ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.h
Revision: 2.19
Committed: Wed Mar 26 02:52:31 2014 UTC (10 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2
Changes since 2.18: +19 -1 lines
Log Message:
Changed to optimized transport matrix computation

File Contents

# Content
1 /* RCSid $Id: bsdfrep.h,v 2.18 2014/03/19 20:49:01 greg Exp $ */
2 /*
3 * Definitions for BSDF representation used to interpolate measured data.
4 *
5 * G. Ward
6 */
7
8 #ifndef _BSDFREP_H_
9 #define _BSDFREP_H_
10
11 #include "bsdf.h"
12
13 #ifdef __cplusplus
14 extern "C" {
15 #endif
16
17 #ifndef GRIDRES
18 #define GRIDRES (1<<8) /* grid resolution per side */
19 #endif
20 /* convert to/from coded radians */
21 #define ANG2R(r) (int)((r)*((1<<16)/M_PI))
22 #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16)))
23
24 typedef union {
25 struct {
26 float v; /* DSF sum */
27 unsigned int n; /* number of values in sum */
28 } sum; /* sum for averaging */
29 float val[2]; /* comparison values */
30 } GRIDVAL; /* grid value */
31
32 typedef struct {
33 float peak; /* lobe value at peak */
34 unsigned short crad; /* radius (coded angle) */
35 unsigned char gx, gy; /* grid position */
36 } RBFVAL; /* radial basis function value */
37
38 struct s_rbfnode; /* forward declaration of RBF struct */
39
40 typedef struct s_migration {
41 struct s_migration *next; /* next in global edge list */
42 struct s_rbfnode *rbfv[2]; /* from,to vertex */
43 struct s_migration *enxt[2]; /* next from,to sibling */
44 float mtx[1]; /* matrix (extends struct) */
45 } MIGRATION; /* migration link (winged edge structure) */
46
47 typedef struct s_rbfnode {
48 int ord; /* ordinal position in list */
49 struct s_rbfnode *next; /* next in global RBF list */
50 MIGRATION *ejl; /* edge list for this vertex */
51 FVECT invec; /* incident vector direction */
52 double vtotal; /* volume for normalization */
53 int nrbf; /* number of RBFs */
54 RBFVAL rbfa[1]; /* RBF array (extends struct) */
55 } RBFNODE; /* RBF representation of DSF @ 1 incidence */
56
57 /* symmetry operations */
58 #define MIRROR_X 1 /* mirror(ed) x-coordinate */
59 #define MIRROR_Y 2 /* mirror(ed) y-coordinate */
60
61 /* represented incident quadrants */
62 #define INP_QUAD1 1 /* 0-90 degree quadrant */
63 #define INP_QUAD2 2 /* 90-180 degree quadrant */
64 #define INP_QUAD3 4 /* 180-270 degree quadrant */
65 #define INP_QUAD4 8 /* 270-360 degree quadrant */
66
67 /* name and manufacturer if known */
68 extern char bsdf_name[];
69 extern char bsdf_manuf[];
70 /* active grid resolution */
71 extern int grid_res;
72 /* coverage/symmetry using INP_QUAD? flags */
73 extern int inp_coverage;
74
75 /* all incident angles in-plane so far? */
76 extern int single_plane_incident;
77
78 /* input/output orientations */
79 extern int input_orient;
80 extern int output_orient;
81
82 /* log BSDF histogram */
83 #define HISTLEN 256
84 #define BSDF2BIG (1./M_PI)
85 #define BSDF2SML 1e-8
86 #define HISTLNR 17.2759509 /* log(BSDF2BIG/BSDF2SML) */
87 extern unsigned long bsdf_hist[HISTLEN];
88 #define histndx(v) (int)(log((v)*(1./BSDF2SML))*(HISTLEN/HISTLNR))
89 #define histval(i) (exp(((i)+.5)*(HISTLNR/HISTLEN))*BSDF2SML)
90
91 /* BSDF value for boundary regions */
92 extern double bsdf_min;
93
94 /* processed incident DSF measurements */
95 extern RBFNODE *dsf_list;
96
97 /* RBF-linking matrices (edges) */
98 extern MIGRATION *mig_list;
99
100 #define mtx_nrows(m) (m)->rbfv[0]->nrbf
101 #define mtx_ncols(m) (m)->rbfv[1]->nrbf
102 #define mtx_coef(m,i,j) (m)->mtx[(i)*mtx_ncols(m) + (j)]
103 #define is_src(rbf,m) ((rbf) == (m)->rbfv[0])
104 #define is_dest(rbf,m) ((rbf) == (m)->rbfv[1])
105 #define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)]
106 #define opp_rbf(rbf,m) (m)->rbfv[is_src(rbf,m)]
107
108 #define round(v) (int)((v) + .5 - ((v) < -.5))
109
110 #define BSDFREP_FMT "BSDF_RBFmesh"
111
112 /* global argv[0] */
113 extern char *progname;
114
115 /* get theta value in degrees [0,180) range */
116 #define get_theta180(v) ((180./M_PI)*Acos((v)[2]))
117 /* get phi value in degrees, [0,360) range */
118 #define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 360.*((v)[1]<0))
119
120 /* our loaded grid for this incident angle */
121 extern double theta_in_deg, phi_in_deg;
122 extern GRIDVAL dsf_grid[GRIDRES][GRIDRES];
123
124 /* Register new input direction */
125 extern int new_input_direction(double new_theta, double new_phi);
126
127 #define new_input_vector(v)\
128 new_input_direction(get_theta180(v),get_phi360(v))
129
130 /* Apply symmetry to the given vector based on distribution */
131 extern int use_symmetry(FVECT vec);
132
133 /* Reverse symmetry based on what was done before */
134 extern void rev_symmetry(FVECT vec, int sym);
135
136 /* Reverse symmetry for an RBF distribution */
137 extern void rev_rbf_symmetry(RBFNODE *rbf, int sym);
138
139 /* Rotate RBF to correspond to given incident vector */
140 extern void rotate_rbf(RBFNODE *rbf, const FVECT invec);
141
142 /* Compute volume associated with Gaussian lobe */
143 extern double rbf_volume(const RBFVAL *rbfp);
144
145 /* Compute outgoing vector from grid position */
146 extern void ovec_from_pos(FVECT vec, int xpos, int ypos);
147
148 /* Compute grid position from normalized input/output vector */
149 extern void pos_from_vec(int pos[2], const FVECT vec);
150
151 /* Evaluate RBF for DSF at the given normalized outgoing direction */
152 extern double eval_rbfrep(const RBFNODE *rp, const FVECT outvec);
153
154 /* Insert a new directional scattering function in our global list */
155 extern int insert_dsf(RBFNODE *newrbf);
156
157 /* Get the DSF indicated by its ordinal position */
158 extern RBFNODE * get_dsf(int ord);
159
160 /* Get triangle surface orientation (unnormalized) */
161 extern void tri_orient(FVECT vres, const FVECT v1,
162 const FVECT v2, const FVECT v3);
163
164 /* Determine if vertex order is reversed (inward normal) */
165 extern int is_rev_tri(const FVECT v1,
166 const FVECT v2, const FVECT v3);
167
168 /* Find vertices completing triangles on either side of the given edge */
169 extern int get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig);
170
171 /* Clear our BSDF representation and free memory */
172 extern void clear_bsdf_rep(void);
173
174 /* Write our BSDF mesh interpolant out to the given binary stream */
175 extern void save_bsdf_rep(FILE *ofp);
176
177 /* Read a BSDF mesh interpolant from the given binary stream */
178 extern int load_bsdf_rep(FILE *ifp);
179
180 /* Start new DSF input grid */
181 extern void new_bsdf_data(double new_theta, double new_phi);
182
183 /* Add BSDF data point */
184 extern void add_bsdf_data(double theta_out, double phi_out,
185 double val, int isDSF);
186
187 /* Count up filled nodes and build RBF representation from current grid */
188 extern RBFNODE * make_rbfrep(void);
189
190 /* Build our triangle mesh from recorded RBFs */
191 extern void build_mesh(void);
192
193 /* Find edge(s) for interpolating the given vector, applying symmetry */
194 extern int get_interp(MIGRATION *miga[3], FVECT invec);
195
196 /* Advect and allocate new RBF along edge (internal call) */
197 extern RBFNODE * e_advect_rbf(const MIGRATION *mig,
198 const FVECT invec, int lobe_lim);
199
200 /* Compute distance between two RBF lobes (internal call) */
201 extern double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2);
202
203 /* Compute mass transport plan (internal call) */
204 extern void plan_transport(MIGRATION *mig);
205
206 /* Partially advect between recorded incident angles and allocate new RBF */
207 extern RBFNODE * advect_rbf(const FVECT invec, int lobe_lim);
208
209 #ifdef __cplusplus
210 }
211 #endif
212 #endif /* _BSDFREP_H_ */