
|
illumrad = atof(argv[++i]); |
425 |
|
break; |
426 |
< |
case 'g': /* instatiate geometry? */ |
426 |
> |
case 'g': /* instantiate geometry? */ |
427 |
|
instantiate = !instantiate; |
428 |
|
break; |
429 |
|
case 't': /* override lamp type */ |
446 |
|
argv[0], argv[i]); |
447 |
|
exit(1); |
448 |
|
} |
449 |
+ |
/* Save pointers to the list of input file names */ |
450 |
|
gargc = i; |
451 |
|
gargv = argv; |
452 |
< |
initlamps(); /* get lamp data (if needed) */ |
453 |
< |
/* convert ies file(s) */ |
452 |
> |
|
453 |
> |
/* get lamp data (if needed) */ |
454 |
> |
initlamps(); |
455 |
> |
|
456 |
> |
/* convert ies file(s) */ |
457 |
> |
/* If an output file name is specified */ |
458 |
|
if (outfile != NULL) { |
459 |
|
if (i == argc) |
460 |
+ |
/* If no input filename is given, use stdin as |
461 |
+ |
* the source for the IES file */ |
462 |
|
exit(ies2rad(NULL, outfile) == 0 ? 0 : 1); |
463 |
|
else if (i == argc-1) |
464 |
+ |
/* If exactly one input file name is given, use it. */ |
465 |
|
exit(ies2rad(argv[i], outfile) == 0 ? 0 : 1); |
466 |
|
else |
467 |
< |
goto needsingle; |
467 |
> |
goto needsingle; /* Otherwise, error. */ |
468 |
|
} else if (i >= argc) { |
469 |
+ |
/* If an output file and an input file are not give, error. */ |
470 |
|
fprintf(stderr, "%s: missing output file specification\n", |
471 |
|
argv[0]); |
472 |
|
exit(1); |
473 |
|
} |
474 |
+ |
/* If no input or output file is given, error. */ |
475 |
|
if (out2stdout && i != argc-1) |
476 |
|
goto needsingle; |
477 |
+ |
/* Otherwise, process each input file in turn. */ |
478 |
|
status = 0; |
479 |
|
for ( ; i < argc; i++) { |
480 |
|
tailtrunc(strcpy(outname,filename(argv[i]))); |
487 |
|
exit(1); |
488 |
|
} |
489 |
|
|
490 |
+ |
/* Initlamps -- If necessary, read lamp data table */ |
491 |
|
void |
492 |
|
initlamps(void) /* set up lamps */ |
493 |
|
{ |
494 |
|
float *lcol; |
495 |
|
int status; |
496 |
|
|
497 |
+ |
/* If the lamp name is set to default, don't bother to read |
498 |
+ |
* the lamp data table. */ |
499 |
|
if (lamptype != NULL && !strcmp(lamptype, default_name) && |
500 |
|
deflamp == NULL) |
501 |
< |
return; /* no need for data */ |
502 |
< |
/* else load file */ |
503 |
< |
if ((status = loadlamps(lampdat)) < 0) |
504 |
< |
exit(1); |
501 |
> |
return; |
502 |
> |
|
503 |
> |
if ((status = loadlamps(lampdat)) < 0) /* Load the lamp data table */ |
504 |
> |
exit(1); /* Exit if problems |
505 |
> |
* with the file. */ |
506 |
|
if (status == 0) { |
507 |
+ |
/* If can't open the file, just use the standard default lamp */ |
508 |
|
fprintf(stderr, "%s: warning - no lamp data\n", lampdat); |
509 |
|
lamptype = default_name; |
510 |
|
return; |
511 |
|
} |
512 |
< |
if (deflamp != NULL) { /* match default type */ |
512 |
> |
if (deflamp != NULL) { |
513 |
> |
/* Look up the specified default lamp type */ |
514 |
|
if ((lcol = matchlamp(deflamp)) == NULL) |
515 |
+ |
/* If it can't be found, use the default */ |
516 |
|
fprintf(stderr, |
517 |
|
"%s: warning - unknown default lamp type\n", |
518 |
|
deflamp); |
519 |
|
else |
520 |
+ |
/* Use the selected default lamp color */ |
521 |
|
copycolor(defcolor, lcol); |
522 |
|
} |
523 |
< |
if (lamptype != NULL) { /* match selected type */ |
523 |
> |
/* If a lamp type is specified and can be found, use it, and |
524 |
> |
* release the lamp data table memory; it won't be needed any more. */ |
525 |
> |
if (lamptype != NULL) { |
526 |
|
if (strcmp(lamptype, default_name)) { |
527 |
|
if ((lcol = matchlamp(lamptype)) == NULL) { |
528 |
|
fprintf(stderr, |
534 |
|
} |
535 |
|
freelamps(); /* all done with data */ |
536 |
|
} |
537 |
< |
/* else keep lamp data */ |
537 |
> |
/* else keep lamp data */ |
538 |
|
} |
539 |
|
|
540 |
+ |
/* |
541 |
+ |
* File path operations |
542 |
+ |
* |
543 |
+ |
* These provide file path operations that operate on both MS-Windows |
544 |
+ |
* and *nix. They will ignore and pass, but will not necessarily |
545 |
+ |
* process correctly, Windows drive letters. Paths including Windows |
546 |
+ |
* UNC network names (\\server\folder\file) may also cause problems. |
547 |
+ |
* |
548 |
+ |
*/ |
549 |
|
|
550 |
+ |
/* |
551 |
+ |
* stradd() |
552 |
+ |
* |
553 |
+ |
* Add a string to the end of a string, optionally concatenating a |
554 |
+ |
* file path separator character. If the path already ends with a |
555 |
+ |
* path separator, no additional separator is appended. |
556 |
+ |
* |
557 |
+ |
*/ |
558 |
|
char * |
559 |
|
stradd( /* add a string at dst */ |
560 |
< |
register char *dst, |
561 |
< |
register char *src, |
560 |
> |
char *dst, |
561 |
> |
char *src, |
562 |
|
int sep |
563 |
|
) |
564 |
|
{ |
573 |
|
return(dst); |
574 |
|
} |
575 |
|
|
576 |
< |
|
576 |
> |
/* |
577 |
> |
* fullnam () - return a usable path name for an output file |
578 |
> |
*/ |
579 |
|
char * |
580 |
< |
fullnam( /* return full path name */ |
581 |
< |
char *path, |
582 |
< |
char *fname, |
583 |
< |
char *suffix |
580 |
> |
fullnam( |
581 |
> |
char *path, /* The base directory path */ |
582 |
> |
char *fname, /* The file name */ |
583 |
> |
char *suffix /* A suffix, which usually contains |
584 |
> |
* a file name extension. */ |
585 |
|
) |
586 |
|
{ |
587 |
+ |
extern char *prefdir; |
588 |
+ |
extern char *libdir; |
589 |
+ |
|
590 |
|
if (prefdir != NULL && abspath(prefdir)) |
591 |
+ |
/* If the subdirectory path is absolute or '.', just |
592 |
+ |
* concatenate the names together */ |
593 |
|
libname(path, fname, suffix); |
594 |
|
else if (abspath(fname)) |
595 |
+ |
/* If there is no subdirectory, and the file name is |
596 |
+ |
* an absolute path or '.', concatenate the path, |
597 |
+ |
* filename, and suffix. */ |
598 |
|
strcpy(stradd(path, fname, 0), suffix); |
599 |
|
else |
600 |
+ |
/* If the file name is relative, concatenate path, |
601 |
+ |
* library directory, directory separator, file name, |
602 |
+ |
* and suffix. */ |
603 |
|
libname(stradd(path, libdir, DIRSEP), fname, suffix); |
604 |
|
|
605 |
|
return(path); |
606 |
|
} |
607 |
|
|
608 |
|
|
609 |
+ |
/* |
610 |
+ |
* libname - convert a file name to a path |
611 |
+ |
*/ |
612 |
|
char * |
613 |
< |
libname( /* return library relative name */ |
614 |
< |
char *path, |
615 |
< |
char *fname, |
616 |
< |
char *suffix |
613 |
> |
libname( |
614 |
> |
char *path, /* The base directory path */ |
615 |
> |
char *fname, /* The file name */ |
616 |
> |
char *suffix /* A suffix, which usually contains |
617 |
> |
* a file name extension. */ |
618 |
|
) |
619 |
|
{ |
620 |
+ |
extern char *prefdir; /* The subdirectory where the file |
621 |
+ |
* name is stored. */ |
622 |
+ |
|
623 |
|
if (abspath(fname)) |
624 |
+ |
/* If the file name begins with '/' or '.', combine |
625 |
+ |
* it with the path and attach the suffix */ |
626 |
|
strcpy(stradd(path, fname, 0), suffix); |
627 |
|
else |
628 |
+ |
/* If the file name is relative, attach it to the |
629 |
+ |
* path, include the subdirectory, and append the suffix. */ |
630 |
|
strcpy(stradd(stradd(path, prefdir, DIRSEP), fname, 0), suffix); |
631 |
|
|
632 |
|
return(path); |
633 |
|
} |
634 |
|
|
635 |
< |
|
635 |
> |
/* filename - find the base file name in a buffer containing a path |
636 |
> |
* |
637 |
> |
* The pointer is to a character within the buffer, not a string in itself; |
638 |
> |
* it will become invalid when the buffer is freed. |
639 |
> |
* |
640 |
> |
*/ |
641 |
|
char * |
642 |
< |
filename( /* get final component of pathname */ |
643 |
< |
register char *path |
642 |
> |
filename( |
643 |
> |
char *path |
644 |
|
) |
645 |
|
{ |
646 |
< |
register char *cp; |
646 |
> |
char *cp; |
647 |
|
|
648 |
|
for (cp = path; *path; path++) |
649 |
|
if (ISDIRSEP(*path)) |
652 |
|
} |
653 |
|
|
654 |
|
|
655 |
+ |
/* filetrunc() - return the directory portion of a path |
656 |
+ |
* |
657 |
+ |
* The path is passed in in a pointer to a buffer; a null character is |
658 |
+ |
* inserted in the buffer after the last directory separator |
659 |
+ |
* |
660 |
+ |
*/ |
661 |
|
char * |
662 |
< |
filetrunc( /* truncate filename at end of path */ |
662 |
> |
filetrunc( |
663 |
|
char *path |
664 |
|
) |
665 |
|
{ |
666 |
< |
register char *p1, *p2; |
666 |
> |
char *p1, *p2; |
667 |
|
|
668 |
|
for (p1 = p2 = path; *p2; p2++) |
669 |
|
if (ISDIRSEP(*p2)) |
674 |
|
return(path); |
675 |
|
} |
676 |
|
|
677 |
< |
|
677 |
> |
/* tailtrunc() - trim a file name extension, if any. |
678 |
> |
* |
679 |
> |
* The file name is passed in in a buffer indicated by *name; the |
680 |
> |
* period which begins the extension is replaced with a 0 byte. |
681 |
> |
*/ |
682 |
|
char * |
683 |
< |
tailtrunc( /* truncate tail of filename */ |
683 |
> |
tailtrunc( |
684 |
|
char *name |
685 |
|
) |
686 |
|
{ |
687 |
< |
register char *p1, *p2; |
687 |
> |
char *p1, *p2; |
688 |
|
|
689 |
+ |
/* Skip leading periods */ |
690 |
|
for (p1 = filename(name); *p1 == '.'; p1++) |
691 |
|
; |
692 |
+ |
/* Find the last period in a file name */ |
693 |
|
p2 = NULL; |
694 |
|
for ( ; *p1; p1++) |
695 |
|
if (*p1 == '.') |
696 |
|
p2 = p1; |
697 |
+ |
/* If present, trim the filename at that period */ |
698 |
|
if (p2 != NULL) |
699 |
|
*p2 = '\0'; |
700 |
|
return(name); |
701 |
|
} |
702 |
|
|
703 |
< |
|
703 |
> |
/* blanktrunc() - trim spaces at the end of a string |
704 |
> |
* |
705 |
> |
* the string is passed in a character array, which is modified |
706 |
> |
*/ |
707 |
|
void |
708 |
< |
blanktrunc( /* truncate spaces at end of line */ |
708 |
> |
blanktrunc( |
709 |
|
char *s |
710 |
|
) |
711 |
|
{ |
712 |
< |
register char *cp; |
712 |
> |
char *cp; |
713 |
|
|
714 |
|
for (cp = s; *cp; cp++) |
715 |
|
; |
718 |
|
*++cp = '\0'; |
719 |
|
} |
720 |
|
|
721 |
< |
|
721 |
> |
/* k_match - return true if keyword matches header line */ |
722 |
|
int |
723 |
< |
k_match( /* header line matches keyword? */ |
724 |
< |
register char *kwd, |
725 |
< |
register char *hdl |
723 |
> |
k_match( |
724 |
> |
char *kwd, /* keyword */ |
725 |
> |
char *hdl /* header line */ |
726 |
|
) |
727 |
|
{ |
728 |
< |
if (!*hdl++ == '[') |
728 |
> |
/* The line has to begin with '[' */ |
729 |
> |
if (*hdl++ != '[') |
730 |
|
return(0); |
731 |
< |
while (islower(*hdl) ? toupper(*hdl) == *kwd++ : *hdl == *kwd++) |
731 |
> |
/* case-independent keyword match */ |
732 |
> |
while (toupper(*hdl) == *kwd++) |
733 |
|
if (!*hdl++) |
734 |
|
return(0); |
735 |
< |
return((!*kwd) & (*hdl == ']')); |
735 |
> |
/* If we have come to the end of the keyword, and the keyword |
736 |
> |
* at the beginning of the matched line is terminated with |
737 |
> |
* ']', return 1 */ |
738 |
> |
return(!kwd[-1] & (*hdl == ']')); |
739 |
|
} |
740 |
|
|
741 |
< |
|
741 |
> |
/* keyargs - return the argument of a keyword, without leading spaces |
742 |
> |
* |
743 |
> |
* keyargs is passed a pointer to a buffer; it returns a pointer to |
744 |
> |
* where the argument starts in the buffer |
745 |
> |
* |
746 |
> |
*/ |
747 |
|
char * |
748 |
< |
keyargs( /* return keyword arguments */ |
749 |
< |
register char *hdl |
748 |
> |
keyargs( |
749 |
> |
char *hdl /* header line */ |
750 |
|
) |
751 |
|
{ |
752 |
|
while (*hdl && *hdl++ != ']') |
757 |
|
} |
758 |
|
|
759 |
|
|
760 |
+ |
/* putheader - output the header of the .rad file |
761 |
+ |
* |
762 |
+ |
* Header is: |
763 |
+ |
* # <file> <file> <file> (all files from input line) |
764 |
+ |
* # Dimensions in [feet,meters,etc.] |
765 |
+ |
* |
766 |
+ |
* ??? Is listing all the input file names correct behavior? |
767 |
+ |
* |
768 |
+ |
*/ |
769 |
|
void |
770 |
< |
putheader( /* print header */ |
770 |
> |
|
771 |
> |
putheader( |
772 |
|
FILE *out |
773 |
|
) |
774 |
|
{ |
775 |
< |
register int i; |
776 |
< |
|
775 |
> |
int i; |
776 |
> |
|
777 |
|
putc('#', out); |
778 |
|
for (i = 0; i < gargc; i++) { |
779 |
|
putc(' ', out); |
784 |
|
putc('\n', out); |
785 |
|
} |
786 |
|
|
787 |
< |
|
787 |
> |
/* ies2rad - convert an IES LM-63 file to a Radiance light source desc. |
788 |
> |
* |
789 |
> |
* Return -1 in case of failure, 0 in case of success. |
790 |
> |
* |
791 |
> |
* The file version recognition is confused and will treat 1995 and |
792 |
> |
* 2002 version files as 1986 version files. |
793 |
> |
* |
794 |
> |
*/ |
795 |
|
int |
796 |
|
ies2rad( /* convert IES file */ |
797 |
|
char *inpname, |
804 |
|
FILE *inpfp, *outfp; |
805 |
|
int lineno = 0; |
806 |
|
|
807 |
+ |
/* Open input and output files */ |
808 |
|
geomfile[0] = '\0'; |
809 |
|
srcinfo.isillum = 0; |
810 |
|
if (inpname == NULL) { |
821 |
|
fclose(inpfp); |
822 |
|
return(-1); |
823 |
|
} |
824 |
+ |
|
825 |
+ |
/* Output the output file header */ |
826 |
|
putheader(outfp); |
827 |
+ |
|
828 |
+ |
/* If the lamp type wasn't given on the command line, mark |
829 |
+ |
* the lamp color as missing */ |
830 |
|
if (lamptype == NULL) |
831 |
|
lampcolor = NULL; |
832 |
+ |
|
833 |
+ |
/* Read the input file header, copying lines to the .rad file |
834 |
+ |
* and looking for a lamp type. Stop at EOF or a line |
835 |
+ |
* beginning with "TILT=". */ |
836 |
|
while (fgets(buf,sizeof(buf),inpfp) != NULL |
837 |
|
&& strncmp(buf,TLTSTR,TLTSTRLEN)) { |
838 |
< |
blanktrunc(buf); |
839 |
< |
if (!buf[0]) |
838 |
> |
blanktrunc(buf); /* Trim trailing spaces, CR, LF. */ |
839 |
> |
if (!buf[0]) /* Skip blank lines */ |
840 |
|
continue; |
841 |
< |
if (!lineno++ && !strncmp(buf, MAGICID, LMAGICID)) { |
841 |
> |
/* increment the header line count, and check for the |
842 |
> |
* "TILT=" line that terminates the header */ |
843 |
> |
if (!lineno++ && strncmp(buf, MAGICID, LMAGICID) == 0) { |
844 |
> |
/* This code doesn't work for LM-63-95 and |
845 |
> |
* LM-63-02 files and will instead default to |
846 |
> |
* LM-63-86. */ |
847 |
|
filerev = atoi(buf+LMAGICID); |
848 |
|
if (filerev < FIRSTREV) |
849 |
|
filerev = FIRSTREV; |
850 |
|
else if (filerev > LASTREV) |
851 |
|
filerev = LASTREV; |
852 |
|
} |
853 |
+ |
/* Output the header line as a comment in the .rad file. */ |
854 |
|
fputs("#<", outfp); |
855 |
|
fputs(buf, outfp); |
856 |
|
putc('\n', outfp); |
857 |
+ |
|
858 |
+ |
/* If the header line is a keyword line (file version |
859 |
+ |
* later than 1986 and begins with '['), check a lamp |
860 |
+ |
* in the "[LAMP]" and "[LAMPCAT]" keyword lines; |
861 |
+ |
* otherwise check all lines. */ |
862 |
|
if (lampcolor == NULL && checklamp(buf)) |
863 |
|
lampcolor = matchlamp( buf[0] == '[' ? |
864 |
|
keyargs(buf) : buf ); |
865 |
< |
if (keymatch(K_LMG, buf)) { /* geometry file */ |
865 |
> |
/* Look for a materials and geometry file in the keywords. */ |
866 |
> |
if (keymatch(K_LMG, buf)) { |
867 |
|
strcpy(geomfile, inpname); |
868 |
|
strcpy(filename(geomfile), keyargs(buf)); |
869 |
|
srcinfo.isillum = 1; |
870 |
|
} |
871 |
|
} |
872 |
+ |
|
873 |
+ |
/* Done reading header information. If a lamp color still |
874 |
+ |
* hasn't been found, print a warning and use the default |
875 |
+ |
* color; if a lamp type hasn't been found, but a color has |
876 |
+ |
* been specified, used the specified color. */ |
877 |
|
if (lampcolor == NULL) { |
878 |
|
fprintf(stderr, "%s: warning - no lamp type\n", inpname); |
879 |
|
fputs("# Unknown lamp type (used default)\n", outfp); |
881 |
|
} else if (lamptype == NULL) |
882 |
|
fprintf(outfp,"# CIE(x,y) = (%f,%f)\n# Depreciation = %.1f%%\n", |
883 |
|
lampcolor[3], lampcolor[4], 100.*lampcolor[5]); |
884 |
+ |
/* If the file ended before a "TILT=" line, that's an error. */ |
885 |
|
if (feof(inpfp)) { |
886 |
|
fprintf(stderr, "%s: not in IES format\n", inpname); |
887 |
|
goto readerr; |
888 |
|
} |
889 |
+ |
|
890 |
+ |
/* Process the tilt section of the file. */ |
891 |
+ |
/* Get the tilt file name, or the keyword "INCLUDE". */ |
892 |
|
atos(tltid, RMAXWORD, buf+TLTSTRLEN); |
893 |
|
if (inpfp == stdin) |
894 |
|
buf[0] = '\0'; |
895 |
|
else |
896 |
|
filetrunc(strcpy(buf, inpname)); |
897 |
+ |
/* Process the tilt data. */ |
898 |
|
if (dotilt(inpfp, outfp, buf, tltid, outname, tltid) != 0) { |
899 |
|
fprintf(stderr, "%s: bad tilt data\n", inpname); |
900 |
|
goto readerr; |
901 |
|
} |
902 |
+ |
|
903 |
+ |
/* Process the luminaire data. */ |
904 |
|
if (dosource(&srcinfo, inpfp, outfp, tltid, outname) != 0) { |
905 |
|
fprintf(stderr, "%s: bad luminaire data\n", inpname); |
906 |
|
goto readerr; |
907 |
|
} |
908 |
+ |
|
909 |
+ |
/* Close the input file */ |
910 |
|
fclose(inpfp); |
911 |
< |
/* cvgeometry closes outfp */ |
911 |
> |
|
912 |
> |
/* Process an MGF file, if present. cvgeometry() closes outfp. */ |
913 |
|
if (cvgeometry(geomfile, &srcinfo, outname, outfp) != 0) { |
914 |
|
fprintf(stderr, "%s: bad geometry file\n", geomfile); |
915 |
|
return(-1); |
916 |
|
} |
917 |
|
return(0); |
918 |
+ |
|
919 |
|
readerr: |
920 |
+ |
/* If there is an error reading the file, close the input and |
921 |
+ |
* .rad output files, and delete the .rad file, returning -1. */ |
922 |
|
fclose(inpfp); |
923 |
|
fclose(outfp); |
924 |
|
unlink(fullnam(buf,outname,T_RAD)); |
925 |
|
return(-1); |
926 |
|
} |
927 |
|
|
928 |
< |
|
928 |
> |
/* dotilt -- process tilt data |
929 |
> |
* |
930 |
> |
* Generate a brightdata primitive which describes the effect of |
931 |
> |
* luminaire tilt on luminaire output and return its identifier in tltid. |
932 |
> |
* |
933 |
> |
* Tilt data (if present) is given as a number 1, 2, or 3, which |
934 |
> |
* specifies the orientation of the lamp within the luminaire, a |
935 |
> |
* number, n, of (angle, multiplier) pairs, followed by n angles and n |
936 |
> |
* multipliers. |
937 |
> |
* |
938 |
> |
* returns 0 for success, -1 for error |
939 |
> |
*/ |
940 |
|
int |
941 |
< |
dotilt( /* convert tilt data */ |
941 |
> |
dotilt( |
942 |
|
FILE *in, |
943 |
|
FILE *out, |
944 |
|
char *dir, |
952 |
|
char buf[PATH_MAX], tltname[RMAXWORD]; |
953 |
|
FILE *datin, *datout; |
954 |
|
|
955 |
+ |
/* Decide where the tilt data is; if the luminaire description |
956 |
+ |
* doesn't have a tilt section, set the identifier to "void". */ |
957 |
|
if (!strcmp(tltspec, TLTNONE)) { |
958 |
+ |
/* If the line is "TILT=NONE", set the input file |
959 |
+ |
* pointer to NULL and the identifier to "void". */ |
960 |
|
datin = NULL; |
961 |
|
strcpy(tltid, "void"); |
962 |
|
} else if (!strcmp(tltspec, TLTINCL)) { |
963 |
+ |
/* If the line is "TILT=INCLUDE" use the main IES |
964 |
+ |
* file as the source of tilt data. */ |
965 |
|
datin = in; |
966 |
|
strcpy(tltname, dfltname); |
967 |
|
} else { |
968 |
+ |
/* If the line is "TILE=<filename>", use that file |
969 |
+ |
* name as the source of tilt data. */ |
970 |
|
if (ISDIRSEP(tltspec[0])) |
971 |
|
strcpy(buf, tltspec); |
972 |
|
else |
977 |
|
} |
978 |
|
tailtrunc(strcpy(tltname,filename(tltspec))); |
979 |
|
} |
980 |
+ |
/* If tilt data is present, read, process, and output it. */ |
981 |
|
if (datin != NULL) { |
982 |
+ |
/* Try to open the output file */ |
983 |
|
if ((datout = fopen(fullnam(buf,tltname,T_TLT),"w")) == NULL) { |
984 |
|
perror(buf); |
985 |
|
if (datin != in) |
986 |
|
fclose(datin); |
987 |
|
return(-1); |
988 |
|
} |
989 |
+ |
/* Try to copy the tilt data to the tilt data file */ |
990 |
|
if (!scnint(datin,&tlt_type) || !scnint(datin,&nangles) |
991 |
|
|| cvdata(datin,datout,1,&nangles,1.,minmax) != 0) { |
992 |
|
fprintf(stderr, "%s: data format error\n", tltspec); |
999 |
|
fclose(datout); |
1000 |
|
if (datin != in) |
1001 |
|
fclose(datin); |
1002 |
+ |
|
1003 |
+ |
/* Generate the identifier of the brightdata; the filename |
1004 |
+ |
* with "_tilt" appended. */ |
1005 |
|
strcat(strcpy(tltid, filename(tltname)), "_tilt"); |
1006 |
+ |
/* Write out the brightdata primitive */ |
1007 |
|
fprintf(out, "\nvoid brightdata %s\n", tltid); |
1008 |
|
libname(buf,tltname,T_TLT); |
1009 |
+ |
/* Generate the tilt description */ |
1010 |
|
switch (tlt_type) { |
1011 |
< |
case TLT_VERT: /* vertical */ |
1011 |
> |
case TLT_VERT: |
1012 |
> |
/* The lamp is mounted vertically; either |
1013 |
> |
* base up or base down. */ |
1014 |
|
fprintf(out, "4 noop %s tilt.cal %s\n", buf, |
1015 |
|
minmax[0][1]>90.+FTINY ? "tilt_ang" : "tilt_ang2"); |
1016 |
|
break; |
1017 |
< |
case TLT_H0: /* horiz. in 0 deg. plane */ |
1017 |
> |
case TLT_H0: |
1018 |
> |
/* The lamp is mounted horizontally and |
1019 |
> |
* rotates but does not tilt when the |
1020 |
> |
* luminaire is tilted. */ |
1021 |
|
fprintf(out, "6 noop %s tilt.cal %s -rz 90\n", buf, |
1022 |
|
minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
1023 |
|
break; |
1024 |
|
case TLT_H90: |
1025 |
+ |
/* The lamp is mounted horizontally, and |
1026 |
+ |
* tilts when the luminaire is tilted. */ |
1027 |
|
fprintf(out, "4 noop %s tilt.cal %s\n", buf, |
1028 |
|
minmax[0][1]>90.+FTINY ? "tilt_xang" : "tilt_xang2"); |
1029 |
|
break; |
1030 |
|
default: |
1031 |
+ |
/* otherwise, this is a bad IES file */ |
1032 |
|
fprintf(stderr, |
1033 |
|
"%s: illegal lamp to luminaire geometry (%d)\n", |
1034 |
|
tltspec, tlt_type); |
1035 |
|
return(-1); |
1036 |
|
} |
1037 |
+ |
/* And finally output the numbers of integer and real |
1038 |
+ |
* arguments, of which there are none. */ |
1039 |
|
fprintf(out, "0\n0\n"); |
1040 |
|
} |
1041 |
|
return(0); |
1042 |
|
} |
1043 |
|
|
1044 |
< |
|
1044 |
> |
/* dosource -- create the source and distribution primitives */ |
1045 |
|
int |
1046 |
< |
dosource( /* create source and distribution */ |
1046 |
> |
dosource( |
1047 |
|
SRCINFO *sinf, |
1048 |
|
FILE *in, |
1049 |
|
FILE *out, |
1057 |
|
double bounds[2][2]; |
1058 |
|
int nangles[2], pmtype, unitype; |
1059 |
|
double d1; |
1060 |
< |
int doupper, dolower, dosides; |
1060 |
> |
int doupper, dolower, dosides; |
1061 |
|
|
1062 |
+ |
/* Read in the luminaire description header */ |
1063 |
|
if (!isint(getword(in)) || !isflt(getword(in)) || !scnflt(in,&mult) |
1064 |
|
|| !scnint(in,&nangles[0]) || !scnint(in,&nangles[1]) |
1065 |
|
|| !scnint(in,&pmtype) || !scnint(in,&unitype) |
1069 |
|
fprintf(stderr, "dosource: bad lamp specification\n"); |
1070 |
|
return(-1); |
1071 |
|
} |
1072 |
+ |
/* Type A photometry is not supported */ |
1073 |
|
if (pmtype != PM_C && pmtype != PM_B) { |
1074 |
|
fprintf(stderr, "dosource: unsupported photometric type (%d)\n", |
1075 |
|
pmtype); |
1076 |
|
return(-1); |
1077 |
|
} |
1078 |
+ |
|
1079 |
+ |
/* Multiplier = the multiplier from the -m option, times the |
1080 |
+ |
* multiplier from the IES file, times the ballast factor, |
1081 |
+ |
* times the "ballast lamp photometric factor," which was part |
1082 |
+ |
* of the 1986 and 1991 standards. In the 1995 standard, it is |
1083 |
+ |
* always supposed to be 1. */ |
1084 |
|
sinf->mult = multiplier*mult*bfactor*pfactor; |
1085 |
+ |
|
1086 |
+ |
/* If the count of angles is wrong, raise an error and quit. */ |
1087 |
|
if (nangles[0] < 2 || nangles[1] < 1) { |
1088 |
|
fprintf(stderr, "dosource: too few measured angles\n"); |
1089 |
|
return(-1); |
1090 |
|
} |
1091 |
+ |
|
1092 |
+ |
/* For internal computation, convert units to meters. */ |
1093 |
|
if (unitype == U_FEET) { |
1094 |
|
width *= F_M; |
1095 |
|
length *= F_M; |
1096 |
|
height *= F_M; |
1097 |
|
} |
1098 |
+ |
|
1099 |
+ |
/* Make decisions about the shape of the light source |
1100 |
+ |
* geometry, and store them in sinf. */ |
1101 |
|
if (makeshape(sinf, width, length, height) != 0) { |
1102 |
|
fprintf(stderr, "dosource: illegal source dimensions"); |
1103 |
|
return(-1); |
1104 |
|
} |
1105 |
+ |
|
1106 |
+ |
/* Copy the candela values into a Radiance data file. */ |
1107 |
|
if ((datout = fopen(fullnam(buf,name,T_DST), "w")) == NULL) { |
1108 |
|
perror(buf); |
1109 |
|
return(-1); |
1115 |
|
return(-1); |
1116 |
|
} |
1117 |
|
fclose(datout); |
1118 |
+ |
|
1119 |
+ |
/* Output explanatory comment */ |
1120 |
|
fprintf(out, "# %g watt luminaire, lamp*ballast factor = %g\n", |
1121 |
|
wattage, bfactor*pfactor); |
1122 |
+ |
/* Output distribution "brightdata" primitive. Start handling |
1123 |
+ |
the various cases of symmetry of the distribution. */ |
1124 |
|
strcat(strcpy(id, filename(name)), "_dist"); |
1125 |
|
fprintf(out, "\n%s brightdata %s\n", mod, id); |
1126 |
|
if (nangles[1] < 2) |
1131 |
|
fprintf(out, "7 "); |
1132 |
|
else |
1133 |
|
fprintf(out, "5 "); |
1134 |
< |
dolower = (bounds[0][0] < 90.-FTINY); |
1135 |
< |
doupper = (bounds[0][1] > 90.+FTINY); |
1136 |
< |
dosides = (doupper & dolower && sinf->h > MINDIM); |
1134 |
> |
|
1135 |
> |
/* If the generated source geometry will be a box, a flat |
1136 |
> |
* rectangle, or a disk figure out if it needs a top, a |
1137 |
> |
* bottom, and/or sides. */ |
1138 |
> |
dolower = (bounds[0][0] < 90.-FTINY); /* Bottom */ |
1139 |
> |
doupper = (bounds[0][1] > 90.+FTINY); /* Top */ |
1140 |
> |
dosides = (doupper & dolower && sinf->h > MINDIM); /* Sides */ |
1141 |
> |
|
1142 |
> |
/* Select the appropriate function and parameters from source.cal */ |
1143 |
|
fprintf(out, "%s %s source.cal ", |
1144 |
|
sinf->type==SPHERE ? "corr" : |
1145 |
|
!dosides ? "flatcorr" : |
1169 |
|
} else |
1170 |
|
fprintf(out, "src_theta "); |
1171 |
|
} |
1172 |
+ |
/* finish the brightdata primitive with appropriate data */ |
1173 |
|
if (!dosides || sinf->type == SPHERE) |
1174 |
|
fprintf(out, "\n0\n1 %g\n", sinf->mult/sinf->area); |
1175 |
|
else if (sinf->type == DISK) |
1178 |
|
else |
1179 |
|
fprintf(out, "\n0\n4 %g %g %g %g\n", sinf->mult, |
1180 |
|
sinf->l, sinf->w, sinf->h); |
1181 |
+ |
/* Brightdata primitive written out. */ |
1182 |
+ |
|
1183 |
+ |
/* Finally, output the descriptions of the actual radiant |
1184 |
+ |
* surfaces. */ |
1185 |
|
if (putsource(sinf, out, id, filename(name), |
1186 |
|
dolower, doupper, dosides) != 0) |
1187 |
|
return(-1); |
1188 |
|
return(0); |
1189 |
|
} |
1190 |
|
|
1191 |
< |
|
1191 |
> |
/* putsource - output the actual light emitting geometry |
1192 |
> |
* |
1193 |
> |
* Three kinds of geometry are produced: rectangles and boxes, disks |
1194 |
> |
* ("ring" primitive, but the radius of the hole is always zero) and |
1195 |
> |
* cylinders, and spheres. |
1196 |
> |
*/ |
1197 |
|
int |
1198 |
< |
putsource( /* put out source */ |
1198 |
> |
putsource( |
1199 |
|
SRCINFO *shp, |
1200 |
|
FILE *fp, |
1201 |
|
char *mod, |
1202 |
|
char *name, |
1203 |
|
int dolower, |
1204 |
|
int doupper, |
1205 |
< |
int dosides |
1205 |
> |
int dosides |
1206 |
|
) |
1207 |
|
{ |
1208 |
|
char lname[RMAXWORD]; |
1209 |
< |
|
1209 |
> |
|
1210 |
> |
/* First, describe the light. If a materials and geometry |
1211 |
> |
* file is given, generate an illum instead. */ |
1212 |
|
strcat(strcpy(lname, name), "_light"); |
1213 |
|
fprintf(fp, "\n%s %s %s\n", mod, |
1214 |
|
shp->isillum ? "illum" : "light", lname); |
1216 |
|
lampcolor[0], lampcolor[1], lampcolor[2]); |
1217 |
|
switch (shp->type) { |
1218 |
|
case RECT: |
1219 |
+ |
/* Output at least one rectangle. If light is radiated |
1220 |
+ |
* from the sides of the luminaire, output rectangular |
1221 |
+ |
* sides as well. */ |
1222 |
|
if (dolower) |
1223 |
|
putrectsrc(shp, fp, lname, name, 0); |
1224 |
|
if (doupper) |
1227 |
|
putsides(shp, fp, lname, name); |
1228 |
|
break; |
1229 |
|
case DISK: |
1230 |
+ |
/* Output at least one disk. If light is radiated from |
1231 |
+ |
* the sides of luminaire, output a cylinder as well. */ |
1232 |
|
if (dolower) |
1233 |
|
putdisksrc(shp, fp, lname, name, 0); |
1234 |
|
if (doupper) |
1237 |
|
putcyl(shp, fp, lname, name); |
1238 |
|
break; |
1239 |
|
case SPHERE: |
1240 |
+ |
/* Output a sphere. */ |
1241 |
|
putspheresrc(shp, fp, lname, name); |
1242 |
|
break; |
1243 |
|
} |
1244 |
|
return(0); |
1245 |
|
} |
1246 |
|
|
1247 |
< |
|
1247 |
> |
/* makeshape -- decide what shape will be used |
1248 |
> |
* |
1249 |
> |
* makeshape decides what Radiance geometry will be used to represent |
1250 |
> |
* the light source and stores information about it in shp. |
1251 |
> |
*/ |
1252 |
|
int |
1253 |
< |
makeshape( /* make source shape */ |
1254 |
< |
register SRCINFO *shp, |
1253 |
> |
makeshape( |
1254 |
> |
SRCINFO *shp, |
1255 |
|
double width, |
1256 |
|
double length, |
1257 |
|
double height |
1258 |
|
) |
1259 |
|
{ |
1260 |
+ |
/* Categorize the shape */ |
1261 |
|
if (illumrad/meters2out >= MINDIM/2.) { |
1262 |
+ |
/* If the -i command line option is used, and the |
1263 |
+ |
* object is not a point source, output an "illum" |
1264 |
+ |
* sphere */ |
1265 |
|
shp->isillum = 1; |
1266 |
|
shp->type = SPHERE; |
1267 |
|
shp->w = shp->l = shp->h = 2.*illumrad / meters2out; |
1268 |
|
} else if (width < MINDIM) { |
1269 |
+ |
/* The width is either zero or negative. */ |
1270 |
|
width = -width; |
1271 |
|
if (width < MINDIM) { |
1272 |
+ |
/* The width is zero. Use a tiny sphere to |
1273 |
+ |
* represent a point source. */ |
1274 |
|
shp->type = SPHERE; |
1275 |
|
shp->w = shp->l = shp->h = MINDIM; |
1276 |
|
} else if (height < .5*width) { |
1277 |
+ |
/* The width is negative and the height is |
1278 |
+ |
* modest; output either a disk or a thin |
1279 |
+ |
* vertical cylinder. */ |
1280 |
|
shp->type = DISK; |
1281 |
|
shp->w = shp->l = width; |
1282 |
|
if (height >= MINDIM) |
1284 |
|
else |
1285 |
|
shp->h = .5*MINDIM; |
1286 |
|
} else { |
1287 |
+ |
/* The width is negative and the object is |
1288 |
+ |
* tall; output a sphere. */ |
1289 |
|
shp->type = SPHERE; |
1290 |
|
shp->w = shp->l = shp->h = width; |
1291 |
|
} |
1292 |
|
} else { |
1293 |
+ |
/* The width is positive. Output a box, possibly very |
1294 |
+ |
* thin. */ |
1295 |
|
shp->type = RECT; |
1296 |
|
shp->w = width; |
1297 |
|
if (length >= MINDIM) |
1303 |
|
else |
1304 |
|
shp->h = .5*MINDIM; |
1305 |
|
} |
1306 |
+ |
|
1307 |
+ |
/* Done choosing the shape; calculate its area in the x-y plane. */ |
1308 |
|
switch (shp->type) { |
1309 |
|
case RECT: |
1310 |
|
shp->area = shp->w * shp->l; |
1317 |
|
return(0); |
1318 |
|
} |
1319 |
|
|
1320 |
+ |
/* Rectangular or box-shaped light source. |
1321 |
+ |
* |
1322 |
+ |
* putrectsrc, putsides, putrect, and putpoint are used to output the |
1323 |
+ |
* Radiance description of a box. The box is centered on the origin |
1324 |
+ |
* and has the dimensions given in the IES file. The coordinates |
1325 |
+ |
* range from [-1/2*length, -1/2*width, -1/2*height] to [1/2*length, |
1326 |
+ |
* 1/2*width, 1/2*height]. |
1327 |
+ |
* |
1328 |
+ |
* The location of the point is encoded in the low-order three bits of |
1329 |
+ |
* an integer. If the integer is p, then: bit 0 is (p & 1), |
1330 |
+ |
* representing length (x), bit 1 is (p & 2) representing width (y), |
1331 |
+ |
* and bit 2 is (p & 4), representing height (z). |
1332 |
+ |
* |
1333 |
+ |
* Looking down from above (towards -z), the vertices of the box or |
1334 |
+ |
* rectangle are numbered so: |
1335 |
+ |
* |
1336 |
+ |
* 2,6 3,7 |
1337 |
+ |
* +--------------------------------------+ |
1338 |
+ |
* | | |
1339 |
+ |
* | | |
1340 |
+ |
* | | |
1341 |
+ |
* | | |
1342 |
+ |
* +--------------------------------------+ |
1343 |
+ |
* 0,4 1,5 |
1344 |
+ |
* |
1345 |
+ |
* The higher number of each pair is above the x-y plane (positive z), |
1346 |
+ |
* the lower number is below the x-y plane (negative z.) |
1347 |
+ |
* |
1348 |
+ |
*/ |
1349 |
|
|
1350 |
+ |
/* putrecsrc - output a rectangle parallel to the x-y plane |
1351 |
+ |
* |
1352 |
+ |
* Putrecsrc calls out the vertices of a rectangle parallel to the x-y |
1353 |
+ |
* plane. The order of the vertices is different for the upper and |
1354 |
+ |
* lower rectangles of a box, since a right-hand rule based on the |
1355 |
+ |
* order of the vertices is used to determine the surface normal of |
1356 |
+ |
* the rectangle, and the surface normal determines the direction the |
1357 |
+ |
* light radiated by the rectangle. |
1358 |
+ |
* |
1359 |
+ |
*/ |
1360 |
|
void |
1361 |
< |
putrectsrc( /* rectangular source */ |
1361 |
> |
putrectsrc( |
1362 |
|
SRCINFO *shp, |
1363 |
|
FILE *fp, |
1364 |
|
char *mod, |
1372 |
|
putrect(shp, fp, mod, name, ".d", 0, 2, 3, 1); |
1373 |
|
} |
1374 |
|
|
1375 |
< |
|
1375 |
> |
/* putsides - put out sides of box */ |
1376 |
|
void |
1377 |
< |
putsides( /* put out sides of box */ |
1378 |
< |
register SRCINFO *shp, |
1377 |
> |
putsides( |
1378 |
> |
SRCINFO *shp, |
1379 |
|
FILE *fp, |
1380 |
|
char *mod, |
1381 |
|
char *name |
1386 |
|
putrect(shp, fp, mod, name, ".3", 3, 2, 6, 7); |
1387 |
|
putrect(shp, fp, mod, name, ".4", 2, 0, 4, 6); |
1388 |
|
} |
917 |
– |
|
1389 |
|
|
1390 |
+ |
/* putrect - put out a rectangle |
1391 |
+ |
* |
1392 |
+ |
* putrect generates the "polygon" primitive which describes a |
1393 |
+ |
* rectangle. |
1394 |
+ |
*/ |
1395 |
|
void |
1396 |
< |
putrect( /* put out a rectangle */ |
1396 |
> |
putrect( |
1397 |
|
SRCINFO *shp, |
1398 |
|
FILE *fp, |
1399 |
|
char *mod, |
1412 |
|
putpoint(shp, fp, d); |
1413 |
|
} |
1414 |
|
|
1415 |
< |
|
1415 |
> |
/* putpoint -- output a the coordinates of a vertex |
1416 |
> |
* |
1417 |
> |
* putpoint maps vertex numbers to coordinates and outputs the |
1418 |
> |
* coordinates. |
1419 |
> |
*/ |
1420 |
|
void |
1421 |
< |
putpoint( /* put out a point */ |
1422 |
< |
register SRCINFO *shp, |
1421 |
> |
putpoint( |
1422 |
> |
SRCINFO *shp, |
1423 |
|
FILE *fp, |
1424 |
|
int p |
1425 |
|
) |
1432 |
|
mult[p>>2]*shp->h*meters2out); |
1433 |
|
} |
1434 |
|
|
1435 |
+ |
/* End of routines to output a box-shaped light source */ |
1436 |
|
|
1437 |
+ |
/* Routines to output a cylindrical or disk shaped light source |
1438 |
+ |
* |
1439 |
+ |
* As with other shapes, the light source is centered on the origin. |
1440 |
+ |
* The "ring" and "cylinder" primitives are used. |
1441 |
+ |
* |
1442 |
+ |
*/ |
1443 |
|
void |
1444 |
|
putdisksrc( /* put out a disk source */ |
1445 |
< |
register SRCINFO *shp, |
1445 |
> |
SRCINFO *shp, |
1446 |
|
FILE *fp, |
1447 |
|
char *mod, |
1448 |
|
char *name, |
1467 |
|
|
1468 |
|
void |
1469 |
|
putcyl( /* put out a cylinder */ |
1470 |
< |
register SRCINFO *shp, |
1470 |
> |
SRCINFO *shp, |
1471 |
|
FILE *fp, |
1472 |
|
char *mod, |
1473 |
|
char *name |
1480 |
|
fprintf(fp, "\t%g\n", .5*shp->w*meters2out); |
1481 |
|
} |
1482 |
|
|
1483 |
+ |
/* end of of routines to output cylinders and disks */ |
1484 |
|
|
1485 |
|
void |
1486 |
|
putspheresrc( /* put out a sphere source */ |
1494 |
|
fprintf(fp, "0\n0\n4 0 0 0 %g\n", .5*shp->w*meters2out); |
1495 |
|
} |
1496 |
|
|
1497 |
< |
|
1497 |
> |
/* cvdata - convert LM-63 tilt and candela data to Radiance brightdata format |
1498 |
> |
* |
1499 |
> |
* The files created by this routine are intended for use with the Radiance |
1500 |
> |
* "brightdata" material type. |
1501 |
> |
* |
1502 |
> |
* Two types of data are converted; one-dimensional tilt data, which |
1503 |
> |
* is given in polar coordinates, and two-dimensional candela data, |
1504 |
> |
* which is given in spherical co-ordinates. |
1505 |
> |
* |
1506 |
> |
* Return 0 for success, -1 for failure. |
1507 |
> |
* |
1508 |
> |
*/ |
1509 |
|
int |
1510 |
< |
cvdata( /* convert data */ |
1511 |
< |
FILE *in, |
1512 |
< |
FILE *out, |
1513 |
< |
int ndim, |
1514 |
< |
int npts[], |
1515 |
< |
double mult, |
1516 |
< |
double lim[][2] |
1510 |
> |
cvdata( |
1511 |
> |
FILE *in, /* Input file */ |
1512 |
> |
FILE *out, /* Output file */ |
1513 |
> |
int ndim, /* Number of dimensions; 1 for |
1514 |
> |
* tilt data, 2 for photometric data. */ |
1515 |
> |
int npts[], /* Number of points in each dimension */ |
1516 |
> |
double mult, /* Multiple each value by this |
1517 |
> |
* number. For tilt data, always |
1518 |
> |
* 1. For candela values, the |
1519 |
> |
* efficacy of white Radiance light. */ |
1520 |
> |
double lim[][2] /* The range of angles in each dimension. */ |
1521 |
|
) |
1522 |
|
{ |
1523 |
< |
double *pt[4]; |
1524 |
< |
register int i, j; |
1523 |
> |
double *pt[4]; /* Four is the expected maximum of ndim. */ |
1524 |
> |
int i, j; |
1525 |
|
double val; |
1526 |
|
int total; |
1527 |
|
|
1528 |
+ |
/* Calculate and output the number of data values */ |
1529 |
|
total = 1; j = 0; |
1530 |
|
for (i = 0; i < ndim; i++) |
1531 |
|
if (npts[i] > 1) { |
1533 |
|
j++; |
1534 |
|
} |
1535 |
|
fprintf(out, "%d\n", j); |
1536 |
< |
/* get coordinates */ |
1536 |
> |
|
1537 |
> |
/* Read in the angle values, and note the first and last in |
1538 |
> |
* each dimension, if there is a place to store them. In the |
1539 |
> |
* case of tilt data, there is only one list of angles. In the |
1540 |
> |
* case of candela values, vertical angles appear first, and |
1541 |
> |
* horizontal angles occur second. */ |
1542 |
|
for (i = 0; i < ndim; i++) { |
1543 |
+ |
/* Allocate space for the angle values. */ |
1544 |
|
pt[i] = (double *)malloc(npts[i]*sizeof(double)); |
1545 |
|
for (j = 0; j < npts[i]; j++) |
1546 |
|
if (!scnflt(in, &pt[i][j])) |
1550 |
|
lim[i][1] = pt[i][npts[i]-1]; |
1551 |
|
} |
1552 |
|
} |
1553 |
< |
/* write out in reverse */ |
1553 |
> |
|
1554 |
> |
/* Output the angles. If this is candela data, horizontal |
1555 |
> |
* angles output first. There are two cases: the first where |
1556 |
> |
* the angles are evenly spaced, the second where they are |
1557 |
> |
* not. |
1558 |
> |
* |
1559 |
> |
* When the angles are evenly spaced, three numbers are |
1560 |
> |
* output: the first angle, the last angle, and the number of |
1561 |
> |
* angles. When the angles are not evenly spaced, instead |
1562 |
> |
* zero, zero, and the count of angles is given, followed by a |
1563 |
> |
* list of angles. In this case, angles are output four to a line. |
1564 |
> |
*/ |
1565 |
|
for (i = ndim-1; i >= 0; i--) { |
1566 |
|
if (npts[i] > 1) { |
1567 |
+ |
/* Determine if the angles are evenly spaces */ |
1568 |
|
for (j = 1; j < npts[i]-1; j++) |
1569 |
|
if (!FEQ(pt[i][j]-pt[i][j-1], |
1570 |
|
pt[i][j+1]-pt[i][j])) |
1571 |
|
break; |
1572 |
+ |
/* If they are, output the first angle, the |
1573 |
+ |
* last angle, and a count */ |
1574 |
|
if (j == npts[i]-1) |
1575 |
|
fprintf(out, "%g %g %d\n", pt[i][0], pt[i][j], |
1576 |
|
npts[i]); |
1577 |
|
else { |
1578 |
+ |
/* otherwise, output 0, 0, and a |
1579 |
+ |
* count, followed by the list of |
1580 |
+ |
* angles, one to a line. */ |
1581 |
|
fprintf(out, "0 0 %d", npts[i]); |
1582 |
|
for (j = 0; j < npts[i]; j++) { |
1583 |
|
if (j%4 == 0) |
1587 |
|
putc('\n', out); |
1588 |
|
} |
1589 |
|
} |
1590 |
+ |
/* Free the storage containing the angle values. */ |
1591 |
|
free((void *)pt[i]); |
1592 |
|
} |
1593 |
+ |
|
1594 |
+ |
/* Finally, read in the data values (candela or multiplier values, |
1595 |
+ |
* depending on the part of the file) and output them four to |
1596 |
+ |
* a line. */ |
1597 |
|
for (i = 0; i < total; i++) { |
1598 |
|
if (i%4 == 0) |
1599 |
|
putc('\n', out); |
1605 |
|
return(0); |
1606 |
|
} |
1607 |
|
|
1608 |
< |
|
1608 |
> |
/* getword - get an LM-63 delimited word from fp |
1609 |
> |
* |
1610 |
> |
* Getword gets a word from an IES file delimited by either white |
1611 |
> |
* space or a comma surrounded by white space. A pointer to the word |
1612 |
> |
* is returned, which will persist only until getword is called again. |
1613 |
> |
* At EOF, return NULL instead. |
1614 |
> |
* |
1615 |
> |
*/ |
1616 |
|
char * |
1617 |
|
getword( /* scan a word from fp */ |
1618 |
< |
register FILE *fp |
1618 |
> |
FILE *fp |
1619 |
|
) |
1620 |
|
{ |
1621 |
|
static char wrd[RMAXWORD]; |
1622 |
< |
register char *cp; |
1623 |
< |
register int c; |
1622 |
> |
char *cp; |
1623 |
> |
int c; |
1624 |
|
|
1625 |
+ |
/* Skip initial spaces */ |
1626 |
|
while (isspace(c=getc(fp))) |
1627 |
|
; |
1628 |
+ |
/* Get characters to a delimiter or until wrd is full */ |
1629 |
|
for (cp = wrd; c != EOF && cp < wrd+RMAXWORD-1; |
1630 |
|
*cp++ = c, c = getc(fp)) |
1631 |
|
if (isspace(c) || c == ',') { |
1632 |
+ |
/* If we find a delimiter */ |
1633 |
+ |
/* Gobble up whitespace */ |
1634 |
|
while (isspace(c)) |
1635 |
|
c = getc(fp); |
1636 |
+ |
/* If it's not a comma, put the first |
1637 |
+ |
* character of the next data item back */ |
1638 |
|
if ((c != EOF) & (c != ',')) |
1639 |
|
ungetc(c, fp); |
1640 |
+ |
/* Close out the strimg */ |
1641 |
|
*cp = '\0'; |
1642 |
+ |
/* return it */ |
1643 |
|
return(wrd); |
1644 |
|
} |
1645 |
+ |
/* If we ran out of space or are at the end of the file, |
1646 |
+ |
* return either the word or NULL, as appropriate. */ |
1647 |
|
*cp = '\0'; |
1648 |
|
return(cp > wrd ? wrd : NULL); |
1649 |
|
} |
1650 |
|
|
1651 |
< |
|
1651 |
> |
/* cvtint - convert an IES word to an integer |
1652 |
> |
* |
1653 |
> |
* A pointer to the word is passed in wrd; ip is expected to point to |
1654 |
> |
* an integer. cvtint() will silently truncate a floating point value |
1655 |
> |
* to an integer; "1", "1.0", and "1.5" will all return 1. |
1656 |
> |
* |
1657 |
> |
* cvtint() returns 0 if it fails, 1 if it succeeds. |
1658 |
> |
*/ |
1659 |
|
int |
1660 |
< |
cvtint( /* convert a word to an integer */ |
1660 |
> |
cvtint( |
1661 |
|
int *ip, |
1662 |
|
char *wrd |
1663 |
|
) |
1669 |
|
} |
1670 |
|
|
1671 |
|
|
1672 |
+ |
/* cvtflt - convert an IES word to a double precision floating-point number |
1673 |
+ |
* |
1674 |
+ |
* A pointer to the word is passed in wrd; rp is expected to point to |
1675 |
+ |
* a double. |
1676 |
+ |
* |
1677 |
+ |
* cvtflt returns 0 if it fails, 1 if it succeeds. |
1678 |
+ |
*/ |
1679 |
|
int |
1680 |
< |
cvtflt( /* convert a word to a double */ |
1680 |
> |
cvtflt( |
1681 |
|
double *rp, |
1682 |
|
char *wrd |
1683 |
|
) |
1688 |
|
return(1); |
1689 |
|
} |
1690 |
|
|
1691 |
< |
|
1691 |
> |
/* cvgeometry - process materials and geometry format luminaire data |
1692 |
> |
* |
1693 |
> |
* The materials and geometry format (MGF) for describing luminaires |
1694 |
> |
* was a part of Radiance that was first adopted and then retracted by |
1695 |
> |
* the IES as part of LM-63. It provides a way of describing |
1696 |
> |
* luminaire geometry similar to the Radiance scene description |
1697 |
> |
* format. |
1698 |
> |
* |
1699 |
> |
* cvgeometry() generates an mgf2rad command and then, if "-g" is given |
1700 |
> |
* on the command line, an oconv command, both of which are then |
1701 |
> |
* executed with the system() function. |
1702 |
> |
* |
1703 |
> |
* The generated commands are: |
1704 |
> |
* mgf2rad -e <multiplier> -g <size> <mgf_filename> \ |
1705 |
> |
* | xform -s <scale_factor> \ |
1706 |
> |
* >> <luminare_scene_description_file |
1707 |
> |
* or: |
1708 |
> |
* mgf2rad -e <multiplier> -g <size> <mgf_filename> \ |
1709 |
> |
* oconv - > <instance_filename> |
1710 |
> |
*/ |
1711 |
|
int |
1712 |
|
cvgeometry( |
1713 |
|
char *inpname, |
1714 |
< |
register SRCINFO *sinf, |
1714 |
> |
SRCINFO *sinf, |
1715 |
|
char *outname, |
1716 |
|
FILE *outfp /* close output file upon return */ |
1717 |
|
) |
1718 |
|
{ |
1719 |
|
char buf[256]; |
1720 |
< |
register char *cp; |
1720 |
> |
char *cp; |
1721 |
|
|
1722 |
|
if (inpname == NULL || !inpname[0]) { /* no geometry file */ |
1723 |
|
fclose(outfp); |
1727 |
|
strcpy(buf, "mgf2rad "); /* build mgf2rad command */ |
1728 |
|
cp = buf+8; |
1729 |
|
if (!FEQ(sinf->mult, 1.0)) { |
1730 |
< |
sprintf(cp, "-m %f ", sinf->mult); |
1730 |
> |
/* if there's an output multiplier, include in the |
1731 |
> |
* mgf2rad command */ |
1732 |
> |
sprintf(cp, "-e %f ", sinf->mult); |
1733 |
|
cp += strlen(cp); |
1734 |
|
} |
1735 |
+ |
/* Include the glow distance for the geometry */ |
1736 |
|
sprintf(cp, "-g %f %s ", |
1737 |
|
sqrt(sinf->w*sinf->w + sinf->h*sinf->h + sinf->l*sinf->l), |
1738 |
|
inpname); |
1739 |
|
cp += strlen(cp); |
1740 |
|
if (instantiate) { /* instantiate octree */ |
1741 |
+ |
/* If "-g" is given on the command line, include an |
1742 |
+ |
* "oconv" command in the pipe. */ |
1743 |
|
strcpy(cp, "| oconv - > "); |
1744 |
|
cp += 12; |
1745 |
|
fullnam(cp,outname,T_OCT); |
1746 |
+ |
/* Only update if the input file is newer than the |
1747 |
+ |
* output file */ |
1748 |
|
if (fdate(inpname) > fdate(outname) && |
1749 |
|
system(buf)) { /* create octree */ |
1750 |
|
fclose(outfp); |
1751 |
|
return(-1); |
1752 |
|
} |
1753 |
+ |
/* Reference the instance file in the scene description */ |
1754 |
|
fprintf(outfp, "void instance %s_inst\n", outname); |
1755 |
+ |
/* If the geometry isn't in meters, scale it appropriately. */ |
1756 |
|
if (!FEQ(meters2out, 1.0)) |
1757 |
|
fprintf(outfp, "3 %s -s %f\n", |
1758 |
|
libname(buf,outname,T_OCT), |
1759 |
|
meters2out); |
1760 |
|
else |
1761 |
|
fprintf(outfp, "1 %s\n", libname(buf,outname,T_OCT)); |
1762 |
+ |
/* Close off the "instance" primitive. */ |
1763 |
|
fprintf(outfp, "0\n0\n"); |
1764 |
+ |
/* And the Radiance scene description. */ |
1765 |
|
fclose(outfp); |
1766 |
|
} else { /* else append to luminaire file */ |
1767 |
|
if (!FEQ(meters2out, 1.0)) { /* apply scalefactor */ |
1779 |
|
} |
1780 |
|
return(0); |
1781 |
|
} |
1782 |
+ |
|
1783 |
+ |
/* Set up emacs indentation */ |
1784 |
+ |
/* Local Variables: */ |
1785 |
+ |
/* c-file-style: "bsd" */ |
1786 |
+ |
/* End: */ |
1787 |
+ |
|
1788 |
+ |
/* For vim, use ":set tabstop=8 shiftwidth=8" */ |