9 |
|
|
10 |
|
#define _USE_MATH_DEFINES |
11 |
|
#include <stdlib.h> |
12 |
– |
#include <string.h> |
12 |
|
#include <math.h> |
13 |
|
#include "rtio.h" |
14 |
|
#include "resolu.h" |
15 |
|
#include "bsdfrep.h" |
16 |
+ |
#include "random.h" |
17 |
+ |
/* name and manufacturer if known */ |
18 |
+ |
char bsdf_name[256]; |
19 |
+ |
char bsdf_manuf[256]; |
20 |
|
/* active grid resolution */ |
21 |
|
int grid_res = GRIDRES; |
22 |
|
|
29 |
|
int input_orient = 0; |
30 |
|
int output_orient = 0; |
31 |
|
|
32 |
+ |
/* represented color space */ |
33 |
+ |
RBColor rbf_colorimetry = RBCunknown; |
34 |
+ |
|
35 |
+ |
const char *RBCident[] = { |
36 |
+ |
"CIE-Y", "CIE-XYZ", "Spectral", "Unknown" |
37 |
+ |
}; |
38 |
+ |
|
39 |
+ |
/* BSDF histogram */ |
40 |
+ |
unsigned long bsdf_hist[HISTLEN]; |
41 |
+ |
|
42 |
+ |
/* BSDF value for boundary regions */ |
43 |
+ |
double bsdf_min = 0; |
44 |
+ |
double bsdf_spec_val = 0; |
45 |
+ |
double bsdf_spec_rad = 0; |
46 |
+ |
|
47 |
|
/* processed incident DSF measurements */ |
48 |
|
RBFNODE *dsf_list = NULL; |
49 |
|
|
53 |
|
/* current input direction */ |
54 |
|
double theta_in_deg, phi_in_deg; |
55 |
|
|
56 |
+ |
/* header line sharing callback */ |
57 |
+ |
int (*sir_headshare)(char *s) = NULL; |
58 |
+ |
|
59 |
|
/* Register new input direction */ |
60 |
|
int |
61 |
|
new_input_direction(double new_theta, double new_phi) |
62 |
|
{ |
42 |
– |
if (!input_orient) /* check input orientation */ |
43 |
– |
input_orient = 1 - 2*(new_theta > 90.); |
44 |
– |
else if (input_orient > 0 ^ new_theta < 90.) { |
45 |
– |
fprintf(stderr, |
46 |
– |
"%s: Cannot handle input angles on both sides of surface\n", |
47 |
– |
progname); |
48 |
– |
return(0); |
49 |
– |
} |
63 |
|
/* normalize angle ranges */ |
64 |
|
while (new_theta < -180.) |
65 |
|
new_theta += 360.; |
69 |
|
new_theta = -new_theta; |
70 |
|
new_phi += 180.; |
71 |
|
} |
59 |
– |
if ((theta_in_deg = new_theta) < 1.0) |
60 |
– |
return(1); /* don't rely on phi near normal */ |
72 |
|
while (new_phi < 0) |
73 |
|
new_phi += 360.; |
74 |
|
while (new_phi >= 360.) |
75 |
|
new_phi -= 360.; |
76 |
+ |
/* check input orientation */ |
77 |
+ |
if (!input_orient) |
78 |
+ |
input_orient = 1 - 2*(new_theta > 90.); |
79 |
+ |
else if (input_orient > 0 ^ new_theta < 90.) { |
80 |
+ |
fprintf(stderr, |
81 |
+ |
"%s: Cannot handle input angles on both sides of surface\n", |
82 |
+ |
progname); |
83 |
+ |
return(0); |
84 |
+ |
} |
85 |
+ |
if ((theta_in_deg = new_theta) < 1.0) |
86 |
+ |
return(1); /* don't rely on phi near normal */ |
87 |
|
if (single_plane_incident > 0) /* check input coverage */ |
88 |
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
89 |
|
else if (single_plane_incident < 0) |
105 |
|
use_symmetry(FVECT vec) |
106 |
|
{ |
107 |
|
double phi = get_phi360(vec); |
108 |
+ |
/* because of -0. issue */ |
109 |
+ |
while (phi >= 360.) phi -= 360.; |
110 |
+ |
while (phi < 0.) phi += 360.; |
111 |
|
|
112 |
|
switch (inp_coverage) { |
113 |
|
case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: |
214 |
|
int pos[2]; |
215 |
|
int n; |
216 |
|
|
217 |
< |
for (n = rbf->nrbf; n-- > 0; ) { |
217 |
> |
for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) { |
218 |
|
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
219 |
|
spinvector(outvec, outvec, vnorm, phi); |
220 |
|
pos_from_vec(pos, outvec); |
224 |
|
VCOPY(rbf->invec, invec); |
225 |
|
} |
226 |
|
|
227 |
< |
/* Compute volume associated with Gaussian lobe */ |
228 |
< |
double |
229 |
< |
rbf_volume(const RBFVAL *rbfp) |
230 |
< |
{ |
231 |
< |
double rad = R2ANG(rbfp->crad); |
227 |
> |
/* Compute outgoing vector from grid position */ |
228 |
> |
#if 1 |
229 |
> |
void |
230 |
> |
ovec_from_pos(FVECT vec, int xpos, int ypos) |
231 |
> |
{ /* precomputed table version */ |
232 |
> |
static int qsiz = 0; |
233 |
> |
static float (*q_uv)[2] = NULL; |
234 |
|
|
235 |
< |
return((2.*M_PI) * rbfp->peak * rad*rad); |
236 |
< |
} |
235 |
> |
if (vec == NULL) { /* just free table? */ |
236 |
> |
if (q_uv) free(q_uv); |
237 |
> |
qsiz = 0; |
238 |
> |
return; |
239 |
> |
} |
240 |
> |
if (qsiz != grid_res>>1) { |
241 |
> |
int x, y; /* (re)make positive quadrant table */ |
242 |
> |
RREAL uv[2]; |
243 |
> |
double r; |
244 |
> |
if (q_uv) free(q_uv); |
245 |
> |
qsiz = grid_res>>1; |
246 |
> |
q_uv = (float (*)[2])malloc(sizeof(float)*2*qsiz*qsiz); |
247 |
> |
for (y = qsiz; y--; ) |
248 |
> |
for (x = qsiz; x--; ) { |
249 |
> |
square2disk(uv, 0.5 + (x+.5)/grid_res, |
250 |
> |
0.5 + (y+.5)/grid_res); |
251 |
> |
/* uniform hemispherical projection */ |
252 |
> |
r = sqrt(2. - uv[0]*uv[0] - uv[1]*uv[1]); |
253 |
> |
q_uv[qsiz*y + x][0] = (float)(r*uv[0]); |
254 |
> |
q_uv[qsiz*y + x][1] = (float)(r*uv[1]); |
255 |
> |
} |
256 |
> |
} |
257 |
> |
/* put in positive quadrant */ |
258 |
> |
if (xpos >= qsiz) { xpos -= qsiz; vec[0] = 1.; } |
259 |
> |
else { xpos = qsiz-1 - xpos; vec[0] = -1.; } |
260 |
> |
if (ypos >= qsiz) { ypos -= qsiz; vec[1] = 1.; } |
261 |
> |
else { ypos = qsiz-1 - ypos; vec[1] = -1.; } |
262 |
|
|
263 |
< |
/* Compute outgoing vector from grid position */ |
263 |
> |
vec[0] *= (RREAL)q_uv[qsiz*ypos + xpos][0]; |
264 |
> |
vec[1] *= (RREAL)q_uv[qsiz*ypos + xpos][1]; |
265 |
> |
vec[2] = output_orient*sqrt(1. - vec[0]*vec[0] - vec[1]*vec[1]); |
266 |
> |
} |
267 |
> |
#else |
268 |
|
void |
269 |
|
ovec_from_pos(FVECT vec, int xpos, int ypos) |
270 |
< |
{ |
271 |
< |
double uv[2]; |
270 |
> |
{ /* table-free version */ |
271 |
> |
RREAL uv[2]; |
272 |
|
double r2; |
273 |
< |
|
274 |
< |
SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
273 |
> |
|
274 |
> |
if (vec == NULL) |
275 |
> |
return; |
276 |
> |
|
277 |
> |
square2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
278 |
|
/* uniform hemispherical projection */ |
279 |
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
280 |
|
vec[0] = vec[1] = sqrt(2. - r2); |
282 |
|
vec[1] *= uv[1]; |
283 |
|
vec[2] = output_orient*(1. - r2); |
284 |
|
} |
285 |
+ |
#endif |
286 |
|
|
287 |
|
/* Compute grid position from normalized input/output vector */ |
288 |
|
void |
289 |
|
pos_from_vec(int pos[2], const FVECT vec) |
290 |
|
{ |
291 |
< |
double sq[2]; /* uniform hemispherical projection */ |
291 |
> |
RREAL sq[2]; /* uniform hemispherical projection */ |
292 |
|
double norm = 1./sqrt(1. + fabs(vec[2])); |
293 |
|
|
294 |
< |
SDdisk2square(sq, vec[0]*norm, vec[1]*norm); |
294 |
> |
disk2square(sq, vec[0]*norm, vec[1]*norm); |
295 |
|
|
296 |
|
pos[0] = (int)(sq[0]*grid_res); |
297 |
|
pos[1] = (int)(sq[1]*grid_res); |
298 |
|
} |
299 |
|
|
300 |
< |
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
300 |
> |
/* Compute volume associated with Gaussian lobe */ |
301 |
|
double |
302 |
< |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
302 |
> |
rbf_volume(const RBFVAL *rbfp) |
303 |
|
{ |
304 |
+ |
double rad = R2ANG(rbfp->crad); |
305 |
+ |
FVECT odir; |
306 |
+ |
double elev, integ; |
307 |
+ |
/* infinite integral approximation */ |
308 |
+ |
integ = (2.*M_PI) * rbfp->peak * rad*rad; |
309 |
+ |
/* check if we're near horizon */ |
310 |
+ |
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
311 |
+ |
elev = output_orient*odir[2]; |
312 |
+ |
/* apply cut-off correction if > 1% */ |
313 |
+ |
if (elev < 2.8*rad) { |
314 |
+ |
/* elev = asin(elev); /* this is so crude, anyway... */ |
315 |
+ |
integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad)); |
316 |
+ |
} |
317 |
+ |
return(integ); |
318 |
+ |
} |
319 |
+ |
|
320 |
+ |
/* Evaluate BSDF at the given normalized outgoing direction in color */ |
321 |
+ |
SDError |
322 |
+ |
eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec) |
323 |
+ |
{ |
324 |
+ |
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
325 |
+ |
int pos[2]; |
326 |
|
double res = 0; |
327 |
+ |
double usum = 0, vsum = 0; |
328 |
|
const RBFVAL *rbfp; |
329 |
|
FVECT odir; |
330 |
< |
double sig2; |
330 |
> |
double rad2; |
331 |
|
int n; |
332 |
< |
|
333 |
< |
if (rp == NULL) |
334 |
< |
return(.0); |
332 |
> |
/* assign default value */ |
333 |
> |
sv->spec = c_dfcolor; |
334 |
> |
sv->cieY = bsdf_min; |
335 |
> |
/* check for wrong side */ |
336 |
> |
if (outvec[2] > 0 ^ output_orient > 0) { |
337 |
> |
strcpy(SDerrorDetail, "Wrong-side scattering query"); |
338 |
> |
return(SDEargument); |
339 |
> |
} |
340 |
> |
if (rp == NULL) /* return minimum if no information avail. */ |
341 |
> |
return(SDEnone); |
342 |
> |
/* optimization for fast lobe culling */ |
343 |
> |
pos_from_vec(pos, outvec); |
344 |
> |
/* sum radial basis function */ |
345 |
|
rbfp = rp->rbfa; |
346 |
|
for (n = rp->nrbf; n--; rbfp++) { |
347 |
+ |
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
348 |
+ |
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
349 |
+ |
double val; |
350 |
+ |
rad2 = R2ANG(rbfp->crad); |
351 |
+ |
rad2 *= rad2; |
352 |
+ |
if (d2 > rad2*rfact2) |
353 |
+ |
continue; |
354 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
355 |
< |
sig2 = R2ANG(rbfp->crad); |
356 |
< |
sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2); |
357 |
< |
if (sig2 > -19.) |
358 |
< |
res += rbfp->peak * exp(sig2); |
355 |
> |
val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
356 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
357 |
> |
usum += val * (rbfp->chroma & 0xff); |
358 |
> |
vsum += val * (rbfp->chroma>>8 & 0xff); |
359 |
> |
} |
360 |
> |
res += val; |
361 |
|
} |
362 |
< |
return(res); |
362 |
> |
sv->cieY = res / COSF(outvec[2]); |
363 |
> |
if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */ |
364 |
> |
sv->cieY = bsdf_min; |
365 |
> |
} else if (rbf_colorimetry == RBCtristimulus) { |
366 |
> |
C_CHROMA cres = (int)(usum/res + frandom()); |
367 |
> |
cres |= (int)(vsum/res + frandom()) << 8; |
368 |
> |
c_decodeChroma(&sv->spec, cres); |
369 |
> |
} |
370 |
> |
return(SDEnone); |
371 |
|
} |
372 |
|
|
373 |
+ |
/* Evaluate BSDF at the given normalized outgoing direction in Y */ |
374 |
+ |
double |
375 |
+ |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
376 |
+ |
{ |
377 |
+ |
SDValue sv; |
378 |
+ |
|
379 |
+ |
if (eval_rbfcol(&sv, rp, outvec) == SDEnone) |
380 |
+ |
return(sv.cieY); |
381 |
+ |
|
382 |
+ |
return(0.0); |
383 |
+ |
} |
384 |
+ |
|
385 |
|
/* Insert a new directional scattering function in our global list */ |
386 |
|
int |
387 |
|
insert_dsf(RBFNODE *newrbf) |
392 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
393 |
|
if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { |
394 |
|
fprintf(stderr, |
395 |
< |
"%s: Duplicate incident measurement (ignored)\n", |
396 |
< |
progname); |
395 |
> |
"%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n", |
396 |
> |
progname, get_theta180(newrbf->invec), |
397 |
> |
get_phi360(newrbf->invec)); |
398 |
|
free(newrbf); |
399 |
|
return(-1); |
400 |
|
} |
482 |
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
483 |
|
} |
484 |
|
|
485 |
+ |
/* Return single-lobe specular RBF for the given incident direction */ |
486 |
+ |
RBFNODE * |
487 |
+ |
def_rbf_spec(const FVECT invec) |
488 |
+ |
{ |
489 |
+ |
RBFNODE *rbf; |
490 |
+ |
FVECT ovec; |
491 |
+ |
int pos[2]; |
492 |
+ |
|
493 |
+ |
if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ |
494 |
+ |
return(NULL); |
495 |
+ |
if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0)) |
496 |
+ |
return(NULL); /* nothing set */ |
497 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); |
498 |
+ |
if (rbf == NULL) |
499 |
+ |
return(NULL); |
500 |
+ |
ovec[0] = -invec[0]; |
501 |
+ |
ovec[1] = -invec[1]; |
502 |
+ |
ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1); |
503 |
+ |
pos_from_vec(pos, ovec); |
504 |
+ |
rbf->ord = 0; |
505 |
+ |
rbf->next = NULL; |
506 |
+ |
rbf->ejl = NULL; |
507 |
+ |
VCOPY(rbf->invec, invec); |
508 |
+ |
rbf->nrbf = 1; |
509 |
+ |
rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]); |
510 |
+ |
rbf->rbfa[0].chroma = c_dfchroma; |
511 |
+ |
rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad); |
512 |
+ |
rbf->rbfa[0].gx = pos[0]; |
513 |
+ |
rbf->rbfa[0].gy = pos[1]; |
514 |
+ |
rbf->vtotal = rbf_volume(rbf->rbfa); |
515 |
+ |
return(rbf); |
516 |
+ |
} |
517 |
+ |
|
518 |
+ |
/* Advect and allocate new RBF along edge (internal call) */ |
519 |
+ |
RBFNODE * |
520 |
+ |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
521 |
+ |
{ |
522 |
+ |
double cthresh = FTINY; |
523 |
+ |
RBFNODE *rbf; |
524 |
+ |
int n, i, j; |
525 |
+ |
double t, full_dist; |
526 |
+ |
/* get relative position */ |
527 |
+ |
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
528 |
+ |
if (t <= .001) { /* near first DSF */ |
529 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
530 |
+ |
rbf = (RBFNODE *)malloc(n); |
531 |
+ |
if (rbf == NULL) |
532 |
+ |
goto memerr; |
533 |
+ |
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
534 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
535 |
+ |
return(rbf); |
536 |
+ |
} |
537 |
+ |
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
538 |
+ |
if (t >= full_dist-.001) { /* near second DSF */ |
539 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
540 |
+ |
rbf = (RBFNODE *)malloc(n); |
541 |
+ |
if (rbf == NULL) |
542 |
+ |
goto memerr; |
543 |
+ |
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
544 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
545 |
+ |
return(rbf); |
546 |
+ |
} |
547 |
+ |
t /= full_dist; |
548 |
+ |
tryagain: |
549 |
+ |
n = 0; /* count migrating particles */ |
550 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) |
551 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
552 |
+ |
n += (mtx_coef(mig,i,j) > cthresh); |
553 |
+ |
/* are we over our limit? */ |
554 |
+ |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
555 |
+ |
cthresh = cthresh*2. + 10.*FTINY; |
556 |
+ |
goto tryagain; |
557 |
+ |
} |
558 |
+ |
#ifdef DEBUG |
559 |
+ |
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
560 |
+ |
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
561 |
+ |
#endif |
562 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
563 |
+ |
if (rbf == NULL) |
564 |
+ |
goto memerr; |
565 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
566 |
+ |
VCOPY(rbf->invec, invec); |
567 |
+ |
rbf->nrbf = n; |
568 |
+ |
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
569 |
+ |
n = 0; /* advect RBF lobes */ |
570 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) { |
571 |
+ |
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
572 |
+ |
const float peak0 = rbf0i->peak; |
573 |
+ |
const double rad0 = R2ANG(rbf0i->crad); |
574 |
+ |
C_COLOR cc0; |
575 |
+ |
FVECT v0; |
576 |
+ |
float mv; |
577 |
+ |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
578 |
+ |
c_decodeChroma(&cc0, rbf0i->chroma); |
579 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
580 |
+ |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
581 |
+ |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
582 |
+ |
double rad2; |
583 |
+ |
FVECT v; |
584 |
+ |
int pos[2]; |
585 |
+ |
rad2 = R2ANG(rbf1j->crad); |
586 |
+ |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
587 |
+ |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
588 |
+ |
rad0*rad0/rad2; |
589 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
590 |
+ |
C_COLOR cres; |
591 |
+ |
c_decodeChroma(&cres, rbf1j->chroma); |
592 |
+ |
c_cmix(&cres, 1.-t, &cc0, t, &cres); |
593 |
+ |
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
594 |
+ |
} else |
595 |
+ |
rbf->rbfa[n].chroma = c_dfchroma; |
596 |
+ |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
597 |
+ |
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
598 |
+ |
geodesic(v, v0, v, t, GEOD_REL); |
599 |
+ |
pos_from_vec(pos, v); |
600 |
+ |
rbf->rbfa[n].gx = pos[0]; |
601 |
+ |
rbf->rbfa[n].gy = pos[1]; |
602 |
+ |
++n; |
603 |
+ |
} |
604 |
+ |
} |
605 |
+ |
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
606 |
+ |
return(rbf); |
607 |
+ |
memerr: |
608 |
+ |
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
609 |
+ |
exit(1); |
610 |
+ |
return(NULL); /* pro forma return */ |
611 |
+ |
} |
612 |
+ |
|
613 |
|
/* Clear our BSDF representation and free memory */ |
614 |
|
void |
615 |
|
clear_bsdf_rep(void) |
624 |
|
dsf_list = rbf->next; |
625 |
|
free(rbf); |
626 |
|
} |
627 |
+ |
bsdf_name[0] = '\0'; |
628 |
+ |
bsdf_manuf[0] = '\0'; |
629 |
|
inp_coverage = 0; |
630 |
|
single_plane_incident = -1; |
631 |
|
input_orient = output_orient = 0; |
632 |
+ |
rbf_colorimetry = RBCunknown; |
633 |
|
grid_res = GRIDRES; |
634 |
+ |
memset(bsdf_hist, 0, sizeof(bsdf_hist)); |
635 |
+ |
bsdf_min = 0; |
636 |
+ |
bsdf_spec_val = 0; |
637 |
+ |
bsdf_spec_rad = 0; |
638 |
|
} |
639 |
|
|
640 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
645 |
|
MIGRATION *mig; |
646 |
|
int i, n; |
647 |
|
/* finish header */ |
648 |
+ |
if (bsdf_name[0]) |
649 |
+ |
fprintf(ofp, "NAME=%s\n", bsdf_name); |
650 |
+ |
if (bsdf_manuf[0]) |
651 |
+ |
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
652 |
|
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
653 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
654 |
+ |
fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]); |
655 |
|
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
656 |
+ |
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
657 |
+ |
if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0)) |
658 |
+ |
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad); |
659 |
|
fputformat(BSDFREP_FMT, ofp); |
660 |
|
fputc('\n', ofp); |
661 |
+ |
putint(BSDFREP_MAGIC, 2, ofp); |
662 |
|
/* write each DSF */ |
663 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
664 |
|
putint(rbf->ord, 4, ofp); |
669 |
|
putint(rbf->nrbf, 4, ofp); |
670 |
|
for (i = 0; i < rbf->nrbf; i++) { |
671 |
|
putflt(rbf->rbfa[i].peak, ofp); |
672 |
+ |
putint(rbf->rbfa[i].chroma, 2, ofp); |
673 |
|
putint(rbf->rbfa[i].crad, 2, ofp); |
674 |
< |
putint(rbf->rbfa[i].gx, 1, ofp); |
675 |
< |
putint(rbf->rbfa[i].gy, 1, ofp); |
674 |
> |
putint(rbf->rbfa[i].gx, 2, ofp); |
675 |
> |
putint(rbf->rbfa[i].gy, 2, ofp); |
676 |
|
} |
677 |
|
} |
678 |
|
putint(-1, 4, ofp); /* terminator */ |
708 |
|
static int |
709 |
|
headline(char *s, void *p) |
710 |
|
{ |
711 |
< |
char fmt[32]; |
711 |
> |
char fmt[MAXFMTLEN]; |
712 |
> |
int i; |
713 |
|
|
714 |
+ |
if (isheadid(s)) |
715 |
+ |
return(0); |
716 |
+ |
if (!strncmp(s, "NAME=", 5)) { |
717 |
+ |
strcpy(bsdf_name, s+5); |
718 |
+ |
bsdf_name[strlen(bsdf_name)-1] = '\0'; |
719 |
+ |
return(1); |
720 |
+ |
} |
721 |
+ |
if (!strncmp(s, "MANUFACT=", 9)) { |
722 |
+ |
strcpy(bsdf_manuf, s+9); |
723 |
+ |
bsdf_manuf[strlen(bsdf_manuf)-1] = '\0'; |
724 |
+ |
return(1); |
725 |
+ |
} |
726 |
|
if (!strncmp(s, "SYMMETRY=", 9)) { |
727 |
|
inp_coverage = atoi(s+9); |
728 |
|
single_plane_incident = !inp_coverage; |
729 |
< |
return(0); |
729 |
> |
return(1); |
730 |
|
} |
731 |
|
if (!strncmp(s, "IO_SIDES=", 9)) { |
732 |
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
733 |
< |
return(0); |
733 |
> |
return(1); |
734 |
|
} |
735 |
+ |
if (!strncmp(s, "COLORIMETRY=", 12)) { |
736 |
+ |
fmt[0] = '\0'; |
737 |
+ |
sscanf(s+12, "%s", fmt); |
738 |
+ |
for (i = RBCunknown; i >= 0; i--) |
739 |
+ |
if (!strcmp(fmt, RBCident[i])) |
740 |
+ |
break; |
741 |
+ |
if (i < 0) |
742 |
+ |
return(-1); |
743 |
+ |
rbf_colorimetry = i; |
744 |
+ |
return(1); |
745 |
+ |
} |
746 |
|
if (!strncmp(s, "GRIDRES=", 8)) { |
747 |
|
sscanf(s+8, "%d", &grid_res); |
748 |
< |
return(0); |
748 |
> |
return(1); |
749 |
|
} |
750 |
< |
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
751 |
< |
return(-1); |
750 |
> |
if (!strncmp(s, "BSDFMIN=", 8)) { |
751 |
> |
sscanf(s+8, "%lf", &bsdf_min); |
752 |
> |
return(1); |
753 |
> |
} |
754 |
> |
if (!strncmp(s, "BSDFSPEC=", 9)) { |
755 |
> |
sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad); |
756 |
> |
return(1); |
757 |
> |
} |
758 |
> |
if (formatval(fmt, s)) |
759 |
> |
return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0); |
760 |
> |
if (sir_headshare != NULL) |
761 |
> |
return ((*sir_headshare)(s)); |
762 |
|
return(0); |
763 |
|
} |
764 |
|
|
773 |
|
clear_bsdf_rep(); |
774 |
|
if (ifp == NULL) |
775 |
|
return(0); |
776 |
< |
if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 | |
777 |
< |
!input_orient | !output_orient) { |
776 |
> |
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
777 |
> |
!input_orient | !output_orient | |
778 |
> |
(grid_res < 16) | (grid_res > 0xffff)) { |
779 |
|
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
780 |
|
progname); |
781 |
|
return(0); |
782 |
|
} |
783 |
< |
rbfh.next = NULL; /* read each DSF */ |
784 |
< |
rbfh.ejl = NULL; |
783 |
> |
if (getint(2, ifp) != BSDFREP_MAGIC) { |
784 |
> |
fprintf(stderr, "%s: bad magic number for BSDF interpolant\n", |
785 |
> |
progname); |
786 |
> |
return(0); |
787 |
> |
} |
788 |
> |
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
789 |
|
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
790 |
|
RBFNODE *newrbf; |
791 |
|
|
792 |
|
rbfh.invec[0] = getflt(ifp); |
793 |
|
rbfh.invec[1] = getflt(ifp); |
794 |
|
rbfh.invec[2] = getflt(ifp); |
795 |
+ |
if (normalize(rbfh.invec) == 0) { |
796 |
+ |
fprintf(stderr, "%s: zero incident vector\n", progname); |
797 |
+ |
return(0); |
798 |
+ |
} |
799 |
|
rbfh.vtotal = getflt(ifp); |
800 |
|
rbfh.nrbf = getint(4, ifp); |
801 |
|
newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) + |
802 |
|
sizeof(RBFVAL)*(rbfh.nrbf-1)); |
803 |
|
if (newrbf == NULL) |
804 |
|
goto memerr; |
805 |
< |
memcpy(newrbf, &rbfh, sizeof(RBFNODE)-sizeof(RBFVAL)); |
805 |
> |
*newrbf = rbfh; |
806 |
|
for (i = 0; i < rbfh.nrbf; i++) { |
807 |
|
newrbf->rbfa[i].peak = getflt(ifp); |
808 |
+ |
newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff; |
809 |
|
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
810 |
< |
newrbf->rbfa[i].gx = getint(1, ifp) & 0xff; |
811 |
< |
newrbf->rbfa[i].gy = getint(1, ifp) & 0xff; |
810 |
> |
newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff; |
811 |
> |
newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff; |
812 |
|
} |
813 |
|
if (feof(ifp)) |
814 |
|
goto badEOF; |