ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.37
Committed: Wed Dec 15 01:38:50 2021 UTC (2 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.36: +5 -5 lines
Log Message:
refactor: removed prefix from SDdisk2square() and SDsquare2disk() & made consistent

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfrep.c,v 2.36 2021/11/17 01:39:04 greg Exp $";
3 #endif
4 /*
5 * Support BSDF representation as radial basis functions.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdlib.h>
12 #include <math.h>
13 #include "rtio.h"
14 #include "resolu.h"
15 #include "bsdfrep.h"
16 #include "random.h"
17 /* name and manufacturer if known */
18 char bsdf_name[256];
19 char bsdf_manuf[256];
20 /* active grid resolution */
21 int grid_res = GRIDRES;
22
23 /* coverage/symmetry using INP_QUAD? flags */
24 int inp_coverage = 0;
25 /* all incident angles in-plane so far? */
26 int single_plane_incident = -1;
27
28 /* input/output orientations */
29 int input_orient = 0;
30 int output_orient = 0;
31
32 /* represented color space */
33 RBColor rbf_colorimetry = RBCunknown;
34
35 const char *RBCident[] = {
36 "CIE-Y", "CIE-XYZ", "Spectral", "Unknown"
37 };
38
39 /* BSDF histogram */
40 unsigned long bsdf_hist[HISTLEN];
41
42 /* BSDF value for boundary regions */
43 double bsdf_min = 0;
44 double bsdf_spec_val = 0;
45 double bsdf_spec_rad = 0;
46
47 /* processed incident DSF measurements */
48 RBFNODE *dsf_list = NULL;
49
50 /* RBF-linking matrices (edges) */
51 MIGRATION *mig_list = NULL;
52
53 /* current input direction */
54 double theta_in_deg, phi_in_deg;
55
56 /* header line sharing callback */
57 int (*sir_headshare)(char *s) = NULL;
58
59 /* Register new input direction */
60 int
61 new_input_direction(double new_theta, double new_phi)
62 {
63 /* normalize angle ranges */
64 while (new_theta < -180.)
65 new_theta += 360.;
66 while (new_theta > 180.)
67 new_theta -= 360.;
68 if (new_theta < 0) {
69 new_theta = -new_theta;
70 new_phi += 180.;
71 }
72 while (new_phi < 0)
73 new_phi += 360.;
74 while (new_phi >= 360.)
75 new_phi -= 360.;
76 /* check input orientation */
77 if (!input_orient)
78 input_orient = 1 - 2*(new_theta > 90.);
79 else if (input_orient > 0 ^ new_theta < 90.) {
80 fprintf(stderr,
81 "%s: Cannot handle input angles on both sides of surface\n",
82 progname);
83 return(0);
84 }
85 if ((theta_in_deg = new_theta) < 1.0)
86 return(1); /* don't rely on phi near normal */
87 if (single_plane_incident > 0) /* check input coverage */
88 single_plane_incident = (round(new_phi) == round(phi_in_deg));
89 else if (single_plane_incident < 0)
90 single_plane_incident = 1;
91 phi_in_deg = new_phi;
92 if ((1. < new_phi) & (new_phi < 89.))
93 inp_coverage |= INP_QUAD1;
94 else if ((91. < new_phi) & (new_phi < 179.))
95 inp_coverage |= INP_QUAD2;
96 else if ((181. < new_phi) & (new_phi < 269.))
97 inp_coverage |= INP_QUAD3;
98 else if ((271. < new_phi) & (new_phi < 359.))
99 inp_coverage |= INP_QUAD4;
100 return(1);
101 }
102
103 /* Apply symmetry to the given vector based on distribution */
104 int
105 use_symmetry(FVECT vec)
106 {
107 double phi = get_phi360(vec);
108 /* because of -0. issue */
109 while (phi >= 360.) phi -= 360.;
110 while (phi < 0.) phi += 360.;
111
112 switch (inp_coverage) {
113 case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
114 break;
115 case INP_QUAD1|INP_QUAD2:
116 if ((-FTINY > phi) | (phi > 180.+FTINY))
117 goto mir_y;
118 break;
119 case INP_QUAD2|INP_QUAD3:
120 if ((90.-FTINY > phi) | (phi > 270.+FTINY))
121 goto mir_x;
122 break;
123 case INP_QUAD3|INP_QUAD4:
124 if ((180.-FTINY > phi) | (phi > 360.+FTINY))
125 goto mir_y;
126 break;
127 case INP_QUAD4|INP_QUAD1:
128 if ((270.-FTINY > phi) & (phi > 90.+FTINY))
129 goto mir_x;
130 break;
131 case INP_QUAD1:
132 if ((-FTINY > phi) | (phi > 90.+FTINY))
133 switch ((int)(phi*(1./90.))) {
134 case 1: goto mir_x;
135 case 2: goto mir_xy;
136 case 3: goto mir_y;
137 }
138 break;
139 case INP_QUAD2:
140 if ((90.-FTINY > phi) | (phi > 180.+FTINY))
141 switch ((int)(phi*(1./90.))) {
142 case 0: goto mir_x;
143 case 2: goto mir_y;
144 case 3: goto mir_xy;
145 }
146 break;
147 case INP_QUAD3:
148 if ((180.-FTINY > phi) | (phi > 270.+FTINY))
149 switch ((int)(phi*(1./90.))) {
150 case 0: goto mir_xy;
151 case 1: goto mir_y;
152 case 3: goto mir_x;
153 }
154 break;
155 case INP_QUAD4:
156 if ((270.-FTINY > phi) | (phi > 360.+FTINY))
157 switch ((int)(phi*(1./90.))) {
158 case 0: goto mir_y;
159 case 1: goto mir_xy;
160 case 2: goto mir_x;
161 }
162 break;
163 default:
164 fprintf(stderr, "%s: Illegal input coverage (%d)\n",
165 progname, inp_coverage);
166 exit(1);
167 }
168 return(0); /* in range */
169 mir_x:
170 vec[0] = -vec[0];
171 return(MIRROR_X);
172 mir_y:
173 vec[1] = -vec[1];
174 return(MIRROR_Y);
175 mir_xy:
176 vec[0] = -vec[0];
177 vec[1] = -vec[1];
178 return(MIRROR_X|MIRROR_Y);
179 }
180
181 /* Reverse symmetry based on what was done before */
182 void
183 rev_symmetry(FVECT vec, int sym)
184 {
185 if (sym & MIRROR_X)
186 vec[0] = -vec[0];
187 if (sym & MIRROR_Y)
188 vec[1] = -vec[1];
189 }
190
191 /* Reverse symmetry for an RBF distribution */
192 void
193 rev_rbf_symmetry(RBFNODE *rbf, int sym)
194 {
195 int n;
196
197 rev_symmetry(rbf->invec, sym);
198 if (sym & MIRROR_X)
199 for (n = rbf->nrbf; n-- > 0; )
200 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
201 if (sym & MIRROR_Y)
202 for (n = rbf->nrbf; n-- > 0; )
203 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
204 }
205
206 /* Rotate RBF to correspond to given incident vector */
207 void
208 rotate_rbf(RBFNODE *rbf, const FVECT invec)
209 {
210 static const FVECT vnorm = {.0, .0, 1.};
211 const double phi = atan2(invec[1],invec[0]) -
212 atan2(rbf->invec[1],rbf->invec[0]);
213 FVECT outvec;
214 int pos[2];
215 int n;
216
217 for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) {
218 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
219 spinvector(outvec, outvec, vnorm, phi);
220 pos_from_vec(pos, outvec);
221 rbf->rbfa[n].gx = pos[0];
222 rbf->rbfa[n].gy = pos[1];
223 }
224 VCOPY(rbf->invec, invec);
225 }
226
227 /* Compute outgoing vector from grid position */
228 void
229 ovec_from_pos(FVECT vec, int xpos, int ypos)
230 {
231 RREAL uv[2];
232 double r2;
233
234 square2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
235 /* uniform hemispherical projection */
236 r2 = uv[0]*uv[0] + uv[1]*uv[1];
237 vec[0] = vec[1] = sqrt(2. - r2);
238 vec[0] *= uv[0];
239 vec[1] *= uv[1];
240 vec[2] = output_orient*(1. - r2);
241 }
242
243 /* Compute grid position from normalized input/output vector */
244 void
245 pos_from_vec(int pos[2], const FVECT vec)
246 {
247 RREAL sq[2]; /* uniform hemispherical projection */
248 double norm = 1./sqrt(1. + fabs(vec[2]));
249
250 disk2square(sq, vec[0]*norm, vec[1]*norm);
251
252 pos[0] = (int)(sq[0]*grid_res);
253 pos[1] = (int)(sq[1]*grid_res);
254 }
255
256 /* Compute volume associated with Gaussian lobe */
257 double
258 rbf_volume(const RBFVAL *rbfp)
259 {
260 double rad = R2ANG(rbfp->crad);
261 FVECT odir;
262 double elev, integ;
263 /* infinite integral approximation */
264 integ = (2.*M_PI) * rbfp->peak * rad*rad;
265 /* check if we're near horizon */
266 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
267 elev = output_orient*odir[2];
268 /* apply cut-off correction if > 1% */
269 if (elev < 2.8*rad) {
270 /* elev = asin(elev); /* this is so crude, anyway... */
271 integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
272 }
273 return(integ);
274 }
275
276 /* Evaluate BSDF at the given normalized outgoing direction in color */
277 SDError
278 eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec)
279 {
280 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
281 int pos[2];
282 double res = 0;
283 double usum = 0, vsum = 0;
284 const RBFVAL *rbfp;
285 FVECT odir;
286 double rad2;
287 int n;
288 /* assign default value */
289 sv->spec = c_dfcolor;
290 sv->cieY = bsdf_min;
291 /* check for wrong side */
292 if (outvec[2] > 0 ^ output_orient > 0) {
293 strcpy(SDerrorDetail, "Wrong-side scattering query");
294 return(SDEargument);
295 }
296 if (rp == NULL) /* return minimum if no information avail. */
297 return(SDEnone);
298 /* optimization for fast lobe culling */
299 pos_from_vec(pos, outvec);
300 /* sum radial basis function */
301 rbfp = rp->rbfa;
302 for (n = rp->nrbf; n--; rbfp++) {
303 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
304 (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
305 double val;
306 rad2 = R2ANG(rbfp->crad);
307 rad2 *= rad2;
308 if (d2 > rad2*rfact2)
309 continue;
310 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
311 val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
312 if (rbf_colorimetry == RBCtristimulus) {
313 usum += val * (rbfp->chroma & 0xff);
314 vsum += val * (rbfp->chroma>>8 & 0xff);
315 }
316 res += val;
317 }
318 sv->cieY = res / COSF(outvec[2]);
319 if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */
320 sv->cieY = bsdf_min;
321 } else if (rbf_colorimetry == RBCtristimulus) {
322 C_CHROMA cres = (int)(usum/res + frandom());
323 cres |= (int)(vsum/res + frandom()) << 8;
324 c_decodeChroma(&sv->spec, cres);
325 }
326 return(SDEnone);
327 }
328
329 /* Evaluate BSDF at the given normalized outgoing direction in Y */
330 double
331 eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
332 {
333 SDValue sv;
334
335 if (eval_rbfcol(&sv, rp, outvec) == SDEnone)
336 return(sv.cieY);
337
338 return(0.0);
339 }
340
341 /* Insert a new directional scattering function in our global list */
342 int
343 insert_dsf(RBFNODE *newrbf)
344 {
345 RBFNODE *rbf, *rbf_last;
346 int pos;
347 /* check for redundant meas. */
348 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
349 if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
350 fprintf(stderr,
351 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
352 progname, get_theta180(newrbf->invec),
353 get_phi360(newrbf->invec));
354 free(newrbf);
355 return(-1);
356 }
357 /* keep in ascending theta order */
358 for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
359 rbf_last = rbf, rbf = rbf->next)
360 if (single_plane_incident && input_orient*rbf->invec[2] <
361 input_orient*newrbf->invec[2])
362 break;
363 if (rbf_last == NULL) { /* insert new node in list */
364 newrbf->ord = 0;
365 newrbf->next = dsf_list;
366 dsf_list = newrbf;
367 } else {
368 newrbf->ord = rbf_last->ord + 1;
369 newrbf->next = rbf;
370 rbf_last->next = newrbf;
371 }
372 rbf_last = newrbf;
373 while (rbf != NULL) { /* update ordinal positions */
374 rbf->ord = rbf_last->ord + 1;
375 rbf_last = rbf;
376 rbf = rbf->next;
377 }
378 return(newrbf->ord);
379 }
380
381 /* Get the DSF indicated by its ordinal position */
382 RBFNODE *
383 get_dsf(int ord)
384 {
385 RBFNODE *rbf;
386
387 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
388 if (rbf->ord == ord)
389 return(rbf);
390 return(NULL);
391 }
392
393 /* Get triangle surface orientation (unnormalized) */
394 void
395 tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
396 {
397 FVECT v2minus1, v3minus2;
398
399 VSUB(v2minus1, v2, v1);
400 VSUB(v3minus2, v3, v2);
401 VCROSS(vres, v2minus1, v3minus2);
402 }
403
404 /* Determine if vertex order is reversed (inward normal) */
405 int
406 is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
407 {
408 FVECT tor;
409
410 tri_orient(tor, v1, v2, v3);
411
412 return(DOT(tor, v2) < 0.);
413 }
414
415 /* Find vertices completing triangles on either side of the given edge */
416 int
417 get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
418 {
419 const MIGRATION *ej1, *ej2;
420 RBFNODE *tv;
421
422 rbfv[0] = rbfv[1] = NULL;
423 if (mig == NULL)
424 return(0);
425 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
426 ej1 = nextedge(mig->rbfv[0],ej1)) {
427 if (ej1 == mig)
428 continue;
429 tv = opp_rbf(mig->rbfv[0],ej1);
430 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
431 if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
432 rbfv[is_rev_tri(mig->rbfv[0]->invec,
433 mig->rbfv[1]->invec,
434 tv->invec)] = tv;
435 break;
436 }
437 }
438 return((rbfv[0] != NULL) + (rbfv[1] != NULL));
439 }
440
441 /* Return single-lobe specular RBF for the given incident direction */
442 RBFNODE *
443 def_rbf_spec(const FVECT invec)
444 {
445 RBFNODE *rbf;
446 FVECT ovec;
447 int pos[2];
448
449 if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */
450 return(NULL);
451 if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0))
452 return(NULL); /* nothing set */
453 rbf = (RBFNODE *)malloc(sizeof(RBFNODE));
454 if (rbf == NULL)
455 return(NULL);
456 ovec[0] = -invec[0];
457 ovec[1] = -invec[1];
458 ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1);
459 pos_from_vec(pos, ovec);
460 rbf->ord = 0;
461 rbf->next = NULL;
462 rbf->ejl = NULL;
463 VCOPY(rbf->invec, invec);
464 rbf->nrbf = 1;
465 rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]);
466 rbf->rbfa[0].chroma = c_dfchroma;
467 rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad);
468 rbf->rbfa[0].gx = pos[0];
469 rbf->rbfa[0].gy = pos[1];
470 rbf->vtotal = rbf_volume(rbf->rbfa);
471 return(rbf);
472 }
473
474 /* Advect and allocate new RBF along edge (internal call) */
475 RBFNODE *
476 e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
477 {
478 double cthresh = FTINY;
479 RBFNODE *rbf;
480 int n, i, j;
481 double t, full_dist;
482 /* get relative position */
483 t = Acos(DOT(invec, mig->rbfv[0]->invec));
484 if (t <= .001) { /* near first DSF */
485 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
486 rbf = (RBFNODE *)malloc(n);
487 if (rbf == NULL)
488 goto memerr;
489 memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
490 rbf->next = NULL; rbf->ejl = NULL;
491 return(rbf);
492 }
493 full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
494 if (t >= full_dist-.001) { /* near second DSF */
495 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
496 rbf = (RBFNODE *)malloc(n);
497 if (rbf == NULL)
498 goto memerr;
499 memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
500 rbf->next = NULL; rbf->ejl = NULL;
501 return(rbf);
502 }
503 t /= full_dist;
504 tryagain:
505 n = 0; /* count migrating particles */
506 for (i = 0; i < mtx_nrows(mig); i++)
507 for (j = 0; j < mtx_ncols(mig); j++)
508 n += (mtx_coef(mig,i,j) > cthresh);
509 /* are we over our limit? */
510 if ((lobe_lim > 0) & (n > lobe_lim)) {
511 cthresh = cthresh*2. + 10.*FTINY;
512 goto tryagain;
513 }
514 #ifdef DEBUG
515 fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
516 mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
517 #endif
518 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
519 if (rbf == NULL)
520 goto memerr;
521 rbf->next = NULL; rbf->ejl = NULL;
522 VCOPY(rbf->invec, invec);
523 rbf->nrbf = n;
524 rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
525 n = 0; /* advect RBF lobes */
526 for (i = 0; i < mtx_nrows(mig); i++) {
527 const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
528 const float peak0 = rbf0i->peak;
529 const double rad0 = R2ANG(rbf0i->crad);
530 C_COLOR cc0;
531 FVECT v0;
532 float mv;
533 ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
534 c_decodeChroma(&cc0, rbf0i->chroma);
535 for (j = 0; j < mtx_ncols(mig); j++)
536 if ((mv = mtx_coef(mig,i,j)) > cthresh) {
537 const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
538 double rad2;
539 FVECT v;
540 int pos[2];
541 rad2 = R2ANG(rbf1j->crad);
542 rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
543 rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
544 rad0*rad0/rad2;
545 if (rbf_colorimetry == RBCtristimulus) {
546 C_COLOR cres;
547 c_decodeChroma(&cres, rbf1j->chroma);
548 c_cmix(&cres, 1.-t, &cc0, t, &cres);
549 rbf->rbfa[n].chroma = c_encodeChroma(&cres);
550 } else
551 rbf->rbfa[n].chroma = c_dfchroma;
552 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
553 ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
554 geodesic(v, v0, v, t, GEOD_REL);
555 pos_from_vec(pos, v);
556 rbf->rbfa[n].gx = pos[0];
557 rbf->rbfa[n].gy = pos[1];
558 ++n;
559 }
560 }
561 rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
562 return(rbf);
563 memerr:
564 fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
565 exit(1);
566 return(NULL); /* pro forma return */
567 }
568
569 /* Clear our BSDF representation and free memory */
570 void
571 clear_bsdf_rep(void)
572 {
573 while (mig_list != NULL) {
574 MIGRATION *mig = mig_list;
575 mig_list = mig->next;
576 free(mig);
577 }
578 while (dsf_list != NULL) {
579 RBFNODE *rbf = dsf_list;
580 dsf_list = rbf->next;
581 free(rbf);
582 }
583 bsdf_name[0] = '\0';
584 bsdf_manuf[0] = '\0';
585 inp_coverage = 0;
586 single_plane_incident = -1;
587 input_orient = output_orient = 0;
588 rbf_colorimetry = RBCunknown;
589 grid_res = GRIDRES;
590 memset(bsdf_hist, 0, sizeof(bsdf_hist));
591 bsdf_min = 0;
592 bsdf_spec_val = 0;
593 bsdf_spec_rad = 0;
594 }
595
596 /* Write our BSDF mesh interpolant out to the given binary stream */
597 void
598 save_bsdf_rep(FILE *ofp)
599 {
600 RBFNODE *rbf;
601 MIGRATION *mig;
602 int i, n;
603 /* finish header */
604 if (bsdf_name[0])
605 fprintf(ofp, "NAME=%s\n", bsdf_name);
606 if (bsdf_manuf[0])
607 fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
608 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
609 fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
610 fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]);
611 fprintf(ofp, "GRIDRES=%d\n", grid_res);
612 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
613 if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0))
614 fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad);
615 fputformat(BSDFREP_FMT, ofp);
616 fputc('\n', ofp);
617 putint(BSDFREP_MAGIC, 2, ofp);
618 /* write each DSF */
619 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
620 putint(rbf->ord, 4, ofp);
621 putflt(rbf->invec[0], ofp);
622 putflt(rbf->invec[1], ofp);
623 putflt(rbf->invec[2], ofp);
624 putflt(rbf->vtotal, ofp);
625 putint(rbf->nrbf, 4, ofp);
626 for (i = 0; i < rbf->nrbf; i++) {
627 putflt(rbf->rbfa[i].peak, ofp);
628 putint(rbf->rbfa[i].chroma, 2, ofp);
629 putint(rbf->rbfa[i].crad, 2, ofp);
630 putint(rbf->rbfa[i].gx, 2, ofp);
631 putint(rbf->rbfa[i].gy, 2, ofp);
632 }
633 }
634 putint(-1, 4, ofp); /* terminator */
635 /* write each migration matrix */
636 for (mig = mig_list; mig != NULL; mig = mig->next) {
637 int zerocnt = 0;
638 putint(mig->rbfv[0]->ord, 4, ofp);
639 putint(mig->rbfv[1]->ord, 4, ofp);
640 /* write out as sparse data */
641 n = mtx_nrows(mig) * mtx_ncols(mig);
642 for (i = 0; i < n; i++) {
643 if (zerocnt == 0xff) {
644 putint(0xff, 1, ofp); zerocnt = 0;
645 }
646 if (mig->mtx[i] != 0) {
647 putint(zerocnt, 1, ofp); zerocnt = 0;
648 putflt(mig->mtx[i], ofp);
649 } else
650 ++zerocnt;
651 }
652 putint(zerocnt, 1, ofp);
653 }
654 putint(-1, 4, ofp); /* terminator */
655 putint(-1, 4, ofp);
656 if (fflush(ofp) == EOF) {
657 fprintf(stderr, "%s: error writing BSDF interpolant\n",
658 progname);
659 exit(1);
660 }
661 }
662
663 /* Check header line for critical information */
664 static int
665 headline(char *s, void *p)
666 {
667 char fmt[MAXFMTLEN];
668 int i;
669
670 if (isheadid(s))
671 return(0);
672 if (!strncmp(s, "NAME=", 5)) {
673 strcpy(bsdf_name, s+5);
674 bsdf_name[strlen(bsdf_name)-1] = '\0';
675 return(1);
676 }
677 if (!strncmp(s, "MANUFACT=", 9)) {
678 strcpy(bsdf_manuf, s+9);
679 bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
680 return(1);
681 }
682 if (!strncmp(s, "SYMMETRY=", 9)) {
683 inp_coverage = atoi(s+9);
684 single_plane_incident = !inp_coverage;
685 return(1);
686 }
687 if (!strncmp(s, "IO_SIDES=", 9)) {
688 sscanf(s+9, "%d %d", &input_orient, &output_orient);
689 return(1);
690 }
691 if (!strncmp(s, "COLORIMETRY=", 12)) {
692 fmt[0] = '\0';
693 sscanf(s+12, "%s", fmt);
694 for (i = RBCunknown; i >= 0; i--)
695 if (!strcmp(fmt, RBCident[i]))
696 break;
697 if (i < 0)
698 return(-1);
699 rbf_colorimetry = i;
700 return(1);
701 }
702 if (!strncmp(s, "GRIDRES=", 8)) {
703 sscanf(s+8, "%d", &grid_res);
704 return(1);
705 }
706 if (!strncmp(s, "BSDFMIN=", 8)) {
707 sscanf(s+8, "%lf", &bsdf_min);
708 return(1);
709 }
710 if (!strncmp(s, "BSDFSPEC=", 9)) {
711 sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad);
712 return(1);
713 }
714 if (formatval(fmt, s))
715 return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0);
716 if (sir_headshare != NULL)
717 return ((*sir_headshare)(s));
718 return(0);
719 }
720
721 /* Read a BSDF mesh interpolant from the given binary stream */
722 int
723 load_bsdf_rep(FILE *ifp)
724 {
725 RBFNODE rbfh;
726 int from_ord, to_ord;
727 int i;
728
729 clear_bsdf_rep();
730 if (ifp == NULL)
731 return(0);
732 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
733 !input_orient | !output_orient |
734 (grid_res < 16) | (grid_res > 0xffff)) {
735 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
736 progname);
737 return(0);
738 }
739 if (getint(2, ifp) != BSDFREP_MAGIC) {
740 fprintf(stderr, "%s: bad magic number for BSDF interpolant\n",
741 progname);
742 return(0);
743 }
744 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
745 while ((rbfh.ord = getint(4, ifp)) >= 0) {
746 RBFNODE *newrbf;
747
748 rbfh.invec[0] = getflt(ifp);
749 rbfh.invec[1] = getflt(ifp);
750 rbfh.invec[2] = getflt(ifp);
751 if (normalize(rbfh.invec) == 0) {
752 fprintf(stderr, "%s: zero incident vector\n", progname);
753 return(0);
754 }
755 rbfh.vtotal = getflt(ifp);
756 rbfh.nrbf = getint(4, ifp);
757 newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
758 sizeof(RBFVAL)*(rbfh.nrbf-1));
759 if (newrbf == NULL)
760 goto memerr;
761 *newrbf = rbfh;
762 for (i = 0; i < rbfh.nrbf; i++) {
763 newrbf->rbfa[i].peak = getflt(ifp);
764 newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff;
765 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
766 newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff;
767 newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff;
768 }
769 if (feof(ifp))
770 goto badEOF;
771 /* insert in global list */
772 if (insert_dsf(newrbf) != rbfh.ord) {
773 fprintf(stderr, "%s: error adding DSF\n", progname);
774 return(0);
775 }
776 }
777 /* read each migration matrix */
778 while ((from_ord = getint(4, ifp)) >= 0 &&
779 (to_ord = getint(4, ifp)) >= 0) {
780 RBFNODE *from_rbf = get_dsf(from_ord);
781 RBFNODE *to_rbf = get_dsf(to_ord);
782 MIGRATION *newmig;
783 int n;
784
785 if ((from_rbf == NULL) | (to_rbf == NULL)) {
786 fprintf(stderr,
787 "%s: bad DSF reference in migration edge\n",
788 progname);
789 return(0);
790 }
791 n = from_rbf->nrbf * to_rbf->nrbf;
792 newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
793 sizeof(float)*(n-1));
794 if (newmig == NULL)
795 goto memerr;
796 newmig->rbfv[0] = from_rbf;
797 newmig->rbfv[1] = to_rbf;
798 memset(newmig->mtx, 0, sizeof(float)*n);
799 for (i = 0; ; ) { /* read sparse data */
800 int zc = getint(1, ifp) & 0xff;
801 if ((i += zc) >= n)
802 break;
803 if (zc == 0xff)
804 continue;
805 newmig->mtx[i++] = getflt(ifp);
806 }
807 if (feof(ifp))
808 goto badEOF;
809 /* insert in edge lists */
810 newmig->enxt[0] = from_rbf->ejl;
811 from_rbf->ejl = newmig;
812 newmig->enxt[1] = to_rbf->ejl;
813 to_rbf->ejl = newmig;
814 /* push onto global list */
815 newmig->next = mig_list;
816 mig_list = newmig;
817 }
818 return(1); /* success! */
819 memerr:
820 fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
821 exit(1);
822 badEOF:
823 fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
824 return(0);
825 }