ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.37
Committed: Wed Dec 15 01:38:50 2021 UTC (2 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.36: +5 -5 lines
Log Message:
refactor: removed prefix from SDdisk2square() and SDsquare2disk() & made consistent

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.37 static const char RCSid[] = "$Id: bsdfrep.c,v 2.36 2021/11/17 01:39:04 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12     #include <math.h>
13     #include "rtio.h"
14     #include "resolu.h"
15     #include "bsdfrep.h"
16 greg 2.29 #include "random.h"
17 greg 2.19 /* name and manufacturer if known */
18     char bsdf_name[256];
19     char bsdf_manuf[256];
20 greg 2.5 /* active grid resolution */
21     int grid_res = GRIDRES;
22    
23 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
24 greg 2.1 int inp_coverage = 0;
25     /* all incident angles in-plane so far? */
26     int single_plane_incident = -1;
27    
28     /* input/output orientations */
29     int input_orient = 0;
30     int output_orient = 0;
31    
32 greg 2.29 /* represented color space */
33     RBColor rbf_colorimetry = RBCunknown;
34    
35     const char *RBCident[] = {
36     "CIE-Y", "CIE-XYZ", "Spectral", "Unknown"
37     };
38    
39 greg 2.12 /* BSDF histogram */
40 greg 2.15 unsigned long bsdf_hist[HISTLEN];
41 greg 2.12
42     /* BSDF value for boundary regions */
43     double bsdf_min = 0;
44 greg 2.30 double bsdf_spec_val = 0;
45 greg 2.26 double bsdf_spec_rad = 0;
46 greg 2.12
47 greg 2.1 /* processed incident DSF measurements */
48     RBFNODE *dsf_list = NULL;
49    
50     /* RBF-linking matrices (edges) */
51     MIGRATION *mig_list = NULL;
52    
53     /* current input direction */
54     double theta_in_deg, phi_in_deg;
55    
56 greg 2.34 /* header line sharing callback */
57     int (*sir_headshare)(char *s) = NULL;
58    
59 greg 2.1 /* Register new input direction */
60     int
61     new_input_direction(double new_theta, double new_phi)
62     {
63     /* normalize angle ranges */
64     while (new_theta < -180.)
65     new_theta += 360.;
66     while (new_theta > 180.)
67     new_theta -= 360.;
68     if (new_theta < 0) {
69     new_theta = -new_theta;
70     new_phi += 180.;
71     }
72     while (new_phi < 0)
73     new_phi += 360.;
74     while (new_phi >= 360.)
75     new_phi -= 360.;
76 greg 2.28 /* check input orientation */
77     if (!input_orient)
78     input_orient = 1 - 2*(new_theta > 90.);
79     else if (input_orient > 0 ^ new_theta < 90.) {
80     fprintf(stderr,
81     "%s: Cannot handle input angles on both sides of surface\n",
82     progname);
83     return(0);
84     }
85     if ((theta_in_deg = new_theta) < 1.0)
86     return(1); /* don't rely on phi near normal */
87 greg 2.1 if (single_plane_incident > 0) /* check input coverage */
88     single_plane_incident = (round(new_phi) == round(phi_in_deg));
89     else if (single_plane_incident < 0)
90     single_plane_incident = 1;
91     phi_in_deg = new_phi;
92     if ((1. < new_phi) & (new_phi < 89.))
93     inp_coverage |= INP_QUAD1;
94     else if ((91. < new_phi) & (new_phi < 179.))
95     inp_coverage |= INP_QUAD2;
96     else if ((181. < new_phi) & (new_phi < 269.))
97     inp_coverage |= INP_QUAD3;
98     else if ((271. < new_phi) & (new_phi < 359.))
99     inp_coverage |= INP_QUAD4;
100     return(1);
101     }
102    
103     /* Apply symmetry to the given vector based on distribution */
104     int
105     use_symmetry(FVECT vec)
106     {
107 greg 2.36 double phi = get_phi360(vec);
108     /* because of -0. issue */
109     while (phi >= 360.) phi -= 360.;
110     while (phi < 0.) phi += 360.;
111 greg 2.1
112     switch (inp_coverage) {
113     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
114     break;
115     case INP_QUAD1|INP_QUAD2:
116     if ((-FTINY > phi) | (phi > 180.+FTINY))
117     goto mir_y;
118     break;
119     case INP_QUAD2|INP_QUAD3:
120     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
121     goto mir_x;
122     break;
123     case INP_QUAD3|INP_QUAD4:
124     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
125     goto mir_y;
126     break;
127     case INP_QUAD4|INP_QUAD1:
128     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
129     goto mir_x;
130     break;
131     case INP_QUAD1:
132     if ((-FTINY > phi) | (phi > 90.+FTINY))
133     switch ((int)(phi*(1./90.))) {
134     case 1: goto mir_x;
135     case 2: goto mir_xy;
136     case 3: goto mir_y;
137     }
138     break;
139     case INP_QUAD2:
140     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
141     switch ((int)(phi*(1./90.))) {
142     case 0: goto mir_x;
143     case 2: goto mir_y;
144     case 3: goto mir_xy;
145     }
146     break;
147     case INP_QUAD3:
148     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
149     switch ((int)(phi*(1./90.))) {
150     case 0: goto mir_xy;
151     case 1: goto mir_y;
152     case 3: goto mir_x;
153     }
154     break;
155     case INP_QUAD4:
156     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
157     switch ((int)(phi*(1./90.))) {
158     case 0: goto mir_y;
159     case 1: goto mir_xy;
160     case 2: goto mir_x;
161     }
162     break;
163     default:
164     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
165     progname, inp_coverage);
166     exit(1);
167     }
168     return(0); /* in range */
169     mir_x:
170     vec[0] = -vec[0];
171     return(MIRROR_X);
172     mir_y:
173     vec[1] = -vec[1];
174     return(MIRROR_Y);
175     mir_xy:
176     vec[0] = -vec[0];
177     vec[1] = -vec[1];
178     return(MIRROR_X|MIRROR_Y);
179     }
180    
181     /* Reverse symmetry based on what was done before */
182     void
183     rev_symmetry(FVECT vec, int sym)
184     {
185     if (sym & MIRROR_X)
186     vec[0] = -vec[0];
187     if (sym & MIRROR_Y)
188     vec[1] = -vec[1];
189     }
190    
191     /* Reverse symmetry for an RBF distribution */
192     void
193     rev_rbf_symmetry(RBFNODE *rbf, int sym)
194     {
195     int n;
196    
197     rev_symmetry(rbf->invec, sym);
198     if (sym & MIRROR_X)
199     for (n = rbf->nrbf; n-- > 0; )
200 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
201 greg 2.1 if (sym & MIRROR_Y)
202     for (n = rbf->nrbf; n-- > 0; )
203 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
204 greg 2.1 }
205    
206 greg 2.6 /* Rotate RBF to correspond to given incident vector */
207     void
208     rotate_rbf(RBFNODE *rbf, const FVECT invec)
209     {
210     static const FVECT vnorm = {.0, .0, 1.};
211     const double phi = atan2(invec[1],invec[0]) -
212     atan2(rbf->invec[1],rbf->invec[0]);
213     FVECT outvec;
214     int pos[2];
215     int n;
216 greg 2.8
217 greg 2.24 for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) {
218 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
219     spinvector(outvec, outvec, vnorm, phi);
220     pos_from_vec(pos, outvec);
221     rbf->rbfa[n].gx = pos[0];
222     rbf->rbfa[n].gy = pos[1];
223     }
224     VCOPY(rbf->invec, invec);
225     }
226    
227 greg 2.1 /* Compute outgoing vector from grid position */
228     void
229     ovec_from_pos(FVECT vec, int xpos, int ypos)
230     {
231 greg 2.37 RREAL uv[2];
232 greg 2.1 double r2;
233    
234 greg 2.37 square2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
235 greg 2.1 /* uniform hemispherical projection */
236     r2 = uv[0]*uv[0] + uv[1]*uv[1];
237     vec[0] = vec[1] = sqrt(2. - r2);
238     vec[0] *= uv[0];
239     vec[1] *= uv[1];
240     vec[2] = output_orient*(1. - r2);
241     }
242    
243     /* Compute grid position from normalized input/output vector */
244     void
245     pos_from_vec(int pos[2], const FVECT vec)
246     {
247 greg 2.37 RREAL sq[2]; /* uniform hemispherical projection */
248 greg 2.1 double norm = 1./sqrt(1. + fabs(vec[2]));
249    
250 greg 2.37 disk2square(sq, vec[0]*norm, vec[1]*norm);
251 greg 2.1
252 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
253     pos[1] = (int)(sq[1]*grid_res);
254 greg 2.1 }
255    
256 greg 2.14 /* Compute volume associated with Gaussian lobe */
257     double
258     rbf_volume(const RBFVAL *rbfp)
259     {
260     double rad = R2ANG(rbfp->crad);
261     FVECT odir;
262     double elev, integ;
263     /* infinite integral approximation */
264     integ = (2.*M_PI) * rbfp->peak * rad*rad;
265     /* check if we're near horizon */
266     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
267     elev = output_orient*odir[2];
268     /* apply cut-off correction if > 1% */
269     if (elev < 2.8*rad) {
270     /* elev = asin(elev); /* this is so crude, anyway... */
271     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
272     }
273     return(integ);
274     }
275    
276 greg 2.29 /* Evaluate BSDF at the given normalized outgoing direction in color */
277     SDError
278     eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec)
279 greg 2.1 {
280 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
281 greg 2.16 int pos[2];
282 greg 2.8 double res = 0;
283 greg 2.29 double usum = 0, vsum = 0;
284 greg 2.1 const RBFVAL *rbfp;
285     FVECT odir;
286 greg 2.16 double rad2;
287 greg 2.1 int n;
288 greg 2.29 /* assign default value */
289     sv->spec = c_dfcolor;
290     sv->cieY = bsdf_min;
291 greg 2.14 /* check for wrong side */
292 greg 2.29 if (outvec[2] > 0 ^ output_orient > 0) {
293     strcpy(SDerrorDetail, "Wrong-side scattering query");
294     return(SDEargument);
295     }
296     if (rp == NULL) /* return minimum if no information avail. */
297     return(SDEnone);
298 greg 2.16 /* optimization for fast lobe culling */
299     pos_from_vec(pos, outvec);
300 greg 2.14 /* sum radial basis function */
301 greg 2.1 rbfp = rp->rbfa;
302     for (n = rp->nrbf; n--; rbfp++) {
303 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
304     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
305 greg 2.29 double val;
306 greg 2.16 rad2 = R2ANG(rbfp->crad);
307     rad2 *= rad2;
308 greg 2.17 if (d2 > rad2*rfact2)
309 greg 2.16 continue;
310 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
311 greg 2.29 val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
312     if (rbf_colorimetry == RBCtristimulus) {
313     usum += val * (rbfp->chroma & 0xff);
314     vsum += val * (rbfp->chroma>>8 & 0xff);
315     }
316     res += val;
317 greg 2.1 }
318 greg 2.31 sv->cieY = res / COSF(outvec[2]);
319     if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */
320     sv->cieY = bsdf_min;
321     } else if (rbf_colorimetry == RBCtristimulus) {
322 greg 2.29 C_CHROMA cres = (int)(usum/res + frandom());
323     cres |= (int)(vsum/res + frandom()) << 8;
324     c_decodeChroma(&sv->spec, cres);
325     }
326     return(SDEnone);
327     }
328    
329     /* Evaluate BSDF at the given normalized outgoing direction in Y */
330     double
331     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
332     {
333     SDValue sv;
334    
335     if (eval_rbfcol(&sv, rp, outvec) == SDEnone)
336     return(sv.cieY);
337    
338     return(0.0);
339 greg 2.1 }
340    
341     /* Insert a new directional scattering function in our global list */
342     int
343     insert_dsf(RBFNODE *newrbf)
344     {
345     RBFNODE *rbf, *rbf_last;
346     int pos;
347     /* check for redundant meas. */
348     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
349     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
350     fprintf(stderr,
351 greg 2.22 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
352     progname, get_theta180(newrbf->invec),
353     get_phi360(newrbf->invec));
354 greg 2.1 free(newrbf);
355     return(-1);
356     }
357     /* keep in ascending theta order */
358     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
359     rbf_last = rbf, rbf = rbf->next)
360     if (single_plane_incident && input_orient*rbf->invec[2] <
361     input_orient*newrbf->invec[2])
362     break;
363     if (rbf_last == NULL) { /* insert new node in list */
364     newrbf->ord = 0;
365     newrbf->next = dsf_list;
366     dsf_list = newrbf;
367     } else {
368     newrbf->ord = rbf_last->ord + 1;
369     newrbf->next = rbf;
370     rbf_last->next = newrbf;
371     }
372     rbf_last = newrbf;
373     while (rbf != NULL) { /* update ordinal positions */
374     rbf->ord = rbf_last->ord + 1;
375     rbf_last = rbf;
376     rbf = rbf->next;
377     }
378     return(newrbf->ord);
379     }
380    
381     /* Get the DSF indicated by its ordinal position */
382     RBFNODE *
383     get_dsf(int ord)
384     {
385     RBFNODE *rbf;
386    
387     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
388 greg 2.3 if (rbf->ord == ord)
389 greg 2.1 return(rbf);
390     return(NULL);
391     }
392    
393     /* Get triangle surface orientation (unnormalized) */
394     void
395     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
396     {
397     FVECT v2minus1, v3minus2;
398    
399     VSUB(v2minus1, v2, v1);
400     VSUB(v3minus2, v3, v2);
401     VCROSS(vres, v2minus1, v3minus2);
402     }
403    
404     /* Determine if vertex order is reversed (inward normal) */
405     int
406     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
407     {
408     FVECT tor;
409    
410     tri_orient(tor, v1, v2, v3);
411    
412     return(DOT(tor, v2) < 0.);
413     }
414    
415     /* Find vertices completing triangles on either side of the given edge */
416     int
417     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
418     {
419 greg 2.4 const MIGRATION *ej1, *ej2;
420 greg 2.1 RBFNODE *tv;
421    
422     rbfv[0] = rbfv[1] = NULL;
423     if (mig == NULL)
424     return(0);
425 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
426     ej1 = nextedge(mig->rbfv[0],ej1)) {
427     if (ej1 == mig)
428 greg 2.1 continue;
429 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
430 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
431     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
432     rbfv[is_rev_tri(mig->rbfv[0]->invec,
433     mig->rbfv[1]->invec,
434     tv->invec)] = tv;
435     break;
436     }
437     }
438     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
439     }
440    
441 greg 2.25 /* Return single-lobe specular RBF for the given incident direction */
442     RBFNODE *
443     def_rbf_spec(const FVECT invec)
444     {
445     RBFNODE *rbf;
446     FVECT ovec;
447     int pos[2];
448    
449     if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */
450     return(NULL);
451 greg 2.30 if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0))
452 greg 2.25 return(NULL); /* nothing set */
453     rbf = (RBFNODE *)malloc(sizeof(RBFNODE));
454     if (rbf == NULL)
455     return(NULL);
456     ovec[0] = -invec[0];
457     ovec[1] = -invec[1];
458     ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1);
459     pos_from_vec(pos, ovec);
460     rbf->ord = 0;
461     rbf->next = NULL;
462     rbf->ejl = NULL;
463     VCOPY(rbf->invec, invec);
464     rbf->nrbf = 1;
465 greg 2.30 rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]);
466 greg 2.29 rbf->rbfa[0].chroma = c_dfchroma;
467 greg 2.26 rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad);
468 greg 2.25 rbf->rbfa[0].gx = pos[0];
469     rbf->rbfa[0].gy = pos[1];
470     rbf->vtotal = rbf_volume(rbf->rbfa);
471     return(rbf);
472     }
473    
474 greg 2.20 /* Advect and allocate new RBF along edge (internal call) */
475     RBFNODE *
476     e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
477     {
478     double cthresh = FTINY;
479     RBFNODE *rbf;
480     int n, i, j;
481     double t, full_dist;
482     /* get relative position */
483     t = Acos(DOT(invec, mig->rbfv[0]->invec));
484 greg 2.35 if (t <= .001) { /* near first DSF */
485 greg 2.20 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
486     rbf = (RBFNODE *)malloc(n);
487     if (rbf == NULL)
488     goto memerr;
489     memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
490     rbf->next = NULL; rbf->ejl = NULL;
491     return(rbf);
492     }
493     full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
494 greg 2.35 if (t >= full_dist-.001) { /* near second DSF */
495 greg 2.20 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
496     rbf = (RBFNODE *)malloc(n);
497     if (rbf == NULL)
498     goto memerr;
499     memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
500     rbf->next = NULL; rbf->ejl = NULL;
501     return(rbf);
502     }
503     t /= full_dist;
504     tryagain:
505     n = 0; /* count migrating particles */
506     for (i = 0; i < mtx_nrows(mig); i++)
507     for (j = 0; j < mtx_ncols(mig); j++)
508     n += (mtx_coef(mig,i,j) > cthresh);
509     /* are we over our limit? */
510     if ((lobe_lim > 0) & (n > lobe_lim)) {
511     cthresh = cthresh*2. + 10.*FTINY;
512     goto tryagain;
513     }
514     #ifdef DEBUG
515     fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
516     mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
517     #endif
518     rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
519     if (rbf == NULL)
520     goto memerr;
521     rbf->next = NULL; rbf->ejl = NULL;
522     VCOPY(rbf->invec, invec);
523     rbf->nrbf = n;
524     rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
525     n = 0; /* advect RBF lobes */
526     for (i = 0; i < mtx_nrows(mig); i++) {
527     const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
528     const float peak0 = rbf0i->peak;
529     const double rad0 = R2ANG(rbf0i->crad);
530 greg 2.29 C_COLOR cc0;
531 greg 2.20 FVECT v0;
532     float mv;
533     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
534 greg 2.29 c_decodeChroma(&cc0, rbf0i->chroma);
535 greg 2.20 for (j = 0; j < mtx_ncols(mig); j++)
536     if ((mv = mtx_coef(mig,i,j)) > cthresh) {
537     const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
538     double rad2;
539     FVECT v;
540     int pos[2];
541     rad2 = R2ANG(rbf1j->crad);
542     rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
543     rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
544     rad0*rad0/rad2;
545 greg 2.29 if (rbf_colorimetry == RBCtristimulus) {
546     C_COLOR cres;
547     c_decodeChroma(&cres, rbf1j->chroma);
548     c_cmix(&cres, 1.-t, &cc0, t, &cres);
549     rbf->rbfa[n].chroma = c_encodeChroma(&cres);
550     } else
551     rbf->rbfa[n].chroma = c_dfchroma;
552 greg 2.20 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
553     ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
554     geodesic(v, v0, v, t, GEOD_REL);
555     pos_from_vec(pos, v);
556     rbf->rbfa[n].gx = pos[0];
557     rbf->rbfa[n].gy = pos[1];
558     ++n;
559     }
560     }
561     rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
562     return(rbf);
563     memerr:
564     fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
565     exit(1);
566     return(NULL); /* pro forma return */
567     }
568    
569 greg 2.4 /* Clear our BSDF representation and free memory */
570     void
571     clear_bsdf_rep(void)
572     {
573     while (mig_list != NULL) {
574     MIGRATION *mig = mig_list;
575     mig_list = mig->next;
576     free(mig);
577     }
578     while (dsf_list != NULL) {
579     RBFNODE *rbf = dsf_list;
580     dsf_list = rbf->next;
581     free(rbf);
582     }
583 greg 2.19 bsdf_name[0] = '\0';
584     bsdf_manuf[0] = '\0';
585 greg 2.4 inp_coverage = 0;
586     single_plane_incident = -1;
587     input_orient = output_orient = 0;
588 greg 2.29 rbf_colorimetry = RBCunknown;
589 greg 2.5 grid_res = GRIDRES;
590 greg 2.31 memset(bsdf_hist, 0, sizeof(bsdf_hist));
591 greg 2.25 bsdf_min = 0;
592 greg 2.30 bsdf_spec_val = 0;
593 greg 2.26 bsdf_spec_rad = 0;
594 greg 2.4 }
595    
596 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
597     void
598     save_bsdf_rep(FILE *ofp)
599     {
600     RBFNODE *rbf;
601     MIGRATION *mig;
602     int i, n;
603     /* finish header */
604 greg 2.19 if (bsdf_name[0])
605     fprintf(ofp, "NAME=%s\n", bsdf_name);
606     if (bsdf_manuf[0])
607     fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
608 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
609     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
610 greg 2.29 fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]);
611 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
612 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
613 greg 2.30 if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0))
614     fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad);
615 greg 2.1 fputformat(BSDFREP_FMT, ofp);
616     fputc('\n', ofp);
617 greg 2.29 putint(BSDFREP_MAGIC, 2, ofp);
618 greg 2.1 /* write each DSF */
619     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
620     putint(rbf->ord, 4, ofp);
621     putflt(rbf->invec[0], ofp);
622     putflt(rbf->invec[1], ofp);
623     putflt(rbf->invec[2], ofp);
624     putflt(rbf->vtotal, ofp);
625     putint(rbf->nrbf, 4, ofp);
626     for (i = 0; i < rbf->nrbf; i++) {
627     putflt(rbf->rbfa[i].peak, ofp);
628 greg 2.29 putint(rbf->rbfa[i].chroma, 2, ofp);
629 greg 2.1 putint(rbf->rbfa[i].crad, 2, ofp);
630 greg 2.29 putint(rbf->rbfa[i].gx, 2, ofp);
631     putint(rbf->rbfa[i].gy, 2, ofp);
632 greg 2.1 }
633     }
634     putint(-1, 4, ofp); /* terminator */
635     /* write each migration matrix */
636 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
637     int zerocnt = 0;
638 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
639     putint(mig->rbfv[1]->ord, 4, ofp);
640 greg 2.2 /* write out as sparse data */
641 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
642 greg 2.2 for (i = 0; i < n; i++) {
643 greg 2.3 if (zerocnt == 0xff) {
644     putint(0xff, 1, ofp); zerocnt = 0;
645 greg 2.2 }
646     if (mig->mtx[i] != 0) {
647     putint(zerocnt, 1, ofp); zerocnt = 0;
648     putflt(mig->mtx[i], ofp);
649     } else
650     ++zerocnt;
651     }
652     putint(zerocnt, 1, ofp);
653 greg 2.1 }
654     putint(-1, 4, ofp); /* terminator */
655     putint(-1, 4, ofp);
656     if (fflush(ofp) == EOF) {
657     fprintf(stderr, "%s: error writing BSDF interpolant\n",
658     progname);
659     exit(1);
660     }
661     }
662    
663 greg 2.2 /* Check header line for critical information */
664     static int
665     headline(char *s, void *p)
666     {
667 greg 2.32 char fmt[MAXFMTLEN];
668 greg 2.29 int i;
669 greg 2.2
670 greg 2.34 if (isheadid(s))
671     return(0);
672 greg 2.19 if (!strncmp(s, "NAME=", 5)) {
673     strcpy(bsdf_name, s+5);
674     bsdf_name[strlen(bsdf_name)-1] = '\0';
675 greg 2.34 return(1);
676 greg 2.19 }
677     if (!strncmp(s, "MANUFACT=", 9)) {
678     strcpy(bsdf_manuf, s+9);
679     bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
680 greg 2.34 return(1);
681 greg 2.19 }
682 greg 2.2 if (!strncmp(s, "SYMMETRY=", 9)) {
683     inp_coverage = atoi(s+9);
684     single_plane_incident = !inp_coverage;
685 greg 2.34 return(1);
686 greg 2.2 }
687     if (!strncmp(s, "IO_SIDES=", 9)) {
688     sscanf(s+9, "%d %d", &input_orient, &output_orient);
689 greg 2.34 return(1);
690 greg 2.2 }
691 greg 2.29 if (!strncmp(s, "COLORIMETRY=", 12)) {
692     fmt[0] = '\0';
693     sscanf(s+12, "%s", fmt);
694     for (i = RBCunknown; i >= 0; i--)
695     if (!strcmp(fmt, RBCident[i]))
696     break;
697     if (i < 0)
698     return(-1);
699     rbf_colorimetry = i;
700 greg 2.34 return(1);
701 greg 2.29 }
702 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
703     sscanf(s+8, "%d", &grid_res);
704 greg 2.34 return(1);
705 greg 2.5 }
706 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
707     sscanf(s+8, "%lf", &bsdf_min);
708 greg 2.34 return(1);
709 greg 2.12 }
710 greg 2.25 if (!strncmp(s, "BSDFSPEC=", 9)) {
711 greg 2.30 sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad);
712 greg 2.34 return(1);
713 greg 2.25 }
714 greg 2.34 if (formatval(fmt, s))
715     return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0);
716     if (sir_headshare != NULL)
717     return ((*sir_headshare)(s));
718 greg 2.2 return(0);
719     }
720    
721 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
722     int
723     load_bsdf_rep(FILE *ifp)
724     {
725     RBFNODE rbfh;
726     int from_ord, to_ord;
727     int i;
728 greg 2.4
729     clear_bsdf_rep();
730 greg 2.5 if (ifp == NULL)
731     return(0);
732 greg 2.21 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
733 greg 2.23 !input_orient | !output_orient |
734 greg 2.29 (grid_res < 16) | (grid_res > 0xffff)) {
735 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
736     progname);
737     return(0);
738     }
739 greg 2.29 if (getint(2, ifp) != BSDFREP_MAGIC) {
740     fprintf(stderr, "%s: bad magic number for BSDF interpolant\n",
741     progname);
742     return(0);
743     }
744 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
745 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
746     RBFNODE *newrbf;
747    
748     rbfh.invec[0] = getflt(ifp);
749     rbfh.invec[1] = getflt(ifp);
750     rbfh.invec[2] = getflt(ifp);
751 greg 2.9 if (normalize(rbfh.invec) == 0) {
752     fprintf(stderr, "%s: zero incident vector\n", progname);
753     return(0);
754     }
755 greg 2.3 rbfh.vtotal = getflt(ifp);
756 greg 2.1 rbfh.nrbf = getint(4, ifp);
757     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
758     sizeof(RBFVAL)*(rbfh.nrbf-1));
759     if (newrbf == NULL)
760     goto memerr;
761 greg 2.18 *newrbf = rbfh;
762 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
763     newrbf->rbfa[i].peak = getflt(ifp);
764 greg 2.29 newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff;
765 greg 2.1 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
766 greg 2.29 newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff;
767     newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff;
768 greg 2.1 }
769     if (feof(ifp))
770     goto badEOF;
771     /* insert in global list */
772     if (insert_dsf(newrbf) != rbfh.ord) {
773     fprintf(stderr, "%s: error adding DSF\n", progname);
774     return(0);
775     }
776     }
777     /* read each migration matrix */
778     while ((from_ord = getint(4, ifp)) >= 0 &&
779     (to_ord = getint(4, ifp)) >= 0) {
780     RBFNODE *from_rbf = get_dsf(from_ord);
781     RBFNODE *to_rbf = get_dsf(to_ord);
782     MIGRATION *newmig;
783     int n;
784    
785     if ((from_rbf == NULL) | (to_rbf == NULL)) {
786     fprintf(stderr,
787     "%s: bad DSF reference in migration edge\n",
788     progname);
789     return(0);
790     }
791     n = from_rbf->nrbf * to_rbf->nrbf;
792     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
793     sizeof(float)*(n-1));
794     if (newmig == NULL)
795     goto memerr;
796     newmig->rbfv[0] = from_rbf;
797     newmig->rbfv[1] = to_rbf;
798 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
799     for (i = 0; ; ) { /* read sparse data */
800     int zc = getint(1, ifp) & 0xff;
801     if ((i += zc) >= n)
802     break;
803 greg 2.3 if (zc == 0xff)
804     continue;
805 greg 2.2 newmig->mtx[i++] = getflt(ifp);
806     }
807 greg 2.1 if (feof(ifp))
808     goto badEOF;
809     /* insert in edge lists */
810     newmig->enxt[0] = from_rbf->ejl;
811     from_rbf->ejl = newmig;
812     newmig->enxt[1] = to_rbf->ejl;
813     to_rbf->ejl = newmig;
814     /* push onto global list */
815     newmig->next = mig_list;
816     mig_list = newmig;
817     }
818     return(1); /* success! */
819     memerr:
820     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
821     exit(1);
822     badEOF:
823     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
824     return(0);
825     }