ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.23
Committed: Mon Mar 24 06:07:46 2014 UTC (10 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.22: +3 -2 lines
Log Message:
Minor fixes

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfrep.c,v 2.22 2014/03/21 16:28:23 greg Exp $";
3 #endif
4 /*
5 * Support BSDF representation as radial basis functions.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdlib.h>
12 #include <string.h>
13 #include <math.h>
14 #include "rtio.h"
15 #include "resolu.h"
16 #include "bsdfrep.h"
17 /* name and manufacturer if known */
18 char bsdf_name[256];
19 char bsdf_manuf[256];
20 /* active grid resolution */
21 int grid_res = GRIDRES;
22
23 /* coverage/symmetry using INP_QUAD? flags */
24 int inp_coverage = 0;
25 /* all incident angles in-plane so far? */
26 int single_plane_incident = -1;
27
28 /* input/output orientations */
29 int input_orient = 0;
30 int output_orient = 0;
31
32 /* BSDF histogram */
33 unsigned long bsdf_hist[HISTLEN];
34
35 /* BSDF value for boundary regions */
36 double bsdf_min = 0;
37
38 /* processed incident DSF measurements */
39 RBFNODE *dsf_list = NULL;
40
41 /* RBF-linking matrices (edges) */
42 MIGRATION *mig_list = NULL;
43
44 /* current input direction */
45 double theta_in_deg, phi_in_deg;
46
47 /* Register new input direction */
48 int
49 new_input_direction(double new_theta, double new_phi)
50 {
51 if (!input_orient) /* check input orientation */
52 input_orient = 1 - 2*(new_theta > 90.);
53 else if (input_orient > 0 ^ new_theta < 90.) {
54 fprintf(stderr,
55 "%s: Cannot handle input angles on both sides of surface\n",
56 progname);
57 return(0);
58 }
59 /* normalize angle ranges */
60 while (new_theta < -180.)
61 new_theta += 360.;
62 while (new_theta > 180.)
63 new_theta -= 360.;
64 if (new_theta < 0) {
65 new_theta = -new_theta;
66 new_phi += 180.;
67 }
68 if ((theta_in_deg = new_theta) < 1.0)
69 return(1); /* don't rely on phi near normal */
70 while (new_phi < 0)
71 new_phi += 360.;
72 while (new_phi >= 360.)
73 new_phi -= 360.;
74 if (single_plane_incident > 0) /* check input coverage */
75 single_plane_incident = (round(new_phi) == round(phi_in_deg));
76 else if (single_plane_incident < 0)
77 single_plane_incident = 1;
78 phi_in_deg = new_phi;
79 if ((1. < new_phi) & (new_phi < 89.))
80 inp_coverage |= INP_QUAD1;
81 else if ((91. < new_phi) & (new_phi < 179.))
82 inp_coverage |= INP_QUAD2;
83 else if ((181. < new_phi) & (new_phi < 269.))
84 inp_coverage |= INP_QUAD3;
85 else if ((271. < new_phi) & (new_phi < 359.))
86 inp_coverage |= INP_QUAD4;
87 return(1);
88 }
89
90 /* Apply symmetry to the given vector based on distribution */
91 int
92 use_symmetry(FVECT vec)
93 {
94 const double phi = get_phi360(vec);
95
96 switch (inp_coverage) {
97 case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
98 break;
99 case INP_QUAD1|INP_QUAD2:
100 if ((-FTINY > phi) | (phi > 180.+FTINY))
101 goto mir_y;
102 break;
103 case INP_QUAD2|INP_QUAD3:
104 if ((90.-FTINY > phi) | (phi > 270.+FTINY))
105 goto mir_x;
106 break;
107 case INP_QUAD3|INP_QUAD4:
108 if ((180.-FTINY > phi) | (phi > 360.+FTINY))
109 goto mir_y;
110 break;
111 case INP_QUAD4|INP_QUAD1:
112 if ((270.-FTINY > phi) & (phi > 90.+FTINY))
113 goto mir_x;
114 break;
115 case INP_QUAD1:
116 if ((-FTINY > phi) | (phi > 90.+FTINY))
117 switch ((int)(phi*(1./90.))) {
118 case 1: goto mir_x;
119 case 2: goto mir_xy;
120 case 3: goto mir_y;
121 }
122 break;
123 case INP_QUAD2:
124 if ((90.-FTINY > phi) | (phi > 180.+FTINY))
125 switch ((int)(phi*(1./90.))) {
126 case 0: goto mir_x;
127 case 2: goto mir_y;
128 case 3: goto mir_xy;
129 }
130 break;
131 case INP_QUAD3:
132 if ((180.-FTINY > phi) | (phi > 270.+FTINY))
133 switch ((int)(phi*(1./90.))) {
134 case 0: goto mir_xy;
135 case 1: goto mir_y;
136 case 3: goto mir_x;
137 }
138 break;
139 case INP_QUAD4:
140 if ((270.-FTINY > phi) | (phi > 360.+FTINY))
141 switch ((int)(phi*(1./90.))) {
142 case 0: goto mir_y;
143 case 1: goto mir_xy;
144 case 2: goto mir_x;
145 }
146 break;
147 default:
148 fprintf(stderr, "%s: Illegal input coverage (%d)\n",
149 progname, inp_coverage);
150 exit(1);
151 }
152 return(0); /* in range */
153 mir_x:
154 vec[0] = -vec[0];
155 return(MIRROR_X);
156 mir_y:
157 vec[1] = -vec[1];
158 return(MIRROR_Y);
159 mir_xy:
160 vec[0] = -vec[0];
161 vec[1] = -vec[1];
162 return(MIRROR_X|MIRROR_Y);
163 }
164
165 /* Reverse symmetry based on what was done before */
166 void
167 rev_symmetry(FVECT vec, int sym)
168 {
169 if (sym & MIRROR_X)
170 vec[0] = -vec[0];
171 if (sym & MIRROR_Y)
172 vec[1] = -vec[1];
173 }
174
175 /* Reverse symmetry for an RBF distribution */
176 void
177 rev_rbf_symmetry(RBFNODE *rbf, int sym)
178 {
179 int n;
180
181 rev_symmetry(rbf->invec, sym);
182 if (sym & MIRROR_X)
183 for (n = rbf->nrbf; n-- > 0; )
184 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
185 if (sym & MIRROR_Y)
186 for (n = rbf->nrbf; n-- > 0; )
187 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
188 }
189
190 /* Rotate RBF to correspond to given incident vector */
191 void
192 rotate_rbf(RBFNODE *rbf, const FVECT invec)
193 {
194 static const FVECT vnorm = {.0, .0, 1.};
195 const double phi = atan2(invec[1],invec[0]) -
196 atan2(rbf->invec[1],rbf->invec[0]);
197 FVECT outvec;
198 int pos[2];
199 int n;
200
201 for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) {
202 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
203 spinvector(outvec, outvec, vnorm, phi);
204 pos_from_vec(pos, outvec);
205 rbf->rbfa[n].gx = pos[0];
206 rbf->rbfa[n].gy = pos[1];
207 }
208 VCOPY(rbf->invec, invec);
209 }
210
211 /* Compute outgoing vector from grid position */
212 void
213 ovec_from_pos(FVECT vec, int xpos, int ypos)
214 {
215 double uv[2];
216 double r2;
217
218 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
219 /* uniform hemispherical projection */
220 r2 = uv[0]*uv[0] + uv[1]*uv[1];
221 vec[0] = vec[1] = sqrt(2. - r2);
222 vec[0] *= uv[0];
223 vec[1] *= uv[1];
224 vec[2] = output_orient*(1. - r2);
225 }
226
227 /* Compute grid position from normalized input/output vector */
228 void
229 pos_from_vec(int pos[2], const FVECT vec)
230 {
231 double sq[2]; /* uniform hemispherical projection */
232 double norm = 1./sqrt(1. + fabs(vec[2]));
233
234 SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
235
236 pos[0] = (int)(sq[0]*grid_res);
237 pos[1] = (int)(sq[1]*grid_res);
238 }
239
240 /* Compute volume associated with Gaussian lobe */
241 double
242 rbf_volume(const RBFVAL *rbfp)
243 {
244 double rad = R2ANG(rbfp->crad);
245 FVECT odir;
246 double elev, integ;
247 /* infinite integral approximation */
248 integ = (2.*M_PI) * rbfp->peak * rad*rad;
249 /* check if we're near horizon */
250 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
251 elev = output_orient*odir[2];
252 /* apply cut-off correction if > 1% */
253 if (elev < 2.8*rad) {
254 /* elev = asin(elev); /* this is so crude, anyway... */
255 integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
256 }
257 return(integ);
258 }
259
260 /* Evaluate RBF for DSF at the given normalized outgoing direction */
261 double
262 eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
263 {
264 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
265 double minval = bsdf_min*output_orient*outvec[2];
266 int pos[2];
267 double res = 0;
268 const RBFVAL *rbfp;
269 FVECT odir;
270 double rad2;
271 int n;
272 /* check for wrong side */
273 if (outvec[2] > 0 ^ output_orient > 0)
274 return(.0);
275 /* use minimum if no information avail. */
276 if (rp == NULL)
277 return(minval);
278 /* optimization for fast lobe culling */
279 pos_from_vec(pos, outvec);
280 /* sum radial basis function */
281 rbfp = rp->rbfa;
282 for (n = rp->nrbf; n--; rbfp++) {
283 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
284 (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
285 rad2 = R2ANG(rbfp->crad);
286 rad2 *= rad2;
287 if (d2 > rad2*rfact2)
288 continue;
289 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
290 res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
291 }
292 if (res < minval) /* never return less than minval */
293 return(minval);
294 return(res);
295 }
296
297 /* Insert a new directional scattering function in our global list */
298 int
299 insert_dsf(RBFNODE *newrbf)
300 {
301 RBFNODE *rbf, *rbf_last;
302 int pos;
303 /* check for redundant meas. */
304 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
305 if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
306 fprintf(stderr,
307 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
308 progname, get_theta180(newrbf->invec),
309 get_phi360(newrbf->invec));
310 free(newrbf);
311 return(-1);
312 }
313 /* keep in ascending theta order */
314 for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
315 rbf_last = rbf, rbf = rbf->next)
316 if (single_plane_incident && input_orient*rbf->invec[2] <
317 input_orient*newrbf->invec[2])
318 break;
319 if (rbf_last == NULL) { /* insert new node in list */
320 newrbf->ord = 0;
321 newrbf->next = dsf_list;
322 dsf_list = newrbf;
323 } else {
324 newrbf->ord = rbf_last->ord + 1;
325 newrbf->next = rbf;
326 rbf_last->next = newrbf;
327 }
328 rbf_last = newrbf;
329 while (rbf != NULL) { /* update ordinal positions */
330 rbf->ord = rbf_last->ord + 1;
331 rbf_last = rbf;
332 rbf = rbf->next;
333 }
334 return(newrbf->ord);
335 }
336
337 /* Get the DSF indicated by its ordinal position */
338 RBFNODE *
339 get_dsf(int ord)
340 {
341 RBFNODE *rbf;
342
343 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
344 if (rbf->ord == ord)
345 return(rbf);
346 return(NULL);
347 }
348
349 /* Get triangle surface orientation (unnormalized) */
350 void
351 tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
352 {
353 FVECT v2minus1, v3minus2;
354
355 VSUB(v2minus1, v2, v1);
356 VSUB(v3minus2, v3, v2);
357 VCROSS(vres, v2minus1, v3minus2);
358 }
359
360 /* Determine if vertex order is reversed (inward normal) */
361 int
362 is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
363 {
364 FVECT tor;
365
366 tri_orient(tor, v1, v2, v3);
367
368 return(DOT(tor, v2) < 0.);
369 }
370
371 /* Find vertices completing triangles on either side of the given edge */
372 int
373 get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
374 {
375 const MIGRATION *ej1, *ej2;
376 RBFNODE *tv;
377
378 rbfv[0] = rbfv[1] = NULL;
379 if (mig == NULL)
380 return(0);
381 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
382 ej1 = nextedge(mig->rbfv[0],ej1)) {
383 if (ej1 == mig)
384 continue;
385 tv = opp_rbf(mig->rbfv[0],ej1);
386 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
387 if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
388 rbfv[is_rev_tri(mig->rbfv[0]->invec,
389 mig->rbfv[1]->invec,
390 tv->invec)] = tv;
391 break;
392 }
393 }
394 return((rbfv[0] != NULL) + (rbfv[1] != NULL));
395 }
396
397 /* Advect and allocate new RBF along edge (internal call) */
398 RBFNODE *
399 e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
400 {
401 double cthresh = FTINY;
402 RBFNODE *rbf;
403 int n, i, j;
404 double t, full_dist;
405 /* get relative position */
406 t = Acos(DOT(invec, mig->rbfv[0]->invec));
407 if (t < M_PI/grid_res) { /* near first DSF */
408 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
409 rbf = (RBFNODE *)malloc(n);
410 if (rbf == NULL)
411 goto memerr;
412 memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
413 rbf->next = NULL; rbf->ejl = NULL;
414 return(rbf);
415 }
416 full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
417 if (t > full_dist-M_PI/grid_res) { /* near second DSF */
418 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
419 rbf = (RBFNODE *)malloc(n);
420 if (rbf == NULL)
421 goto memerr;
422 memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
423 rbf->next = NULL; rbf->ejl = NULL;
424 return(rbf);
425 }
426 t /= full_dist;
427 tryagain:
428 n = 0; /* count migrating particles */
429 for (i = 0; i < mtx_nrows(mig); i++)
430 for (j = 0; j < mtx_ncols(mig); j++)
431 n += (mtx_coef(mig,i,j) > cthresh);
432 /* are we over our limit? */
433 if ((lobe_lim > 0) & (n > lobe_lim)) {
434 cthresh = cthresh*2. + 10.*FTINY;
435 goto tryagain;
436 }
437 #ifdef DEBUG
438 fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
439 mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
440 #endif
441 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
442 if (rbf == NULL)
443 goto memerr;
444 rbf->next = NULL; rbf->ejl = NULL;
445 VCOPY(rbf->invec, invec);
446 rbf->nrbf = n;
447 rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
448 n = 0; /* advect RBF lobes */
449 for (i = 0; i < mtx_nrows(mig); i++) {
450 const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
451 const float peak0 = rbf0i->peak;
452 const double rad0 = R2ANG(rbf0i->crad);
453 FVECT v0;
454 float mv;
455 ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
456 for (j = 0; j < mtx_ncols(mig); j++)
457 if ((mv = mtx_coef(mig,i,j)) > cthresh) {
458 const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
459 double rad2;
460 FVECT v;
461 int pos[2];
462 rad2 = R2ANG(rbf1j->crad);
463 rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
464 rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
465 rad0*rad0/rad2;
466 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
467 ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
468 geodesic(v, v0, v, t, GEOD_REL);
469 pos_from_vec(pos, v);
470 rbf->rbfa[n].gx = pos[0];
471 rbf->rbfa[n].gy = pos[1];
472 ++n;
473 }
474 }
475 rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
476 return(rbf);
477 memerr:
478 fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
479 exit(1);
480 return(NULL); /* pro forma return */
481 }
482
483 /* Clear our BSDF representation and free memory */
484 void
485 clear_bsdf_rep(void)
486 {
487 while (mig_list != NULL) {
488 MIGRATION *mig = mig_list;
489 mig_list = mig->next;
490 free(mig);
491 }
492 while (dsf_list != NULL) {
493 RBFNODE *rbf = dsf_list;
494 dsf_list = rbf->next;
495 free(rbf);
496 }
497 bsdf_name[0] = '\0';
498 bsdf_manuf[0] = '\0';
499 inp_coverage = 0;
500 single_plane_incident = -1;
501 input_orient = output_orient = 0;
502 grid_res = GRIDRES;
503 }
504
505 /* Write our BSDF mesh interpolant out to the given binary stream */
506 void
507 save_bsdf_rep(FILE *ofp)
508 {
509 RBFNODE *rbf;
510 MIGRATION *mig;
511 int i, n;
512 /* finish header */
513 if (bsdf_name[0])
514 fprintf(ofp, "NAME=%s\n", bsdf_name);
515 if (bsdf_manuf[0])
516 fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
517 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
518 fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
519 fprintf(ofp, "GRIDRES=%d\n", grid_res);
520 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
521 fputformat(BSDFREP_FMT, ofp);
522 fputc('\n', ofp);
523 /* write each DSF */
524 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
525 putint(rbf->ord, 4, ofp);
526 putflt(rbf->invec[0], ofp);
527 putflt(rbf->invec[1], ofp);
528 putflt(rbf->invec[2], ofp);
529 putflt(rbf->vtotal, ofp);
530 putint(rbf->nrbf, 4, ofp);
531 for (i = 0; i < rbf->nrbf; i++) {
532 putflt(rbf->rbfa[i].peak, ofp);
533 putint(rbf->rbfa[i].crad, 2, ofp);
534 putint(rbf->rbfa[i].gx, 1, ofp);
535 putint(rbf->rbfa[i].gy, 1, ofp);
536 }
537 }
538 putint(-1, 4, ofp); /* terminator */
539 /* write each migration matrix */
540 for (mig = mig_list; mig != NULL; mig = mig->next) {
541 int zerocnt = 0;
542 putint(mig->rbfv[0]->ord, 4, ofp);
543 putint(mig->rbfv[1]->ord, 4, ofp);
544 /* write out as sparse data */
545 n = mtx_nrows(mig) * mtx_ncols(mig);
546 for (i = 0; i < n; i++) {
547 if (zerocnt == 0xff) {
548 putint(0xff, 1, ofp); zerocnt = 0;
549 }
550 if (mig->mtx[i] != 0) {
551 putint(zerocnt, 1, ofp); zerocnt = 0;
552 putflt(mig->mtx[i], ofp);
553 } else
554 ++zerocnt;
555 }
556 putint(zerocnt, 1, ofp);
557 }
558 putint(-1, 4, ofp); /* terminator */
559 putint(-1, 4, ofp);
560 if (fflush(ofp) == EOF) {
561 fprintf(stderr, "%s: error writing BSDF interpolant\n",
562 progname);
563 exit(1);
564 }
565 }
566
567 /* Check header line for critical information */
568 static int
569 headline(char *s, void *p)
570 {
571 char fmt[32];
572
573 if (!strncmp(s, "NAME=", 5)) {
574 strcpy(bsdf_name, s+5);
575 bsdf_name[strlen(bsdf_name)-1] = '\0';
576 }
577 if (!strncmp(s, "MANUFACT=", 9)) {
578 strcpy(bsdf_manuf, s+9);
579 bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
580 }
581 if (!strncmp(s, "SYMMETRY=", 9)) {
582 inp_coverage = atoi(s+9);
583 single_plane_incident = !inp_coverage;
584 return(0);
585 }
586 if (!strncmp(s, "IO_SIDES=", 9)) {
587 sscanf(s+9, "%d %d", &input_orient, &output_orient);
588 return(0);
589 }
590 if (!strncmp(s, "GRIDRES=", 8)) {
591 sscanf(s+8, "%d", &grid_res);
592 return(0);
593 }
594 if (!strncmp(s, "BSDFMIN=", 8)) {
595 sscanf(s+8, "%lf", &bsdf_min);
596 return(0);
597 }
598 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
599 return(-1);
600 return(0);
601 }
602
603 /* Read a BSDF mesh interpolant from the given binary stream */
604 int
605 load_bsdf_rep(FILE *ifp)
606 {
607 RBFNODE rbfh;
608 int from_ord, to_ord;
609 int i;
610
611 clear_bsdf_rep();
612 if (ifp == NULL)
613 return(0);
614 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
615 !input_orient | !output_orient |
616 (grid_res < 16) | (grid_res > 256)) {
617 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
618 progname);
619 return(0);
620 }
621 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
622 while ((rbfh.ord = getint(4, ifp)) >= 0) {
623 RBFNODE *newrbf;
624
625 rbfh.invec[0] = getflt(ifp);
626 rbfh.invec[1] = getflt(ifp);
627 rbfh.invec[2] = getflt(ifp);
628 if (normalize(rbfh.invec) == 0) {
629 fprintf(stderr, "%s: zero incident vector\n", progname);
630 return(0);
631 }
632 rbfh.vtotal = getflt(ifp);
633 rbfh.nrbf = getint(4, ifp);
634 newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
635 sizeof(RBFVAL)*(rbfh.nrbf-1));
636 if (newrbf == NULL)
637 goto memerr;
638 *newrbf = rbfh;
639 for (i = 0; i < rbfh.nrbf; i++) {
640 newrbf->rbfa[i].peak = getflt(ifp);
641 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
642 newrbf->rbfa[i].gx = getint(1, ifp) & 0xff;
643 newrbf->rbfa[i].gy = getint(1, ifp) & 0xff;
644 }
645 if (feof(ifp))
646 goto badEOF;
647 /* insert in global list */
648 if (insert_dsf(newrbf) != rbfh.ord) {
649 fprintf(stderr, "%s: error adding DSF\n", progname);
650 return(0);
651 }
652 }
653 /* read each migration matrix */
654 while ((from_ord = getint(4, ifp)) >= 0 &&
655 (to_ord = getint(4, ifp)) >= 0) {
656 RBFNODE *from_rbf = get_dsf(from_ord);
657 RBFNODE *to_rbf = get_dsf(to_ord);
658 MIGRATION *newmig;
659 int n;
660
661 if ((from_rbf == NULL) | (to_rbf == NULL)) {
662 fprintf(stderr,
663 "%s: bad DSF reference in migration edge\n",
664 progname);
665 return(0);
666 }
667 n = from_rbf->nrbf * to_rbf->nrbf;
668 newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
669 sizeof(float)*(n-1));
670 if (newmig == NULL)
671 goto memerr;
672 newmig->rbfv[0] = from_rbf;
673 newmig->rbfv[1] = to_rbf;
674 memset(newmig->mtx, 0, sizeof(float)*n);
675 for (i = 0; ; ) { /* read sparse data */
676 int zc = getint(1, ifp) & 0xff;
677 if ((i += zc) >= n)
678 break;
679 if (zc == 0xff)
680 continue;
681 newmig->mtx[i++] = getflt(ifp);
682 }
683 if (feof(ifp))
684 goto badEOF;
685 /* insert in edge lists */
686 newmig->enxt[0] = from_rbf->ejl;
687 from_rbf->ejl = newmig;
688 newmig->enxt[1] = to_rbf->ejl;
689 to_rbf->ejl = newmig;
690 /* push onto global list */
691 newmig->next = mig_list;
692 mig_list = newmig;
693 }
694 return(1); /* success! */
695 memerr:
696 fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
697 exit(1);
698 badEOF:
699 fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
700 return(0);
701 }