1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: checkBSDF.c,v 2.9 2022/08/12 23:55:00 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* checkBSDF.c |
6 |
* |
7 |
* Load BSDF XML file and check Helmholtz reciprocity |
8 |
*/ |
9 |
|
10 |
#define _USE_MATH_DEFINES |
11 |
#include <math.h> |
12 |
#include "rtio.h" |
13 |
#include "random.h" |
14 |
#include "bsdf.h" |
15 |
#include "bsdf_m.h" |
16 |
#include "bsdf_t.h" |
17 |
|
18 |
#define F_IN_COLOR 0x1 |
19 |
#define F_ISOTROPIC 0x2 |
20 |
#define F_MATRIX 0x4 |
21 |
#define F_TTREE 0x8 |
22 |
|
23 |
typedef struct { |
24 |
double vmin, vmax; /* extrema */ |
25 |
double vsum; /* straight sum */ |
26 |
long nvals; /* number of values */ |
27 |
} SimpleStats; |
28 |
|
29 |
const SimpleStats SSinit = {FHUGE, -FHUGE, .0, 0}; |
30 |
|
31 |
/* relative difference formula */ |
32 |
#define rdiff(a,b) ((a)>(b) ? ((a)-(b))/((a)+FTINY) : ((b)-(a))/((b)+FTINY)) |
33 |
|
34 |
/* Figure out BSDF type (and optionally determine if in color) */ |
35 |
const char * |
36 |
getBSDFtype(const SDData *bsdf, int *flags) |
37 |
{ |
38 |
const SDSpectralDF *df = bsdf->tb; |
39 |
|
40 |
if (flags) *flags = 0; |
41 |
if (!df) df = bsdf->tf; |
42 |
if (!df) df = bsdf->rf; |
43 |
if (!df) df = bsdf->rb; |
44 |
if (!df) return "Pure_Lambertian"; |
45 |
if (df->comp[0].func == &SDhandleMtx) { |
46 |
const SDMat *m = (const SDMat *)df->comp[0].dist; |
47 |
if (flags) { |
48 |
*flags |= F_MATRIX; |
49 |
*flags |= F_IN_COLOR*(m->chroma != NULL); |
50 |
} |
51 |
switch (m->ninc) { |
52 |
case 145: |
53 |
return "Klems_Full"; |
54 |
case 73: |
55 |
return "Klems_Half"; |
56 |
case 41: |
57 |
return "Klems_Quarter"; |
58 |
} |
59 |
return "Unknown_Matrix"; |
60 |
} |
61 |
if (df->comp[0].func == &SDhandleTre) { |
62 |
const SDTre *t = (const SDTre *)df->comp[0].dist; |
63 |
if (flags) { |
64 |
*flags |= F_TTREE; |
65 |
*flags |= F_IN_COLOR*(t->stc[1] != NULL); |
66 |
} |
67 |
switch (t->stc[0]->ndim) { |
68 |
case 4: |
69 |
return "Anisotropic_Tensor_Tree"; |
70 |
case 3: |
71 |
if (flags) *flags |= F_ISOTROPIC; |
72 |
return "Isotropic_Tensor_Tree"; |
73 |
} |
74 |
return "Unknown_Tensor_Tree"; |
75 |
} |
76 |
return "Unknown"; |
77 |
} |
78 |
|
79 |
/* Report details related to one hemisphere distribution */ |
80 |
void |
81 |
detailComponent(const char *nm, const SDValue *lamb, const SDSpectralDF *df) |
82 |
{ |
83 |
double Lamb = 0; |
84 |
|
85 |
fputs(nm, stdout); |
86 |
if (lamb->spec.flags) { |
87 |
printf("\t%4.1f %4.1f %4.1f\t\t", |
88 |
100.*lamb->cieY*lamb->spec.cx/lamb->spec.cy, |
89 |
100.*lamb->cieY, |
90 |
100.*lamb->cieY*(1.f - lamb->spec.cx - lamb->spec.cy)/lamb->spec.cy); |
91 |
Lamb = lamb->cieY; |
92 |
} else |
93 |
fputs("\t 0 0 0\t\t", stdout); |
94 |
if (df) |
95 |
printf("%5.1f%%\t\t%.2f deg\n", 100.*(Lamb+df->maxHemi), |
96 |
sqrt(df->minProjSA/M_PI)*(360./M_PI)); |
97 |
else |
98 |
printf("%5.1f%%\t\t180 deg\n", Lamb); |
99 |
} |
100 |
|
101 |
/* Add a value to stats */ |
102 |
void |
103 |
addStat(SimpleStats *ssp, double v) |
104 |
{ |
105 |
if (v < ssp->vmin) ssp->vmin = v; |
106 |
if (v > ssp->vmax) ssp->vmax = v; |
107 |
ssp->vsum += v; |
108 |
ssp->nvals++; |
109 |
} |
110 |
|
111 |
/* Sample a BSDF hemisphere with callback (quadtree recursion) */ |
112 |
int |
113 |
qtSampBSDF(double xleft, double ytop, double siz, |
114 |
const SDData *bsdf, const int side, const RREAL *v0, |
115 |
int (*cf)(const SDData *b, const FVECT v1, const RREAL *v0, void *p), |
116 |
void *cdata) |
117 |
{ |
118 |
if (siz < 0.124) { /* make sure we subdivide, first */ |
119 |
FVECT vsmp; |
120 |
double sa; |
121 |
square2disk(vsmp, xleft + frandom()*siz, ytop + frandom()*siz); |
122 |
vsmp[2] = 1. - vsmp[0]*vsmp[0] - vsmp[1]*vsmp[1]; |
123 |
if (vsmp[2] <= 0) return 0; |
124 |
vsmp[2] = side * sqrt(vsmp[2]); |
125 |
if (SDreportError( SDsizeBSDF(&sa, vsmp, v0, SDqueryMin, bsdf), stderr)) |
126 |
return 0; |
127 |
if (sa >= M_PI*siz*siz - FTINY) /* no further division needed */ |
128 |
return (*cf)(bsdf, vsmp, v0, cdata); |
129 |
} |
130 |
siz *= .5; /* 4-branch recursion */ |
131 |
return( qtSampBSDF(xleft, ytop, siz, bsdf, side, v0, cf, cdata) && |
132 |
qtSampBSDF(xleft+siz, ytop, siz, bsdf, side, v0, cf, cdata) && |
133 |
qtSampBSDF(xleft, ytop+siz, siz, bsdf, side, v0, cf, cdata) && |
134 |
qtSampBSDF(xleft+siz, ytop+siz, siz, bsdf, side, v0, cf, cdata) ); |
135 |
} |
136 |
|
137 |
#define sampBSDFhemi(b,s,v0,cf,cd) qtSampBSDF(0,0,1,b,s,v0,cf,cd) |
138 |
|
139 |
/* Call-back to compute reciprocity difference */ |
140 |
int |
141 |
diffRecip(const SDData *bsdf, const FVECT v1, const RREAL *v0, void *p) |
142 |
{ |
143 |
SDValue sdv; |
144 |
double otherY; |
145 |
|
146 |
if (SDreportError( SDevalBSDF(&sdv, v0, v1, bsdf), stderr)) |
147 |
return 0; |
148 |
otherY = sdv.cieY; |
149 |
if (SDreportError( SDevalBSDF(&sdv, v1, v0, bsdf), stderr)) |
150 |
return 0; |
151 |
|
152 |
addStat((SimpleStats *)p, rdiff(sdv.cieY, otherY)); |
153 |
return 1; |
154 |
} |
155 |
|
156 |
/* Call-back to compute reciprocity over reflected hemisphere */ |
157 |
int |
158 |
reflHemi(const SDData *bsdf, const FVECT v1, const RREAL *v0, void *p) |
159 |
{ |
160 |
return sampBSDFhemi(bsdf, 1 - 2*(v1[2]<0), v1, &diffRecip, p); |
161 |
} |
162 |
|
163 |
/* Call-back to compute reciprocity over transmitted hemisphere */ |
164 |
int |
165 |
transHemi(const SDData *bsdf, const FVECT v1, const RREAL *v0, void *p) |
166 |
{ |
167 |
return sampBSDFhemi(bsdf, 1 - 2*(v1[2]>0), v1, &diffRecip, p); |
168 |
} |
169 |
|
170 |
/* Report reciprocity errors for the given directions */ |
171 |
void |
172 |
checkReciprocity(const char *nm, const int side1, const int side2, |
173 |
const SDData *bsdf, const int fl) |
174 |
{ |
175 |
SimpleStats myStats = SSinit; |
176 |
const SDSpectralDF *df = bsdf->tf; |
177 |
|
178 |
if (side1 == side2) { |
179 |
df = (side1 > 0) ? bsdf->rf : bsdf->rb; |
180 |
if (!df) goto nothing2do; |
181 |
} else if (!bsdf->tf | !bsdf->tb) |
182 |
goto nothing2do; |
183 |
|
184 |
if (fl & F_MATRIX) { /* special case for matrix BSDF */ |
185 |
const SDMat *m = (const SDMat *)df->comp[0].dist; |
186 |
int i = m->ninc; |
187 |
double diffuseY; |
188 |
FVECT vin, vout; |
189 |
double fwdY; |
190 |
SDValue rev; |
191 |
if (side1 == side2) |
192 |
diffuseY = (side1 > 0) ? bsdf->rLambFront.cieY : bsdf->rLambBack.cieY; |
193 |
else |
194 |
diffuseY = (side1 > 0) ? bsdf->tLambFront.cieY : bsdf->tLambBack.cieY; |
195 |
diffuseY /= M_PI; |
196 |
while (i--) { |
197 |
int o = m->nout; |
198 |
if (!mBSDF_incvec(vin, m, i+.5)) |
199 |
continue; |
200 |
while (o--) { |
201 |
if (!mBSDF_outvec(vout, m, o+.5)) |
202 |
continue; |
203 |
fwdY = mBSDF_value(m, o, i) + diffuseY; |
204 |
if (fwdY <= 1e-4) |
205 |
continue; |
206 |
if (SDreportError( SDevalBSDF(&rev, vout, vin, bsdf), stderr)) |
207 |
return; |
208 |
if (rev.cieY > 1e-4) |
209 |
addStat(&myStats, rdiff(fwdY, rev.cieY)); |
210 |
} |
211 |
} |
212 |
} else if (fl & F_ISOTROPIC) { /* isotropic case */ |
213 |
const double stepSize = sqrt(df->minProjSA/M_PI); |
214 |
FVECT vin; |
215 |
vin[1] = 0; |
216 |
for (vin[0] = 0.5*stepSize; vin[0] < 1; vin[0] += stepSize) { |
217 |
vin[2] = side1*sqrt(1. - vin[0]*vin[0]); |
218 |
if (!sampBSDFhemi(bsdf, side2, vin, &diffRecip, &myStats)) |
219 |
return; |
220 |
} |
221 |
} else if (!sampBSDFhemi(bsdf, side1, NULL, |
222 |
(side1==side2) ? &reflHemi : &transHemi, &myStats)) |
223 |
return; |
224 |
if (myStats.nvals) { |
225 |
printf("%s\t%5.1f\t%5.1f\t%5.1f\n", nm, |
226 |
100.*myStats.vmin, |
227 |
100.*myStats.vsum/(double)myStats.nvals, |
228 |
100.*myStats.vmax); |
229 |
return; |
230 |
} |
231 |
nothing2do: |
232 |
printf("%s\t 0\t 0\t 0\n", nm); |
233 |
} |
234 |
|
235 |
/* Report on the given BSDF XML file */ |
236 |
int |
237 |
checkXML(char *fname) |
238 |
{ |
239 |
int flags; |
240 |
SDData myBSDF; |
241 |
char *pth; |
242 |
|
243 |
puts("====================================================="); |
244 |
printf("File: '%s'\n", fname); |
245 |
SDclearBSDF(&myBSDF, fname); |
246 |
pth = getpath(fname, getrlibpath(), 0); |
247 |
if (!pth) { |
248 |
fprintf(stderr, "Cannot find file '%s'\n", fname); |
249 |
return 0; |
250 |
} |
251 |
if (SDreportError( SDloadFile(&myBSDF, pth), stderr)) |
252 |
return 0; |
253 |
printf("Manufacturer: '%s'\n", myBSDF.makr); |
254 |
printf("BSDF Name: '%s'\n", myBSDF.matn); |
255 |
printf("Dimensions (W x H x Thickness): %g x %g x %g cm\n", 100.*myBSDF.dim[0], |
256 |
100.*myBSDF.dim[1], 100.*myBSDF.dim[2]); |
257 |
printf("Type: %s\n", getBSDFtype(&myBSDF, &flags)); |
258 |
printf("Color: %d\n", (flags & F_IN_COLOR) != 0); |
259 |
printf("Has Geometry: %d\n", (myBSDF.mgf != NULL)); |
260 |
puts("Component\tLambertian XYZ (%)\tMax. Tot. Dir\tMin. Angle"); |
261 |
detailComponent("Interior Refl", &myBSDF.rLambFront, myBSDF.rf); |
262 |
detailComponent("Exterior Refl", &myBSDF.rLambBack, myBSDF.rb); |
263 |
detailComponent("Int->Ext Trans", &myBSDF.tLambFront, myBSDF.tf); |
264 |
detailComponent("Ext->Int Trans", &myBSDF.tLambBack, myBSDF.tb); |
265 |
puts("Component\tReciprocity Error (min avg max %)"); |
266 |
checkReciprocity("Interior Refl", 1, 1, &myBSDF, flags); |
267 |
checkReciprocity("Exterior Refl", -1, -1, &myBSDF, flags); |
268 |
checkReciprocity("Transmission", -1, 1, &myBSDF, flags); |
269 |
SDfreeBSDF(&myBSDF); |
270 |
return 1; |
271 |
} |
272 |
|
273 |
int |
274 |
main(int argc, char *argv[]) |
275 |
{ |
276 |
int i; |
277 |
|
278 |
if (argc < 2) { |
279 |
fprintf(stderr, "Usage: %s bsdf.xml ..\n", argv[0]); |
280 |
return 1; |
281 |
} |
282 |
for (i = 1; i < argc; i++) |
283 |
if (!checkXML(argv[i])) |
284 |
return 1; |
285 |
return 0; |
286 |
} |