--- ray/src/cv/bsdfrep.h 2013/03/20 01:00:22 2.7 +++ ray/src/cv/bsdfrep.h 2014/08/22 05:38:44 2.22 @@ -1,25 +1,35 @@ -/* RCSid $Id: bsdfrep.h,v 2.7 2013/03/20 01:00:22 greg Exp $ */ +/* RCSid $Id: bsdfrep.h,v 2.22 2014/08/22 05:38:44 greg Exp $ */ /* * Definitions for BSDF representation used to interpolate measured data. * * G. Ward */ +#ifndef _BSDFREP_H_ +#define _BSDFREP_H_ + #include "bsdf.h" -#define DEBUG 1 +#ifdef __cplusplus +extern "C" { +#endif #ifndef GRIDRES -#define GRIDRES 200 /* grid resolution per side */ +#define GRIDRES (1<<8) /* grid resolution per side */ #endif /* convert to/from coded radians */ #define ANG2R(r) (int)((r)*((1<<16)/M_PI)) #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16))) -typedef struct { - float vsum; /* DSF sum */ - unsigned short nval; /* number of values in sum */ - unsigned short crad; /* radius (coded angle) */ + /* moderated cosine factor */ +#define COSF(z) (fabs(z)*0.98 + 0.02) + +typedef union { + struct { + float v; /* DSF sum */ + unsigned int n; /* number of values in sum */ + } sum; /* sum for averaging */ + float val[2]; /* comparison values */ } GRIDVAL; /* grid value */ typedef struct { @@ -57,6 +67,9 @@ typedef struct s_rbfnode { #define INP_QUAD3 4 /* 180-270 degree quadrant */ #define INP_QUAD4 8 /* 270-360 degree quadrant */ + /* name and manufacturer if known */ +extern char bsdf_name[]; +extern char bsdf_manuf[]; /* active grid resolution */ extern int grid_res; /* coverage/symmetry using INP_QUAD? flags */ @@ -74,12 +87,14 @@ extern int output_orient; #define BSDF2BIG (1./M_PI) #define BSDF2SML 1e-8 #define HISTLNR 17.2759509 /* log(BSDF2BIG/BSDF2SML) */ -extern int bsdf_hist[HISTLEN]; +extern unsigned long bsdf_hist[HISTLEN]; #define histndx(v) (int)(log((v)*(1./BSDF2SML))*(HISTLEN/HISTLNR)) #define histval(i) (exp(((i)+.5)*(HISTLNR/HISTLEN))*BSDF2SML) /* BSDF value for boundary regions */ extern double bsdf_min; +extern double bsdf_spec_peak; +extern double bsdf_spec_rad; /* processed incident DSF measurements */ extern RBFNODE *dsf_list; @@ -103,7 +118,7 @@ extern MIGRATION *mig_list; extern char *progname; /* get theta value in degrees [0,180) range */ -#define get_theta180(v) ((180./M_PI)*acos((v)[2])) +#define get_theta180(v) ((180./M_PI)*Acos((v)[2])) /* get phi value in degrees, [0,360) range */ #define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 360.*((v)[1]<0)) @@ -138,7 +153,7 @@ extern void ovec_from_pos(FVECT vec, int xpos, int yp /* Compute grid position from normalized input/output vector */ extern void pos_from_vec(int pos[2], const FVECT vec); -/* Evaluate RBF for DSF at the given normalized outgoing direction */ +/* Evaluate BSDF at the given normalized outgoing direction */ extern double eval_rbfrep(const RBFNODE *rp, const FVECT outvec); /* Insert a new directional scattering function in our global list */ @@ -183,5 +198,23 @@ extern void build_mesh(void); /* Find edge(s) for interpolating the given vector, applying symmetry */ extern int get_interp(MIGRATION *miga[3], FVECT invec); +/* Return single-lobe specular RBF for the given incident direction */ +extern RBFNODE * def_rbf_spec(const FVECT invec); + +/* Advect and allocate new RBF along edge (internal call) */ +extern RBFNODE * e_advect_rbf(const MIGRATION *mig, + const FVECT invec, int lobe_lim); + +/* Compute distance between two RBF lobes (internal call) */ +extern double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2); + +/* Compute mass transport plan (internal call) */ +extern void plan_transport(MIGRATION *mig); + /* Partially advect between recorded incident angles and allocate new RBF */ -extern RBFNODE * advect_rbf(const FVECT invec); +extern RBFNODE * advect_rbf(const FVECT invec, int lobe_lim); + +#ifdef __cplusplus +} +#endif +#endif /* _BSDFREP_H_ */ \ No newline at end of file