| 5 |
|
* G. Ward |
| 6 |
|
*/ |
| 7 |
|
|
| 8 |
+ |
#ifndef _BSDFREP_H_ |
| 9 |
+ |
#define _BSDFREP_H_ |
| 10 |
+ |
|
| 11 |
|
#include "bsdf.h" |
| 12 |
|
|
| 13 |
< |
#define DEBUG 1 |
| 13 |
> |
#ifdef __cplusplus |
| 14 |
> |
extern "C" { |
| 15 |
> |
#endif |
| 16 |
|
|
| 17 |
|
#ifndef GRIDRES |
| 18 |
< |
#define GRIDRES 200 /* grid resolution per side */ |
| 18 |
> |
#define GRIDRES (1<<8) /* grid resolution per side */ |
| 19 |
|
#endif |
| 20 |
|
/* convert to/from coded radians */ |
| 21 |
|
#define ANG2R(r) (int)((r)*((1<<16)/M_PI)) |
| 22 |
|
#define R2ANG(c) (((c)+.5)*(M_PI/(1<<16))) |
| 23 |
|
|
| 24 |
< |
typedef struct { |
| 25 |
< |
float vsum; /* DSF sum */ |
| 26 |
< |
unsigned short nval; /* number of values in sum */ |
| 27 |
< |
unsigned short crad; /* radius (coded angle) */ |
| 24 |
> |
typedef union { |
| 25 |
> |
struct { |
| 26 |
> |
float v; /* DSF sum */ |
| 27 |
> |
unsigned int n; /* number of values in sum */ |
| 28 |
> |
} sum; /* sum for averaging */ |
| 29 |
> |
float val[2]; /* comparison values */ |
| 30 |
|
} GRIDVAL; /* grid value */ |
| 31 |
|
|
| 32 |
|
typedef struct { |
| 64 |
|
#define INP_QUAD3 4 /* 180-270 degree quadrant */ |
| 65 |
|
#define INP_QUAD4 8 /* 270-360 degree quadrant */ |
| 66 |
|
|
| 67 |
+ |
/* name and manufacturer if known */ |
| 68 |
+ |
extern char bsdf_name[]; |
| 69 |
+ |
extern char bsdf_manuf[]; |
| 70 |
+ |
/* active grid resolution */ |
| 71 |
+ |
extern int grid_res; |
| 72 |
+ |
/* coverage/symmetry using INP_QUAD? flags */ |
| 73 |
|
extern int inp_coverage; |
| 74 |
|
|
| 75 |
|
/* all incident angles in-plane so far? */ |
| 79 |
|
extern int input_orient; |
| 80 |
|
extern int output_orient; |
| 81 |
|
|
| 82 |
+ |
/* log BSDF histogram */ |
| 83 |
+ |
#define HISTLEN 256 |
| 84 |
+ |
#define BSDF2BIG (1./M_PI) |
| 85 |
+ |
#define BSDF2SML 1e-8 |
| 86 |
+ |
#define HISTLNR 17.2759509 /* log(BSDF2BIG/BSDF2SML) */ |
| 87 |
+ |
extern unsigned long bsdf_hist[HISTLEN]; |
| 88 |
+ |
#define histndx(v) (int)(log((v)*(1./BSDF2SML))*(HISTLEN/HISTLNR)) |
| 89 |
+ |
#define histval(i) (exp(((i)+.5)*(HISTLNR/HISTLEN))*BSDF2SML) |
| 90 |
+ |
|
| 91 |
+ |
/* BSDF value for boundary regions */ |
| 92 |
+ |
extern double bsdf_min; |
| 93 |
+ |
|
| 94 |
|
/* processed incident DSF measurements */ |
| 95 |
|
extern RBFNODE *dsf_list; |
| 96 |
|
|
| 97 |
|
/* RBF-linking matrices (edges) */ |
| 98 |
|
extern MIGRATION *mig_list; |
| 99 |
|
|
| 100 |
< |
/* migration edges drawn in raster fashion */ |
| 101 |
< |
extern MIGRATION *mig_grid[GRIDRES][GRIDRES]; |
| 102 |
< |
|
| 78 |
< |
#define mtx_nrows(m) ((m)->rbfv[0]->nrbf) |
| 79 |
< |
#define mtx_ncols(m) ((m)->rbfv[1]->nrbf) |
| 80 |
< |
#define mtx_ndx(m,i,j) ((i)*mtx_ncols(m) + (j)) |
| 100 |
> |
#define mtx_nrows(m) (m)->rbfv[0]->nrbf |
| 101 |
> |
#define mtx_ncols(m) (m)->rbfv[1]->nrbf |
| 102 |
> |
#define mtx_coef(m,i,j) (m)->mtx[(i)*mtx_ncols(m) + (j)] |
| 103 |
|
#define is_src(rbf,m) ((rbf) == (m)->rbfv[0]) |
| 104 |
|
#define is_dest(rbf,m) ((rbf) == (m)->rbfv[1]) |
| 105 |
|
#define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)] |
| 107 |
|
|
| 108 |
|
#define round(v) (int)((v) + .5 - ((v) < -.5)) |
| 109 |
|
|
| 110 |
< |
#define BSDFREP_FMT "binary_RBF_BSDF_mesh" |
| 110 |
> |
#define BSDFREP_FMT "BSDF_RBFmesh" |
| 111 |
|
|
| 112 |
|
/* global argv[0] */ |
| 113 |
|
extern char *progname; |
| 114 |
|
|
| 115 |
|
/* get theta value in degrees [0,180) range */ |
| 116 |
< |
#define get_theta180(v) (180./M_PI)*acos((v)[2]) |
| 116 |
> |
#define get_theta180(v) ((180./M_PI)*Acos((v)[2])) |
| 117 |
|
/* get phi value in degrees, [0,360) range */ |
| 118 |
< |
#define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 180.) |
| 118 |
> |
#define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 360.*((v)[1]<0)) |
| 119 |
|
|
| 120 |
|
/* our loaded grid for this incident angle */ |
| 121 |
|
extern double theta_in_deg, phi_in_deg; |
| 136 |
|
/* Reverse symmetry for an RBF distribution */ |
| 137 |
|
extern void rev_rbf_symmetry(RBFNODE *rbf, int sym); |
| 138 |
|
|
| 139 |
+ |
/* Rotate RBF to correspond to given incident vector */ |
| 140 |
+ |
extern void rotate_rbf(RBFNODE *rbf, const FVECT invec); |
| 141 |
+ |
|
| 142 |
|
/* Compute volume associated with Gaussian lobe */ |
| 143 |
|
extern double rbf_volume(const RBFVAL *rbfp); |
| 144 |
|
|
| 168 |
|
/* Find vertices completing triangles on either side of the given edge */ |
| 169 |
|
extern int get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig); |
| 170 |
|
|
| 171 |
+ |
/* Clear our BSDF representation and free memory */ |
| 172 |
+ |
extern void clear_bsdf_rep(void); |
| 173 |
+ |
|
| 174 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
| 175 |
|
extern void save_bsdf_rep(FILE *ofp); |
| 176 |
|
|
| 190 |
|
/* Build our triangle mesh from recorded RBFs */ |
| 191 |
|
extern void build_mesh(void); |
| 192 |
|
|
| 165 |
– |
/* Draw edge list into mig_grid array */ |
| 166 |
– |
extern void draw_edges(void); |
| 167 |
– |
|
| 193 |
|
/* Find edge(s) for interpolating the given vector, applying symmetry */ |
| 194 |
|
extern int get_interp(MIGRATION *miga[3], FVECT invec); |
| 195 |
|
|
| 196 |
+ |
/* Advect and allocate new RBF along edge (internal call) */ |
| 197 |
+ |
extern RBFNODE * e_advect_rbf(const MIGRATION *mig, |
| 198 |
+ |
const FVECT invec, int lobe_lim); |
| 199 |
+ |
|
| 200 |
+ |
/* Compute distance between two RBF lobes (internal call) */ |
| 201 |
+ |
extern double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2); |
| 202 |
+ |
|
| 203 |
+ |
/* Compute mass transport plan (internal call) */ |
| 204 |
+ |
extern void plan_transport(MIGRATION *mig); |
| 205 |
+ |
|
| 206 |
|
/* Partially advect between recorded incident angles and allocate new RBF */ |
| 207 |
< |
extern RBFNODE * advect_rbf(const FVECT invec); |
| 207 |
> |
extern RBFNODE * advect_rbf(const FVECT invec, int lobe_lim); |
| 208 |
> |
|
| 209 |
> |
#ifdef __cplusplus |
| 210 |
> |
} |
| 211 |
> |
#endif |
| 212 |
> |
#endif /* _BSDFREP_H_ */ |