ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.h
Revision: 2.21
Committed: Thu Aug 21 13:44:05 2014 UTC (9 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.20: +3 -3 lines
Log Message:
Minor changes should not affect results

File Contents

# Content
1 /* RCSid $Id: bsdfrep.h,v 2.20 2014/08/21 10:33:48 greg Exp $ */
2 /*
3 * Definitions for BSDF representation used to interpolate measured data.
4 *
5 * G. Ward
6 */
7
8 #ifndef _BSDFREP_H_
9 #define _BSDFREP_H_
10
11 #include "bsdf.h"
12
13 #ifdef __cplusplus
14 extern "C" {
15 #endif
16
17 #ifndef GRIDRES
18 #define GRIDRES (1<<8) /* grid resolution per side */
19 #endif
20 /* convert to/from coded radians */
21 #define ANG2R(r) (int)((r)*((1<<16)/M_PI))
22 #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16)))
23
24 typedef union {
25 struct {
26 float v; /* DSF sum */
27 unsigned int n; /* number of values in sum */
28 } sum; /* sum for averaging */
29 float val[2]; /* comparison values */
30 } GRIDVAL; /* grid value */
31
32 typedef struct {
33 float peak; /* lobe value at peak */
34 unsigned short crad; /* radius (coded angle) */
35 unsigned char gx, gy; /* grid position */
36 } RBFVAL; /* radial basis function value */
37
38 struct s_rbfnode; /* forward declaration of RBF struct */
39
40 typedef struct s_migration {
41 struct s_migration *next; /* next in global edge list */
42 struct s_rbfnode *rbfv[2]; /* from,to vertex */
43 struct s_migration *enxt[2]; /* next from,to sibling */
44 float mtx[1]; /* matrix (extends struct) */
45 } MIGRATION; /* migration link (winged edge structure) */
46
47 typedef struct s_rbfnode {
48 int ord; /* ordinal position in list */
49 struct s_rbfnode *next; /* next in global RBF list */
50 MIGRATION *ejl; /* edge list for this vertex */
51 FVECT invec; /* incident vector direction */
52 double vtotal; /* volume for normalization */
53 int nrbf; /* number of RBFs */
54 RBFVAL rbfa[1]; /* RBF array (extends struct) */
55 } RBFNODE; /* RBF representation of DSF @ 1 incidence */
56
57 /* symmetry operations */
58 #define MIRROR_X 1 /* mirror(ed) x-coordinate */
59 #define MIRROR_Y 2 /* mirror(ed) y-coordinate */
60
61 /* represented incident quadrants */
62 #define INP_QUAD1 1 /* 0-90 degree quadrant */
63 #define INP_QUAD2 2 /* 90-180 degree quadrant */
64 #define INP_QUAD3 4 /* 180-270 degree quadrant */
65 #define INP_QUAD4 8 /* 270-360 degree quadrant */
66
67 /* name and manufacturer if known */
68 extern char bsdf_name[];
69 extern char bsdf_manuf[];
70 /* active grid resolution */
71 extern int grid_res;
72 /* coverage/symmetry using INP_QUAD? flags */
73 extern int inp_coverage;
74
75 /* all incident angles in-plane so far? */
76 extern int single_plane_incident;
77
78 /* input/output orientations */
79 extern int input_orient;
80 extern int output_orient;
81
82 /* log BSDF histogram */
83 #define HISTLEN 256
84 #define BSDF2BIG (1./M_PI)
85 #define BSDF2SML 1e-8
86 #define HISTLNR 17.2759509 /* log(BSDF2BIG/BSDF2SML) */
87 extern unsigned long bsdf_hist[HISTLEN];
88 #define histndx(v) (int)(log((v)*(1./BSDF2SML))*(HISTLEN/HISTLNR))
89 #define histval(i) (exp(((i)+.5)*(HISTLNR/HISTLEN))*BSDF2SML)
90
91 /* BSDF value for boundary regions */
92 extern double bsdf_min;
93 extern double bsdf_spec_peak;
94 extern double bsdf_spec_rad;
95
96 /* processed incident DSF measurements */
97 extern RBFNODE *dsf_list;
98
99 /* RBF-linking matrices (edges) */
100 extern MIGRATION *mig_list;
101
102 #define mtx_nrows(m) (m)->rbfv[0]->nrbf
103 #define mtx_ncols(m) (m)->rbfv[1]->nrbf
104 #define mtx_coef(m,i,j) (m)->mtx[(i)*mtx_ncols(m) + (j)]
105 #define is_src(rbf,m) ((rbf) == (m)->rbfv[0])
106 #define is_dest(rbf,m) ((rbf) == (m)->rbfv[1])
107 #define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)]
108 #define opp_rbf(rbf,m) (m)->rbfv[is_src(rbf,m)]
109
110 #define round(v) (int)((v) + .5 - ((v) < -.5))
111
112 #define BSDFREP_FMT "BSDF_RBFmesh"
113
114 /* global argv[0] */
115 extern char *progname;
116
117 /* get theta value in degrees [0,180) range */
118 #define get_theta180(v) ((180./M_PI)*Acos((v)[2]))
119 /* get phi value in degrees, [0,360) range */
120 #define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 360.*((v)[1]<0))
121
122 /* our loaded grid for this incident angle */
123 extern double theta_in_deg, phi_in_deg;
124 extern GRIDVAL dsf_grid[GRIDRES][GRIDRES];
125
126 /* Register new input direction */
127 extern int new_input_direction(double new_theta, double new_phi);
128
129 #define new_input_vector(v)\
130 new_input_direction(get_theta180(v),get_phi360(v))
131
132 /* Apply symmetry to the given vector based on distribution */
133 extern int use_symmetry(FVECT vec);
134
135 /* Reverse symmetry based on what was done before */
136 extern void rev_symmetry(FVECT vec, int sym);
137
138 /* Reverse symmetry for an RBF distribution */
139 extern void rev_rbf_symmetry(RBFNODE *rbf, int sym);
140
141 /* Rotate RBF to correspond to given incident vector */
142 extern void rotate_rbf(RBFNODE *rbf, const FVECT invec);
143
144 /* Compute volume associated with Gaussian lobe */
145 extern double rbf_volume(const RBFVAL *rbfp);
146
147 /* Compute outgoing vector from grid position */
148 extern void ovec_from_pos(FVECT vec, int xpos, int ypos);
149
150 /* Compute grid position from normalized input/output vector */
151 extern void pos_from_vec(int pos[2], const FVECT vec);
152
153 /* Evaluate BSDF at the given normalized outgoing direction */
154 extern double eval_rbfrep(const RBFNODE *rp, const FVECT outvec);
155
156 /* Insert a new directional scattering function in our global list */
157 extern int insert_dsf(RBFNODE *newrbf);
158
159 /* Get the DSF indicated by its ordinal position */
160 extern RBFNODE * get_dsf(int ord);
161
162 /* Get triangle surface orientation (unnormalized) */
163 extern void tri_orient(FVECT vres, const FVECT v1,
164 const FVECT v2, const FVECT v3);
165
166 /* Determine if vertex order is reversed (inward normal) */
167 extern int is_rev_tri(const FVECT v1,
168 const FVECT v2, const FVECT v3);
169
170 /* Find vertices completing triangles on either side of the given edge */
171 extern int get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig);
172
173 /* Clear our BSDF representation and free memory */
174 extern void clear_bsdf_rep(void);
175
176 /* Write our BSDF mesh interpolant out to the given binary stream */
177 extern void save_bsdf_rep(FILE *ofp);
178
179 /* Read a BSDF mesh interpolant from the given binary stream */
180 extern int load_bsdf_rep(FILE *ifp);
181
182 /* Start new DSF input grid */
183 extern void new_bsdf_data(double new_theta, double new_phi);
184
185 /* Add BSDF data point */
186 extern void add_bsdf_data(double theta_out, double phi_out,
187 double val, int isDSF);
188
189 /* Count up filled nodes and build RBF representation from current grid */
190 extern RBFNODE * make_rbfrep(void);
191
192 /* Build our triangle mesh from recorded RBFs */
193 extern void build_mesh(void);
194
195 /* Find edge(s) for interpolating the given vector, applying symmetry */
196 extern int get_interp(MIGRATION *miga[3], FVECT invec);
197
198 /* Return single-lobe specular RBF for the given incident direction */
199 extern RBFNODE * def_rbf_spec(const FVECT invec);
200
201 /* Advect and allocate new RBF along edge (internal call) */
202 extern RBFNODE * e_advect_rbf(const MIGRATION *mig,
203 const FVECT invec, int lobe_lim);
204
205 /* Compute distance between two RBF lobes (internal call) */
206 extern double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2);
207
208 /* Compute mass transport plan (internal call) */
209 extern void plan_transport(MIGRATION *mig);
210
211 /* Partially advect between recorded incident angles and allocate new RBF */
212 extern RBFNODE * advect_rbf(const FVECT invec, int lobe_lim);
213
214 #ifdef __cplusplus
215 }
216 #endif
217 #endif /* _BSDFREP_H_ */