| 14 |
|
#include "rtio.h" |
| 15 |
|
#include "resolu.h" |
| 16 |
|
#include "bsdfrep.h" |
| 17 |
+ |
#include "random.h" |
| 18 |
|
/* name and manufacturer if known */ |
| 19 |
|
char bsdf_name[256]; |
| 20 |
|
char bsdf_manuf[256]; |
| 30 |
|
int input_orient = 0; |
| 31 |
|
int output_orient = 0; |
| 32 |
|
|
| 33 |
+ |
/* represented color space */ |
| 34 |
+ |
RBColor rbf_colorimetry = RBCunknown; |
| 35 |
+ |
|
| 36 |
+ |
const char *RBCident[] = { |
| 37 |
+ |
"CIE-Y", "CIE-XYZ", "Spectral", "Unknown" |
| 38 |
+ |
}; |
| 39 |
+ |
|
| 40 |
|
/* BSDF histogram */ |
| 41 |
|
unsigned long bsdf_hist[HISTLEN]; |
| 42 |
|
|
| 43 |
|
/* BSDF value for boundary regions */ |
| 44 |
|
double bsdf_min = 0; |
| 45 |
< |
double bsdf_spec_peak = 0; |
| 45 |
> |
double bsdf_spec_val = 0; |
| 46 |
|
double bsdf_spec_rad = 0; |
| 47 |
|
|
| 48 |
|
/* processed incident DSF measurements */ |
| 58 |
|
int |
| 59 |
|
new_input_direction(double new_theta, double new_phi) |
| 60 |
|
{ |
| 53 |
– |
if (!input_orient) /* check input orientation */ |
| 54 |
– |
input_orient = 1 - 2*(new_theta > 90.); |
| 55 |
– |
else if (input_orient > 0 ^ new_theta < 90.) { |
| 56 |
– |
fprintf(stderr, |
| 57 |
– |
"%s: Cannot handle input angles on both sides of surface\n", |
| 58 |
– |
progname); |
| 59 |
– |
return(0); |
| 60 |
– |
} |
| 61 |
|
/* normalize angle ranges */ |
| 62 |
|
while (new_theta < -180.) |
| 63 |
|
new_theta += 360.; |
| 67 |
|
new_theta = -new_theta; |
| 68 |
|
new_phi += 180.; |
| 69 |
|
} |
| 70 |
– |
if ((theta_in_deg = new_theta) < 1.0) |
| 71 |
– |
return(1); /* don't rely on phi near normal */ |
| 70 |
|
while (new_phi < 0) |
| 71 |
|
new_phi += 360.; |
| 72 |
|
while (new_phi >= 360.) |
| 73 |
|
new_phi -= 360.; |
| 74 |
+ |
/* check input orientation */ |
| 75 |
+ |
if (!input_orient) |
| 76 |
+ |
input_orient = 1 - 2*(new_theta > 90.); |
| 77 |
+ |
else if (input_orient > 0 ^ new_theta < 90.) { |
| 78 |
+ |
fprintf(stderr, |
| 79 |
+ |
"%s: Cannot handle input angles on both sides of surface\n", |
| 80 |
+ |
progname); |
| 81 |
+ |
return(0); |
| 82 |
+ |
} |
| 83 |
+ |
if ((theta_in_deg = new_theta) < 1.0) |
| 84 |
+ |
return(1); /* don't rely on phi near normal */ |
| 85 |
|
if (single_plane_incident > 0) /* check input coverage */ |
| 86 |
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
| 87 |
|
else if (single_plane_incident < 0) |
| 268 |
|
return(integ); |
| 269 |
|
} |
| 270 |
|
|
| 271 |
< |
/* Evaluate BSDF at the given normalized outgoing direction */ |
| 272 |
< |
double |
| 273 |
< |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
| 271 |
> |
/* Evaluate BSDF at the given normalized outgoing direction in color */ |
| 272 |
> |
SDError |
| 273 |
> |
eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec) |
| 274 |
|
{ |
| 275 |
|
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
| 276 |
|
int pos[2]; |
| 277 |
|
double res = 0; |
| 278 |
+ |
double usum = 0, vsum = 0; |
| 279 |
|
const RBFVAL *rbfp; |
| 280 |
|
FVECT odir; |
| 281 |
|
double rad2; |
| 282 |
|
int n; |
| 283 |
+ |
/* assign default value */ |
| 284 |
+ |
sv->spec = c_dfcolor; |
| 285 |
+ |
sv->cieY = bsdf_min; |
| 286 |
|
/* check for wrong side */ |
| 287 |
< |
if (outvec[2] > 0 ^ output_orient > 0) |
| 288 |
< |
return(.0); |
| 289 |
< |
/* use minimum if no information avail. */ |
| 290 |
< |
if (rp == NULL) |
| 291 |
< |
return(bsdf_min); |
| 287 |
> |
if (outvec[2] > 0 ^ output_orient > 0) { |
| 288 |
> |
strcpy(SDerrorDetail, "Wrong-side scattering query"); |
| 289 |
> |
return(SDEargument); |
| 290 |
> |
} |
| 291 |
> |
if (rp == NULL) /* return minimum if no information avail. */ |
| 292 |
> |
return(SDEnone); |
| 293 |
|
/* optimization for fast lobe culling */ |
| 294 |
|
pos_from_vec(pos, outvec); |
| 295 |
|
/* sum radial basis function */ |
| 297 |
|
for (n = rp->nrbf; n--; rbfp++) { |
| 298 |
|
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
| 299 |
|
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
| 300 |
+ |
double val; |
| 301 |
|
rad2 = R2ANG(rbfp->crad); |
| 302 |
|
rad2 *= rad2; |
| 303 |
|
if (d2 > rad2*rfact2) |
| 304 |
|
continue; |
| 305 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
| 306 |
< |
res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
| 306 |
> |
val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
| 307 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
| 308 |
> |
usum += val * (rbfp->chroma & 0xff); |
| 309 |
> |
vsum += val * (rbfp->chroma>>8 & 0xff); |
| 310 |
> |
} |
| 311 |
> |
res += val; |
| 312 |
|
} |
| 313 |
< |
res /= output_orient*outvec[2]; |
| 314 |
< |
if (res < bsdf_min) /* never return less than bsdf_min */ |
| 315 |
< |
return(bsdf_min); |
| 316 |
< |
return(res); |
| 313 |
> |
if ((rbf_colorimetry == RBCtristimulus) & (res > 1e-6)) { |
| 314 |
> |
C_CHROMA cres = (int)(usum/res + frandom()); |
| 315 |
> |
cres |= (int)(vsum/res + frandom()) << 8; |
| 316 |
> |
c_decodeChroma(&sv->spec, cres); |
| 317 |
> |
} |
| 318 |
> |
sv->cieY = res / COSF(outvec[2]); |
| 319 |
> |
if (sv->cieY < bsdf_min) /* never return less than bsdf_min */ |
| 320 |
> |
sv->cieY = bsdf_min; |
| 321 |
> |
return(SDEnone); |
| 322 |
|
} |
| 323 |
|
|
| 324 |
+ |
/* Evaluate BSDF at the given normalized outgoing direction in Y */ |
| 325 |
+ |
double |
| 326 |
+ |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
| 327 |
+ |
{ |
| 328 |
+ |
SDValue sv; |
| 329 |
+ |
|
| 330 |
+ |
if (eval_rbfcol(&sv, rp, outvec) == SDEnone) |
| 331 |
+ |
return(sv.cieY); |
| 332 |
+ |
|
| 333 |
+ |
return(0.0); |
| 334 |
+ |
} |
| 335 |
+ |
|
| 336 |
|
/* Insert a new directional scattering function in our global list */ |
| 337 |
|
int |
| 338 |
|
insert_dsf(RBFNODE *newrbf) |
| 443 |
|
|
| 444 |
|
if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ |
| 445 |
|
return(NULL); |
| 446 |
< |
if ((bsdf_spec_peak <= bsdf_min) | (bsdf_spec_rad <= 0)) |
| 446 |
> |
if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0)) |
| 447 |
|
return(NULL); /* nothing set */ |
| 448 |
|
rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); |
| 449 |
|
if (rbf == NULL) |
| 457 |
|
rbf->ejl = NULL; |
| 458 |
|
VCOPY(rbf->invec, invec); |
| 459 |
|
rbf->nrbf = 1; |
| 460 |
< |
rbf->rbfa[0].peak = bsdf_spec_peak * output_orient*ovec[2]; |
| 460 |
> |
rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]); |
| 461 |
> |
rbf->rbfa[0].chroma = c_dfchroma; |
| 462 |
|
rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad); |
| 463 |
|
rbf->rbfa[0].gx = pos[0]; |
| 464 |
|
rbf->rbfa[0].gy = pos[1]; |
| 522 |
|
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
| 523 |
|
const float peak0 = rbf0i->peak; |
| 524 |
|
const double rad0 = R2ANG(rbf0i->crad); |
| 525 |
+ |
C_COLOR cc0; |
| 526 |
|
FVECT v0; |
| 527 |
|
float mv; |
| 528 |
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 529 |
+ |
c_decodeChroma(&cc0, rbf0i->chroma); |
| 530 |
|
for (j = 0; j < mtx_ncols(mig); j++) |
| 531 |
|
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
| 532 |
|
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
| 537 |
|
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
| 538 |
|
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
| 539 |
|
rad0*rad0/rad2; |
| 540 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
| 541 |
+ |
C_COLOR cres; |
| 542 |
+ |
c_decodeChroma(&cres, rbf1j->chroma); |
| 543 |
+ |
c_cmix(&cres, 1.-t, &cc0, t, &cres); |
| 544 |
+ |
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
| 545 |
+ |
} else |
| 546 |
+ |
rbf->rbfa[n].chroma = c_dfchroma; |
| 547 |
|
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 548 |
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
| 549 |
|
geodesic(v, v0, v, t, GEOD_REL); |
| 580 |
|
inp_coverage = 0; |
| 581 |
|
single_plane_incident = -1; |
| 582 |
|
input_orient = output_orient = 0; |
| 583 |
+ |
rbf_colorimetry = RBCunknown; |
| 584 |
|
grid_res = GRIDRES; |
| 585 |
|
bsdf_min = 0; |
| 586 |
< |
bsdf_spec_peak = 0; |
| 586 |
> |
bsdf_spec_val = 0; |
| 587 |
|
bsdf_spec_rad = 0; |
| 588 |
|
} |
| 589 |
|
|
| 601 |
|
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
| 602 |
|
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
| 603 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
| 604 |
+ |
fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]); |
| 605 |
|
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
| 606 |
|
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
| 607 |
< |
if ((bsdf_spec_peak > bsdf_min) & (bsdf_spec_rad > 0)) |
| 608 |
< |
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_peak, bsdf_spec_rad); |
| 607 |
> |
if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0)) |
| 608 |
> |
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad); |
| 609 |
|
fputformat(BSDFREP_FMT, ofp); |
| 610 |
|
fputc('\n', ofp); |
| 611 |
+ |
putint(BSDFREP_MAGIC, 2, ofp); |
| 612 |
|
/* write each DSF */ |
| 613 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 614 |
|
putint(rbf->ord, 4, ofp); |
| 619 |
|
putint(rbf->nrbf, 4, ofp); |
| 620 |
|
for (i = 0; i < rbf->nrbf; i++) { |
| 621 |
|
putflt(rbf->rbfa[i].peak, ofp); |
| 622 |
+ |
putint(rbf->rbfa[i].chroma, 2, ofp); |
| 623 |
|
putint(rbf->rbfa[i].crad, 2, ofp); |
| 624 |
< |
putint(rbf->rbfa[i].gx, 1, ofp); |
| 625 |
< |
putint(rbf->rbfa[i].gy, 1, ofp); |
| 624 |
> |
putint(rbf->rbfa[i].gx, 2, ofp); |
| 625 |
> |
putint(rbf->rbfa[i].gy, 2, ofp); |
| 626 |
|
} |
| 627 |
|
} |
| 628 |
|
putint(-1, 4, ofp); /* terminator */ |
| 658 |
|
static int |
| 659 |
|
headline(char *s, void *p) |
| 660 |
|
{ |
| 661 |
< |
char fmt[32]; |
| 661 |
> |
char fmt[64]; |
| 662 |
> |
int i; |
| 663 |
|
|
| 664 |
|
if (!strncmp(s, "NAME=", 5)) { |
| 665 |
|
strcpy(bsdf_name, s+5); |
| 678 |
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
| 679 |
|
return(0); |
| 680 |
|
} |
| 681 |
+ |
if (!strncmp(s, "COLORIMETRY=", 12)) { |
| 682 |
+ |
fmt[0] = '\0'; |
| 683 |
+ |
sscanf(s+12, "%s", fmt); |
| 684 |
+ |
for (i = RBCunknown; i >= 0; i--) |
| 685 |
+ |
if (!strcmp(fmt, RBCident[i])) |
| 686 |
+ |
break; |
| 687 |
+ |
if (i < 0) |
| 688 |
+ |
return(-1); |
| 689 |
+ |
rbf_colorimetry = i; |
| 690 |
+ |
return(0); |
| 691 |
+ |
} |
| 692 |
|
if (!strncmp(s, "GRIDRES=", 8)) { |
| 693 |
|
sscanf(s+8, "%d", &grid_res); |
| 694 |
|
return(0); |
| 698 |
|
return(0); |
| 699 |
|
} |
| 700 |
|
if (!strncmp(s, "BSDFSPEC=", 9)) { |
| 701 |
< |
sscanf(s+9, "%lf %lf", &bsdf_spec_peak, &bsdf_spec_rad); |
| 701 |
> |
sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad); |
| 702 |
|
return(0); |
| 703 |
|
} |
| 704 |
|
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
| 719 |
|
return(0); |
| 720 |
|
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
| 721 |
|
!input_orient | !output_orient | |
| 722 |
< |
(grid_res < 16) | (grid_res > 256)) { |
| 722 |
> |
(grid_res < 16) | (grid_res > 0xffff)) { |
| 723 |
|
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
| 724 |
|
progname); |
| 725 |
|
return(0); |
| 726 |
|
} |
| 727 |
+ |
if (getint(2, ifp) != BSDFREP_MAGIC) { |
| 728 |
+ |
fprintf(stderr, "%s: bad magic number for BSDF interpolant\n", |
| 729 |
+ |
progname); |
| 730 |
+ |
return(0); |
| 731 |
+ |
} |
| 732 |
|
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
| 733 |
|
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
| 734 |
|
RBFNODE *newrbf; |
| 749 |
|
*newrbf = rbfh; |
| 750 |
|
for (i = 0; i < rbfh.nrbf; i++) { |
| 751 |
|
newrbf->rbfa[i].peak = getflt(ifp); |
| 752 |
+ |
newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff; |
| 753 |
|
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
| 754 |
< |
newrbf->rbfa[i].gx = getint(1, ifp) & 0xff; |
| 755 |
< |
newrbf->rbfa[i].gy = getint(1, ifp) & 0xff; |
| 754 |
> |
newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff; |
| 755 |
> |
newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff; |
| 756 |
|
} |
| 757 |
|
if (feof(ifp)) |
| 758 |
|
goto badEOF; |