14 |
|
#include "rtio.h" |
15 |
|
#include "resolu.h" |
16 |
|
#include "bsdfrep.h" |
17 |
< |
/* which quadrants are represented */ |
17 |
> |
#include "random.h" |
18 |
> |
/* name and manufacturer if known */ |
19 |
> |
char bsdf_name[256]; |
20 |
> |
char bsdf_manuf[256]; |
21 |
> |
/* active grid resolution */ |
22 |
> |
int grid_res = GRIDRES; |
23 |
> |
|
24 |
> |
/* coverage/symmetry using INP_QUAD? flags */ |
25 |
|
int inp_coverage = 0; |
26 |
|
/* all incident angles in-plane so far? */ |
27 |
|
int single_plane_incident = -1; |
30 |
|
int input_orient = 0; |
31 |
|
int output_orient = 0; |
32 |
|
|
33 |
+ |
/* represented color space */ |
34 |
+ |
RBColor rbf_colorimetry = RBCunknown; |
35 |
+ |
|
36 |
+ |
const char *RBCident[] = { |
37 |
+ |
"CIE-Y", "CIE-XYZ", "Spectral", "Unknown" |
38 |
+ |
}; |
39 |
+ |
|
40 |
+ |
/* BSDF histogram */ |
41 |
+ |
unsigned long bsdf_hist[HISTLEN]; |
42 |
+ |
|
43 |
+ |
/* BSDF value for boundary regions */ |
44 |
+ |
double bsdf_min = 0; |
45 |
+ |
double bsdf_spec_val = 0; |
46 |
+ |
double bsdf_spec_rad = 0; |
47 |
+ |
|
48 |
|
/* processed incident DSF measurements */ |
49 |
|
RBFNODE *dsf_list = NULL; |
50 |
|
|
58 |
|
int |
59 |
|
new_input_direction(double new_theta, double new_phi) |
60 |
|
{ |
39 |
– |
if (!input_orient) /* check input orientation */ |
40 |
– |
input_orient = 1 - 2*(new_theta > 90.); |
41 |
– |
else if (input_orient > 0 ^ new_theta < 90.) { |
42 |
– |
fprintf(stderr, |
43 |
– |
"%s: Cannot handle input angles on both sides of surface\n", |
44 |
– |
progname); |
45 |
– |
return(0); |
46 |
– |
} |
61 |
|
/* normalize angle ranges */ |
62 |
|
while (new_theta < -180.) |
63 |
|
new_theta += 360.; |
71 |
|
new_phi += 360.; |
72 |
|
while (new_phi >= 360.) |
73 |
|
new_phi -= 360.; |
74 |
+ |
/* check input orientation */ |
75 |
+ |
if (!input_orient) |
76 |
+ |
input_orient = 1 - 2*(new_theta > 90.); |
77 |
+ |
else if (input_orient > 0 ^ new_theta < 90.) { |
78 |
+ |
fprintf(stderr, |
79 |
+ |
"%s: Cannot handle input angles on both sides of surface\n", |
80 |
+ |
progname); |
81 |
+ |
return(0); |
82 |
+ |
} |
83 |
+ |
if ((theta_in_deg = new_theta) < 1.0) |
84 |
+ |
return(1); /* don't rely on phi near normal */ |
85 |
|
if (single_plane_incident > 0) /* check input coverage */ |
86 |
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
87 |
|
else if (single_plane_incident < 0) |
88 |
|
single_plane_incident = 1; |
64 |
– |
theta_in_deg = new_theta; /* assume it's OK */ |
89 |
|
phi_in_deg = new_phi; |
90 |
|
if ((1. < new_phi) & (new_phi < 89.)) |
91 |
|
inp_coverage |= INP_QUAD1; |
102 |
|
int |
103 |
|
use_symmetry(FVECT vec) |
104 |
|
{ |
105 |
< |
double phi = get_phi360(vec); |
105 |
> |
const double phi = get_phi360(vec); |
106 |
|
|
107 |
|
switch (inp_coverage) { |
108 |
|
case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: |
192 |
|
rev_symmetry(rbf->invec, sym); |
193 |
|
if (sym & MIRROR_X) |
194 |
|
for (n = rbf->nrbf; n-- > 0; ) |
195 |
< |
rbf->rbfa[n].gx = GRIDRES-1 - rbf->rbfa[n].gx; |
195 |
> |
rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx; |
196 |
|
if (sym & MIRROR_Y) |
197 |
|
for (n = rbf->nrbf; n-- > 0; ) |
198 |
< |
rbf->rbfa[n].gy = GRIDRES-1 - rbf->rbfa[n].gy; |
198 |
> |
rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy; |
199 |
|
} |
200 |
|
|
201 |
< |
/* Compute volume associated with Gaussian lobe */ |
202 |
< |
double |
203 |
< |
rbf_volume(const RBFVAL *rbfp) |
201 |
> |
/* Rotate RBF to correspond to given incident vector */ |
202 |
> |
void |
203 |
> |
rotate_rbf(RBFNODE *rbf, const FVECT invec) |
204 |
|
{ |
205 |
< |
double rad = R2ANG(rbfp->crad); |
205 |
> |
static const FVECT vnorm = {.0, .0, 1.}; |
206 |
> |
const double phi = atan2(invec[1],invec[0]) - |
207 |
> |
atan2(rbf->invec[1],rbf->invec[0]); |
208 |
> |
FVECT outvec; |
209 |
> |
int pos[2]; |
210 |
> |
int n; |
211 |
|
|
212 |
< |
return((2.*M_PI) * rbfp->peak * rad*rad); |
212 |
> |
for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) { |
213 |
> |
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
214 |
> |
spinvector(outvec, outvec, vnorm, phi); |
215 |
> |
pos_from_vec(pos, outvec); |
216 |
> |
rbf->rbfa[n].gx = pos[0]; |
217 |
> |
rbf->rbfa[n].gy = pos[1]; |
218 |
> |
} |
219 |
> |
VCOPY(rbf->invec, invec); |
220 |
|
} |
221 |
|
|
222 |
|
/* Compute outgoing vector from grid position */ |
226 |
|
double uv[2]; |
227 |
|
double r2; |
228 |
|
|
229 |
< |
SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5)); |
229 |
> |
SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
230 |
|
/* uniform hemispherical projection */ |
231 |
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
232 |
|
vec[0] = vec[1] = sqrt(2. - r2); |
244 |
|
|
245 |
|
SDdisk2square(sq, vec[0]*norm, vec[1]*norm); |
246 |
|
|
247 |
< |
pos[0] = (int)(sq[0]*GRIDRES); |
248 |
< |
pos[1] = (int)(sq[1]*GRIDRES); |
247 |
> |
pos[0] = (int)(sq[0]*grid_res); |
248 |
> |
pos[1] = (int)(sq[1]*grid_res); |
249 |
|
} |
250 |
|
|
251 |
< |
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
251 |
> |
/* Compute volume associated with Gaussian lobe */ |
252 |
|
double |
253 |
< |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
253 |
> |
rbf_volume(const RBFVAL *rbfp) |
254 |
|
{ |
255 |
< |
double res = .0; |
255 |
> |
double rad = R2ANG(rbfp->crad); |
256 |
> |
FVECT odir; |
257 |
> |
double elev, integ; |
258 |
> |
/* infinite integral approximation */ |
259 |
> |
integ = (2.*M_PI) * rbfp->peak * rad*rad; |
260 |
> |
/* check if we're near horizon */ |
261 |
> |
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
262 |
> |
elev = output_orient*odir[2]; |
263 |
> |
/* apply cut-off correction if > 1% */ |
264 |
> |
if (elev < 2.8*rad) { |
265 |
> |
/* elev = asin(elev); /* this is so crude, anyway... */ |
266 |
> |
integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad)); |
267 |
> |
} |
268 |
> |
return(integ); |
269 |
> |
} |
270 |
> |
|
271 |
> |
/* Evaluate BSDF at the given normalized outgoing direction in color */ |
272 |
> |
SDError |
273 |
> |
eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec) |
274 |
> |
{ |
275 |
> |
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
276 |
> |
int pos[2]; |
277 |
> |
double res = 0; |
278 |
> |
double usum = 0, vsum = 0; |
279 |
|
const RBFVAL *rbfp; |
280 |
|
FVECT odir; |
281 |
< |
double sig2; |
281 |
> |
double rad2; |
282 |
|
int n; |
283 |
< |
|
284 |
< |
if (rp == NULL) |
285 |
< |
return(.0); |
283 |
> |
/* assign default value */ |
284 |
> |
sv->spec = c_dfcolor; |
285 |
> |
sv->cieY = bsdf_min; |
286 |
> |
/* check for wrong side */ |
287 |
> |
if (outvec[2] > 0 ^ output_orient > 0) { |
288 |
> |
strcpy(SDerrorDetail, "Wrong-side scattering query"); |
289 |
> |
return(SDEargument); |
290 |
> |
} |
291 |
> |
if (rp == NULL) /* return minimum if no information avail. */ |
292 |
> |
return(SDEnone); |
293 |
> |
/* optimization for fast lobe culling */ |
294 |
> |
pos_from_vec(pos, outvec); |
295 |
> |
/* sum radial basis function */ |
296 |
|
rbfp = rp->rbfa; |
297 |
|
for (n = rp->nrbf; n--; rbfp++) { |
298 |
+ |
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
299 |
+ |
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
300 |
+ |
double val; |
301 |
+ |
rad2 = R2ANG(rbfp->crad); |
302 |
+ |
rad2 *= rad2; |
303 |
+ |
if (d2 > rad2*rfact2) |
304 |
+ |
continue; |
305 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
306 |
< |
sig2 = R2ANG(rbfp->crad); |
307 |
< |
sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2); |
308 |
< |
if (sig2 > -19.) |
309 |
< |
res += rbfp->peak * exp(sig2); |
306 |
> |
val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
307 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
308 |
> |
usum += val * (rbfp->chroma & 0xff); |
309 |
> |
vsum += val * (rbfp->chroma>>8 & 0xff); |
310 |
> |
} |
311 |
> |
res += val; |
312 |
|
} |
313 |
< |
return(res); |
313 |
> |
sv->cieY = res / COSF(outvec[2]); |
314 |
> |
if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */ |
315 |
> |
sv->cieY = bsdf_min; |
316 |
> |
} else if (rbf_colorimetry == RBCtristimulus) { |
317 |
> |
C_CHROMA cres = (int)(usum/res + frandom()); |
318 |
> |
cres |= (int)(vsum/res + frandom()) << 8; |
319 |
> |
c_decodeChroma(&sv->spec, cres); |
320 |
> |
} |
321 |
> |
return(SDEnone); |
322 |
|
} |
323 |
|
|
324 |
+ |
/* Evaluate BSDF at the given normalized outgoing direction in Y */ |
325 |
+ |
double |
326 |
+ |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
327 |
+ |
{ |
328 |
+ |
SDValue sv; |
329 |
+ |
|
330 |
+ |
if (eval_rbfcol(&sv, rp, outvec) == SDEnone) |
331 |
+ |
return(sv.cieY); |
332 |
+ |
|
333 |
+ |
return(0.0); |
334 |
+ |
} |
335 |
+ |
|
336 |
|
/* Insert a new directional scattering function in our global list */ |
337 |
|
int |
338 |
|
insert_dsf(RBFNODE *newrbf) |
343 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
344 |
|
if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { |
345 |
|
fprintf(stderr, |
346 |
< |
"%s: Duplicate incident measurement (ignored)\n", |
347 |
< |
progname); |
346 |
> |
"%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n", |
347 |
> |
progname, get_theta180(newrbf->invec), |
348 |
> |
get_phi360(newrbf->invec)); |
349 |
|
free(newrbf); |
350 |
|
return(-1); |
351 |
|
} |
411 |
|
int |
412 |
|
get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) |
413 |
|
{ |
414 |
< |
const MIGRATION *ej, *ej2; |
414 |
> |
const MIGRATION *ej1, *ej2; |
415 |
|
RBFNODE *tv; |
416 |
|
|
417 |
|
rbfv[0] = rbfv[1] = NULL; |
418 |
|
if (mig == NULL) |
419 |
|
return(0); |
420 |
< |
for (ej = mig->rbfv[0]->ejl; ej != NULL; |
421 |
< |
ej = nextedge(mig->rbfv[0],ej)) { |
422 |
< |
if (ej == mig) |
420 |
> |
for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; |
421 |
> |
ej1 = nextedge(mig->rbfv[0],ej1)) { |
422 |
> |
if (ej1 == mig) |
423 |
|
continue; |
424 |
< |
tv = opp_rbf(mig->rbfv[0],ej); |
424 |
> |
tv = opp_rbf(mig->rbfv[0],ej1); |
425 |
|
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
426 |
|
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
427 |
|
rbfv[is_rev_tri(mig->rbfv[0]->invec, |
433 |
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
434 |
|
} |
435 |
|
|
436 |
+ |
/* Return single-lobe specular RBF for the given incident direction */ |
437 |
+ |
RBFNODE * |
438 |
+ |
def_rbf_spec(const FVECT invec) |
439 |
+ |
{ |
440 |
+ |
RBFNODE *rbf; |
441 |
+ |
FVECT ovec; |
442 |
+ |
int pos[2]; |
443 |
+ |
|
444 |
+ |
if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ |
445 |
+ |
return(NULL); |
446 |
+ |
if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0)) |
447 |
+ |
return(NULL); /* nothing set */ |
448 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); |
449 |
+ |
if (rbf == NULL) |
450 |
+ |
return(NULL); |
451 |
+ |
ovec[0] = -invec[0]; |
452 |
+ |
ovec[1] = -invec[1]; |
453 |
+ |
ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1); |
454 |
+ |
pos_from_vec(pos, ovec); |
455 |
+ |
rbf->ord = 0; |
456 |
+ |
rbf->next = NULL; |
457 |
+ |
rbf->ejl = NULL; |
458 |
+ |
VCOPY(rbf->invec, invec); |
459 |
+ |
rbf->nrbf = 1; |
460 |
+ |
rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]); |
461 |
+ |
rbf->rbfa[0].chroma = c_dfchroma; |
462 |
+ |
rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad); |
463 |
+ |
rbf->rbfa[0].gx = pos[0]; |
464 |
+ |
rbf->rbfa[0].gy = pos[1]; |
465 |
+ |
rbf->vtotal = rbf_volume(rbf->rbfa); |
466 |
+ |
return(rbf); |
467 |
+ |
} |
468 |
+ |
|
469 |
+ |
/* Advect and allocate new RBF along edge (internal call) */ |
470 |
+ |
RBFNODE * |
471 |
+ |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
472 |
+ |
{ |
473 |
+ |
double cthresh = FTINY; |
474 |
+ |
RBFNODE *rbf; |
475 |
+ |
int n, i, j; |
476 |
+ |
double t, full_dist; |
477 |
+ |
/* get relative position */ |
478 |
+ |
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
479 |
+ |
if (t < M_PI/grid_res) { /* near first DSF */ |
480 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
481 |
+ |
rbf = (RBFNODE *)malloc(n); |
482 |
+ |
if (rbf == NULL) |
483 |
+ |
goto memerr; |
484 |
+ |
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
485 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
486 |
+ |
return(rbf); |
487 |
+ |
} |
488 |
+ |
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
489 |
+ |
if (t > full_dist-M_PI/grid_res) { /* near second DSF */ |
490 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
491 |
+ |
rbf = (RBFNODE *)malloc(n); |
492 |
+ |
if (rbf == NULL) |
493 |
+ |
goto memerr; |
494 |
+ |
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
495 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
496 |
+ |
return(rbf); |
497 |
+ |
} |
498 |
+ |
t /= full_dist; |
499 |
+ |
tryagain: |
500 |
+ |
n = 0; /* count migrating particles */ |
501 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) |
502 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
503 |
+ |
n += (mtx_coef(mig,i,j) > cthresh); |
504 |
+ |
/* are we over our limit? */ |
505 |
+ |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
506 |
+ |
cthresh = cthresh*2. + 10.*FTINY; |
507 |
+ |
goto tryagain; |
508 |
+ |
} |
509 |
+ |
#ifdef DEBUG |
510 |
+ |
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
511 |
+ |
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
512 |
+ |
#endif |
513 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
514 |
+ |
if (rbf == NULL) |
515 |
+ |
goto memerr; |
516 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
517 |
+ |
VCOPY(rbf->invec, invec); |
518 |
+ |
rbf->nrbf = n; |
519 |
+ |
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
520 |
+ |
n = 0; /* advect RBF lobes */ |
521 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) { |
522 |
+ |
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
523 |
+ |
const float peak0 = rbf0i->peak; |
524 |
+ |
const double rad0 = R2ANG(rbf0i->crad); |
525 |
+ |
C_COLOR cc0; |
526 |
+ |
FVECT v0; |
527 |
+ |
float mv; |
528 |
+ |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
529 |
+ |
c_decodeChroma(&cc0, rbf0i->chroma); |
530 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
531 |
+ |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
532 |
+ |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
533 |
+ |
double rad2; |
534 |
+ |
FVECT v; |
535 |
+ |
int pos[2]; |
536 |
+ |
rad2 = R2ANG(rbf1j->crad); |
537 |
+ |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
538 |
+ |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
539 |
+ |
rad0*rad0/rad2; |
540 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
541 |
+ |
C_COLOR cres; |
542 |
+ |
c_decodeChroma(&cres, rbf1j->chroma); |
543 |
+ |
c_cmix(&cres, 1.-t, &cc0, t, &cres); |
544 |
+ |
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
545 |
+ |
} else |
546 |
+ |
rbf->rbfa[n].chroma = c_dfchroma; |
547 |
+ |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
548 |
+ |
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
549 |
+ |
geodesic(v, v0, v, t, GEOD_REL); |
550 |
+ |
pos_from_vec(pos, v); |
551 |
+ |
rbf->rbfa[n].gx = pos[0]; |
552 |
+ |
rbf->rbfa[n].gy = pos[1]; |
553 |
+ |
++n; |
554 |
+ |
} |
555 |
+ |
} |
556 |
+ |
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
557 |
+ |
return(rbf); |
558 |
+ |
memerr: |
559 |
+ |
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
560 |
+ |
exit(1); |
561 |
+ |
return(NULL); /* pro forma return */ |
562 |
+ |
} |
563 |
+ |
|
564 |
+ |
/* Clear our BSDF representation and free memory */ |
565 |
+ |
void |
566 |
+ |
clear_bsdf_rep(void) |
567 |
+ |
{ |
568 |
+ |
while (mig_list != NULL) { |
569 |
+ |
MIGRATION *mig = mig_list; |
570 |
+ |
mig_list = mig->next; |
571 |
+ |
free(mig); |
572 |
+ |
} |
573 |
+ |
while (dsf_list != NULL) { |
574 |
+ |
RBFNODE *rbf = dsf_list; |
575 |
+ |
dsf_list = rbf->next; |
576 |
+ |
free(rbf); |
577 |
+ |
} |
578 |
+ |
bsdf_name[0] = '\0'; |
579 |
+ |
bsdf_manuf[0] = '\0'; |
580 |
+ |
inp_coverage = 0; |
581 |
+ |
single_plane_incident = -1; |
582 |
+ |
input_orient = output_orient = 0; |
583 |
+ |
rbf_colorimetry = RBCunknown; |
584 |
+ |
grid_res = GRIDRES; |
585 |
+ |
memset(bsdf_hist, 0, sizeof(bsdf_hist)); |
586 |
+ |
bsdf_min = 0; |
587 |
+ |
bsdf_spec_val = 0; |
588 |
+ |
bsdf_spec_rad = 0; |
589 |
+ |
} |
590 |
+ |
|
591 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
592 |
|
void |
593 |
|
save_bsdf_rep(FILE *ofp) |
596 |
|
MIGRATION *mig; |
597 |
|
int i, n; |
598 |
|
/* finish header */ |
599 |
+ |
if (bsdf_name[0]) |
600 |
+ |
fprintf(ofp, "NAME=%s\n", bsdf_name); |
601 |
+ |
if (bsdf_manuf[0]) |
602 |
+ |
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
603 |
|
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
604 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
605 |
+ |
fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]); |
606 |
+ |
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
607 |
+ |
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
608 |
+ |
if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0)) |
609 |
+ |
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad); |
610 |
|
fputformat(BSDFREP_FMT, ofp); |
611 |
|
fputc('\n', ofp); |
612 |
+ |
putint(BSDFREP_MAGIC, 2, ofp); |
613 |
|
/* write each DSF */ |
614 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
615 |
|
putint(rbf->ord, 4, ofp); |
620 |
|
putint(rbf->nrbf, 4, ofp); |
621 |
|
for (i = 0; i < rbf->nrbf; i++) { |
622 |
|
putflt(rbf->rbfa[i].peak, ofp); |
623 |
+ |
putint(rbf->rbfa[i].chroma, 2, ofp); |
624 |
|
putint(rbf->rbfa[i].crad, 2, ofp); |
625 |
< |
putint(rbf->rbfa[i].gx, 1, ofp); |
626 |
< |
putint(rbf->rbfa[i].gy, 1, ofp); |
625 |
> |
putint(rbf->rbfa[i].gx, 2, ofp); |
626 |
> |
putint(rbf->rbfa[i].gy, 2, ofp); |
627 |
|
} |
628 |
|
} |
629 |
|
putint(-1, 4, ofp); /* terminator */ |
659 |
|
static int |
660 |
|
headline(char *s, void *p) |
661 |
|
{ |
662 |
< |
char fmt[32]; |
662 |
> |
char fmt[MAXFMTLEN]; |
663 |
> |
int i; |
664 |
|
|
665 |
+ |
if (!strncmp(s, "NAME=", 5)) { |
666 |
+ |
strcpy(bsdf_name, s+5); |
667 |
+ |
bsdf_name[strlen(bsdf_name)-1] = '\0'; |
668 |
+ |
} |
669 |
+ |
if (!strncmp(s, "MANUFACT=", 9)) { |
670 |
+ |
strcpy(bsdf_manuf, s+9); |
671 |
+ |
bsdf_manuf[strlen(bsdf_manuf)-1] = '\0'; |
672 |
+ |
} |
673 |
|
if (!strncmp(s, "SYMMETRY=", 9)) { |
674 |
|
inp_coverage = atoi(s+9); |
675 |
|
single_plane_incident = !inp_coverage; |
679 |
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
680 |
|
return(0); |
681 |
|
} |
682 |
+ |
if (!strncmp(s, "COLORIMETRY=", 12)) { |
683 |
+ |
fmt[0] = '\0'; |
684 |
+ |
sscanf(s+12, "%s", fmt); |
685 |
+ |
for (i = RBCunknown; i >= 0; i--) |
686 |
+ |
if (!strcmp(fmt, RBCident[i])) |
687 |
+ |
break; |
688 |
+ |
if (i < 0) |
689 |
+ |
return(-1); |
690 |
+ |
rbf_colorimetry = i; |
691 |
+ |
return(0); |
692 |
+ |
} |
693 |
+ |
if (!strncmp(s, "GRIDRES=", 8)) { |
694 |
+ |
sscanf(s+8, "%d", &grid_res); |
695 |
+ |
return(0); |
696 |
+ |
} |
697 |
+ |
if (!strncmp(s, "BSDFMIN=", 8)) { |
698 |
+ |
sscanf(s+8, "%lf", &bsdf_min); |
699 |
+ |
return(0); |
700 |
+ |
} |
701 |
+ |
if (!strncmp(s, "BSDFSPEC=", 9)) { |
702 |
+ |
sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad); |
703 |
+ |
return(0); |
704 |
+ |
} |
705 |
|
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
706 |
|
return(-1); |
707 |
|
return(0); |
714 |
|
RBFNODE rbfh; |
715 |
|
int from_ord, to_ord; |
716 |
|
int i; |
717 |
< |
#ifdef DEBUG |
718 |
< |
if ((dsf_list != NULL) | (mig_list != NULL)) { |
719 |
< |
fprintf(stderr, |
720 |
< |
"%s: attempt to load BSDF interpolant over existing\n", |
717 |
> |
|
718 |
> |
clear_bsdf_rep(); |
719 |
> |
if (ifp == NULL) |
720 |
> |
return(0); |
721 |
> |
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
722 |
> |
!input_orient | !output_orient | |
723 |
> |
(grid_res < 16) | (grid_res > 0xffff)) { |
724 |
> |
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
725 |
|
progname); |
726 |
|
return(0); |
727 |
|
} |
728 |
< |
#endif |
729 |
< |
input_orient = output_orient = 0; |
429 |
< |
single_plane_incident = -1; |
430 |
< |
if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 | |
431 |
< |
!input_orient | !output_orient) { |
432 |
< |
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
728 |
> |
if (getint(2, ifp) != BSDFREP_MAGIC) { |
729 |
> |
fprintf(stderr, "%s: bad magic number for BSDF interpolant\n", |
730 |
|
progname); |
731 |
|
return(0); |
732 |
|
} |
733 |
< |
rbfh.next = NULL; /* read each DSF */ |
437 |
< |
rbfh.ejl = NULL; |
733 |
> |
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
734 |
|
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
735 |
|
RBFNODE *newrbf; |
736 |
|
|
737 |
|
rbfh.invec[0] = getflt(ifp); |
738 |
|
rbfh.invec[1] = getflt(ifp); |
739 |
|
rbfh.invec[2] = getflt(ifp); |
740 |
+ |
if (normalize(rbfh.invec) == 0) { |
741 |
+ |
fprintf(stderr, "%s: zero incident vector\n", progname); |
742 |
+ |
return(0); |
743 |
+ |
} |
744 |
|
rbfh.vtotal = getflt(ifp); |
745 |
|
rbfh.nrbf = getint(4, ifp); |
746 |
|
newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) + |
747 |
|
sizeof(RBFVAL)*(rbfh.nrbf-1)); |
748 |
|
if (newrbf == NULL) |
749 |
|
goto memerr; |
750 |
< |
memcpy(newrbf, &rbfh, sizeof(RBFNODE)); |
750 |
> |
*newrbf = rbfh; |
751 |
|
for (i = 0; i < rbfh.nrbf; i++) { |
752 |
|
newrbf->rbfa[i].peak = getflt(ifp); |
753 |
+ |
newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff; |
754 |
|
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
755 |
< |
newrbf->rbfa[i].gx = getint(1, ifp) & 0xff; |
756 |
< |
newrbf->rbfa[i].gy = getint(1, ifp) & 0xff; |
755 |
> |
newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff; |
756 |
> |
newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff; |
757 |
|
} |
758 |
|
if (feof(ifp)) |
759 |
|
goto badEOF; |