/* RCSid $Id: bsdfrep.h,v 2.22 2014/08/22 05:38:44 greg Exp $ */ /* * Definitions for BSDF representation used to interpolate measured data. * * G. Ward */ #ifndef _BSDFREP_H_ #define _BSDFREP_H_ #include "bsdf.h" #ifdef __cplusplus extern "C" { #endif #ifndef GRIDRES #define GRIDRES (1<<8) /* grid resolution per side */ #endif /* convert to/from coded radians */ #define ANG2R(r) (int)((r)*((1<<16)/M_PI)) #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16))) /* moderated cosine factor */ #define COSF(z) (fabs(z)*0.98 + 0.02) typedef union { struct { float v; /* DSF sum */ unsigned int n; /* number of values in sum */ } sum; /* sum for averaging */ float val[2]; /* comparison values */ } GRIDVAL; /* grid value */ typedef struct { float peak; /* lobe value at peak */ unsigned short crad; /* radius (coded angle) */ unsigned char gx, gy; /* grid position */ } RBFVAL; /* radial basis function value */ struct s_rbfnode; /* forward declaration of RBF struct */ typedef struct s_migration { struct s_migration *next; /* next in global edge list */ struct s_rbfnode *rbfv[2]; /* from,to vertex */ struct s_migration *enxt[2]; /* next from,to sibling */ float mtx[1]; /* matrix (extends struct) */ } MIGRATION; /* migration link (winged edge structure) */ typedef struct s_rbfnode { int ord; /* ordinal position in list */ struct s_rbfnode *next; /* next in global RBF list */ MIGRATION *ejl; /* edge list for this vertex */ FVECT invec; /* incident vector direction */ double vtotal; /* volume for normalization */ int nrbf; /* number of RBFs */ RBFVAL rbfa[1]; /* RBF array (extends struct) */ } RBFNODE; /* RBF representation of DSF @ 1 incidence */ /* symmetry operations */ #define MIRROR_X 1 /* mirror(ed) x-coordinate */ #define MIRROR_Y 2 /* mirror(ed) y-coordinate */ /* represented incident quadrants */ #define INP_QUAD1 1 /* 0-90 degree quadrant */ #define INP_QUAD2 2 /* 90-180 degree quadrant */ #define INP_QUAD3 4 /* 180-270 degree quadrant */ #define INP_QUAD4 8 /* 270-360 degree quadrant */ /* name and manufacturer if known */ extern char bsdf_name[]; extern char bsdf_manuf[]; /* active grid resolution */ extern int grid_res; /* coverage/symmetry using INP_QUAD? flags */ extern int inp_coverage; /* all incident angles in-plane so far? */ extern int single_plane_incident; /* input/output orientations */ extern int input_orient; extern int output_orient; /* log BSDF histogram */ #define HISTLEN 256 #define BSDF2BIG (1./M_PI) #define BSDF2SML 1e-8 #define HISTLNR 17.2759509 /* log(BSDF2BIG/BSDF2SML) */ extern unsigned long bsdf_hist[HISTLEN]; #define histndx(v) (int)(log((v)*(1./BSDF2SML))*(HISTLEN/HISTLNR)) #define histval(i) (exp(((i)+.5)*(HISTLNR/HISTLEN))*BSDF2SML) /* BSDF value for boundary regions */ extern double bsdf_min; extern double bsdf_spec_peak; extern double bsdf_spec_rad; /* processed incident DSF measurements */ extern RBFNODE *dsf_list; /* RBF-linking matrices (edges) */ extern MIGRATION *mig_list; #define mtx_nrows(m) (m)->rbfv[0]->nrbf #define mtx_ncols(m) (m)->rbfv[1]->nrbf #define mtx_coef(m,i,j) (m)->mtx[(i)*mtx_ncols(m) + (j)] #define is_src(rbf,m) ((rbf) == (m)->rbfv[0]) #define is_dest(rbf,m) ((rbf) == (m)->rbfv[1]) #define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)] #define opp_rbf(rbf,m) (m)->rbfv[is_src(rbf,m)] #define round(v) (int)((v) + .5 - ((v) < -.5)) #define BSDFREP_FMT "BSDF_RBFmesh" /* global argv[0] */ extern char *progname; /* get theta value in degrees [0,180) range */ #define get_theta180(v) ((180./M_PI)*Acos((v)[2])) /* get phi value in degrees, [0,360) range */ #define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 360.*((v)[1]<0)) /* our loaded grid for this incident angle */ extern double theta_in_deg, phi_in_deg; extern GRIDVAL dsf_grid[GRIDRES][GRIDRES]; /* Register new input direction */ extern int new_input_direction(double new_theta, double new_phi); #define new_input_vector(v)\ new_input_direction(get_theta180(v),get_phi360(v)) /* Apply symmetry to the given vector based on distribution */ extern int use_symmetry(FVECT vec); /* Reverse symmetry based on what was done before */ extern void rev_symmetry(FVECT vec, int sym); /* Reverse symmetry for an RBF distribution */ extern void rev_rbf_symmetry(RBFNODE *rbf, int sym); /* Rotate RBF to correspond to given incident vector */ extern void rotate_rbf(RBFNODE *rbf, const FVECT invec); /* Compute volume associated with Gaussian lobe */ extern double rbf_volume(const RBFVAL *rbfp); /* Compute outgoing vector from grid position */ extern void ovec_from_pos(FVECT vec, int xpos, int ypos); /* Compute grid position from normalized input/output vector */ extern void pos_from_vec(int pos[2], const FVECT vec); /* Evaluate BSDF at the given normalized outgoing direction */ extern double eval_rbfrep(const RBFNODE *rp, const FVECT outvec); /* Insert a new directional scattering function in our global list */ extern int insert_dsf(RBFNODE *newrbf); /* Get the DSF indicated by its ordinal position */ extern RBFNODE * get_dsf(int ord); /* Get triangle surface orientation (unnormalized) */ extern void tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3); /* Determine if vertex order is reversed (inward normal) */ extern int is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3); /* Find vertices completing triangles on either side of the given edge */ extern int get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig); /* Clear our BSDF representation and free memory */ extern void clear_bsdf_rep(void); /* Write our BSDF mesh interpolant out to the given binary stream */ extern void save_bsdf_rep(FILE *ofp); /* Read a BSDF mesh interpolant from the given binary stream */ extern int load_bsdf_rep(FILE *ifp); /* Start new DSF input grid */ extern void new_bsdf_data(double new_theta, double new_phi); /* Add BSDF data point */ extern void add_bsdf_data(double theta_out, double phi_out, double val, int isDSF); /* Count up filled nodes and build RBF representation from current grid */ extern RBFNODE * make_rbfrep(void); /* Build our triangle mesh from recorded RBFs */ extern void build_mesh(void); /* Find edge(s) for interpolating the given vector, applying symmetry */ extern int get_interp(MIGRATION *miga[3], FVECT invec); /* Return single-lobe specular RBF for the given incident direction */ extern RBFNODE * def_rbf_spec(const FVECT invec); /* Advect and allocate new RBF along edge (internal call) */ extern RBFNODE * e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim); /* Compute distance between two RBF lobes (internal call) */ extern double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2); /* Compute mass transport plan (internal call) */ extern void plan_transport(MIGRATION *mig); /* Partially advect between recorded incident angles and allocate new RBF */ extern RBFNODE * advect_rbf(const FVECT invec, int lobe_lim); #ifdef __cplusplus } #endif #endif /* _BSDFREP_H_ */