--- ray/src/cv/bsdfrep.h 2012/10/19 04:14:29 2.1 +++ ray/src/cv/bsdfrep.h 2014/08/22 05:38:44 2.22 @@ -1,25 +1,35 @@ -/* RCSid $Id: bsdfrep.h,v 2.1 2012/10/19 04:14:29 greg Exp $ */ +/* RCSid $Id: bsdfrep.h,v 2.22 2014/08/22 05:38:44 greg Exp $ */ /* * Definitions for BSDF representation used to interpolate measured data. * * G. Ward */ +#ifndef _BSDFREP_H_ +#define _BSDFREP_H_ + #include "bsdf.h" -#define DEBUG 1 +#ifdef __cplusplus +extern "C" { +#endif #ifndef GRIDRES -#define GRIDRES 200 /* grid resolution per side */ +#define GRIDRES (1<<8) /* grid resolution per side */ #endif /* convert to/from coded radians */ #define ANG2R(r) (int)((r)*((1<<16)/M_PI)) #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16))) -typedef struct { - float vsum; /* DSF sum */ - unsigned short nval; /* number of values in sum */ - unsigned short crad; /* radius (coded angle) */ + /* moderated cosine factor */ +#define COSF(z) (fabs(z)*0.98 + 0.02) + +typedef union { + struct { + float v; /* DSF sum */ + unsigned int n; /* number of values in sum */ + } sum; /* sum for averaging */ + float val[2]; /* comparison values */ } GRIDVAL; /* grid value */ typedef struct { @@ -57,6 +67,12 @@ typedef struct s_rbfnode { #define INP_QUAD3 4 /* 180-270 degree quadrant */ #define INP_QUAD4 8 /* 270-360 degree quadrant */ + /* name and manufacturer if known */ +extern char bsdf_name[]; +extern char bsdf_manuf[]; + /* active grid resolution */ +extern int grid_res; + /* coverage/symmetry using INP_QUAD? flags */ extern int inp_coverage; /* all incident angles in-plane so far? */ @@ -66,18 +82,29 @@ extern int single_plane_incident; extern int input_orient; extern int output_orient; + /* log BSDF histogram */ +#define HISTLEN 256 +#define BSDF2BIG (1./M_PI) +#define BSDF2SML 1e-8 +#define HISTLNR 17.2759509 /* log(BSDF2BIG/BSDF2SML) */ +extern unsigned long bsdf_hist[HISTLEN]; +#define histndx(v) (int)(log((v)*(1./BSDF2SML))*(HISTLEN/HISTLNR)) +#define histval(i) (exp(((i)+.5)*(HISTLNR/HISTLEN))*BSDF2SML) + + /* BSDF value for boundary regions */ +extern double bsdf_min; +extern double bsdf_spec_peak; +extern double bsdf_spec_rad; + /* processed incident DSF measurements */ extern RBFNODE *dsf_list; /* RBF-linking matrices (edges) */ extern MIGRATION *mig_list; - /* migration edges drawn in raster fashion */ -extern MIGRATION *mig_grid[GRIDRES][GRIDRES]; - -#define mtx_nrows(m) ((m)->rbfv[0]->nrbf) -#define mtx_ncols(m) ((m)->rbfv[1]->nrbf) -#define mtx_ndx(m,i,j) ((i)*mtx_ncols(m) + (j)) +#define mtx_nrows(m) (m)->rbfv[0]->nrbf +#define mtx_ncols(m) (m)->rbfv[1]->nrbf +#define mtx_coef(m,i,j) (m)->mtx[(i)*mtx_ncols(m) + (j)] #define is_src(rbf,m) ((rbf) == (m)->rbfv[0]) #define is_dest(rbf,m) ((rbf) == (m)->rbfv[1]) #define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)] @@ -85,15 +112,15 @@ extern MIGRATION *mig_grid[GRIDRES][GRIDRES]; #define round(v) (int)((v) + .5 - ((v) < -.5)) -#define BSDFREP_FMT "binary_RBF_BSDF_mesh" +#define BSDFREP_FMT "BSDF_RBFmesh" /* global argv[0] */ extern char *progname; /* get theta value in degrees [0,180) range */ -#define get_theta180(v) (180./M_PI)*acos((v)[2]) +#define get_theta180(v) ((180./M_PI)*Acos((v)[2])) /* get phi value in degrees, [0,360) range */ -#define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 180.) +#define get_phi360(v) ((180./M_PI)*atan2((v)[1],(v)[0]) + 360.*((v)[1]<0)) /* our loaded grid for this incident angle */ extern double theta_in_deg, phi_in_deg; @@ -114,6 +141,9 @@ extern void rev_symmetry(FVECT vec, int sym); /* Reverse symmetry for an RBF distribution */ extern void rev_rbf_symmetry(RBFNODE *rbf, int sym); +/* Rotate RBF to correspond to given incident vector */ +extern void rotate_rbf(RBFNODE *rbf, const FVECT invec); + /* Compute volume associated with Gaussian lobe */ extern double rbf_volume(const RBFVAL *rbfp); @@ -123,7 +153,7 @@ extern void ovec_from_pos(FVECT vec, int xpos, int yp /* Compute grid position from normalized input/output vector */ extern void pos_from_vec(int pos[2], const FVECT vec); -/* Evaluate RBF for DSF at the given normalized outgoing direction */ +/* Evaluate BSDF at the given normalized outgoing direction */ extern double eval_rbfrep(const RBFNODE *rp, const FVECT outvec); /* Insert a new directional scattering function in our global list */ @@ -143,6 +173,9 @@ extern int is_rev_tri(const FVECT v1, /* Find vertices completing triangles on either side of the given edge */ extern int get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig); +/* Clear our BSDF representation and free memory */ +extern void clear_bsdf_rep(void); + /* Write our BSDF mesh interpolant out to the given binary stream */ extern void save_bsdf_rep(FILE *ofp); @@ -162,11 +195,26 @@ extern RBFNODE * make_rbfrep(void); /* Build our triangle mesh from recorded RBFs */ extern void build_mesh(void); -/* Draw edge list into mig_grid array */ -extern void draw_edges(void); - /* Find edge(s) for interpolating the given vector, applying symmetry */ extern int get_interp(MIGRATION *miga[3], FVECT invec); +/* Return single-lobe specular RBF for the given incident direction */ +extern RBFNODE * def_rbf_spec(const FVECT invec); + +/* Advect and allocate new RBF along edge (internal call) */ +extern RBFNODE * e_advect_rbf(const MIGRATION *mig, + const FVECT invec, int lobe_lim); + +/* Compute distance between two RBF lobes (internal call) */ +extern double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2); + +/* Compute mass transport plan (internal call) */ +extern void plan_transport(MIGRATION *mig); + /* Partially advect between recorded incident angles and allocate new RBF */ -extern RBFNODE * advect_rbf(const FVECT invec); +extern RBFNODE * advect_rbf(const FVECT invec, int lobe_lim); + +#ifdef __cplusplus +} +#endif +#endif /* _BSDFREP_H_ */ \ No newline at end of file