| 9 |
|
|
| 10 |
|
#define _USE_MATH_DEFINES |
| 11 |
|
#include <stdlib.h> |
| 12 |
– |
#include <string.h> |
| 12 |
|
#include <math.h> |
| 13 |
|
#include "rtio.h" |
| 14 |
|
#include "resolu.h" |
| 15 |
|
#include "bsdfrep.h" |
| 16 |
+ |
#include "random.h" |
| 17 |
|
/* name and manufacturer if known */ |
| 18 |
|
char bsdf_name[256]; |
| 19 |
|
char bsdf_manuf[256]; |
| 29 |
|
int input_orient = 0; |
| 30 |
|
int output_orient = 0; |
| 31 |
|
|
| 32 |
+ |
/* represented color space */ |
| 33 |
+ |
RBColor rbf_colorimetry = RBCunknown; |
| 34 |
+ |
|
| 35 |
+ |
const char *RBCident[] = { |
| 36 |
+ |
"CIE-Y", "CIE-XYZ", "Spectral", "Unknown" |
| 37 |
+ |
}; |
| 38 |
+ |
|
| 39 |
|
/* BSDF histogram */ |
| 40 |
|
unsigned long bsdf_hist[HISTLEN]; |
| 41 |
|
|
| 42 |
|
/* BSDF value for boundary regions */ |
| 43 |
|
double bsdf_min = 0; |
| 44 |
+ |
double bsdf_spec_val = 0; |
| 45 |
+ |
double bsdf_spec_rad = 0; |
| 46 |
|
|
| 47 |
|
/* processed incident DSF measurements */ |
| 48 |
|
RBFNODE *dsf_list = NULL; |
| 53 |
|
/* current input direction */ |
| 54 |
|
double theta_in_deg, phi_in_deg; |
| 55 |
|
|
| 56 |
+ |
/* header line sharing callback */ |
| 57 |
+ |
int (*sir_headshare)(char *s) = NULL; |
| 58 |
+ |
|
| 59 |
|
/* Register new input direction */ |
| 60 |
|
int |
| 61 |
|
new_input_direction(double new_theta, double new_phi) |
| 62 |
|
{ |
| 51 |
– |
if (!input_orient) /* check input orientation */ |
| 52 |
– |
input_orient = 1 - 2*(new_theta > 90.); |
| 53 |
– |
else if (input_orient > 0 ^ new_theta < 90.) { |
| 54 |
– |
fprintf(stderr, |
| 55 |
– |
"%s: Cannot handle input angles on both sides of surface\n", |
| 56 |
– |
progname); |
| 57 |
– |
return(0); |
| 58 |
– |
} |
| 63 |
|
/* normalize angle ranges */ |
| 64 |
|
while (new_theta < -180.) |
| 65 |
|
new_theta += 360.; |
| 69 |
|
new_theta = -new_theta; |
| 70 |
|
new_phi += 180.; |
| 71 |
|
} |
| 68 |
– |
if ((theta_in_deg = new_theta) < 1.0) |
| 69 |
– |
return(1); /* don't rely on phi near normal */ |
| 72 |
|
while (new_phi < 0) |
| 73 |
|
new_phi += 360.; |
| 74 |
|
while (new_phi >= 360.) |
| 75 |
|
new_phi -= 360.; |
| 76 |
+ |
/* check input orientation */ |
| 77 |
+ |
if (!input_orient) |
| 78 |
+ |
input_orient = 1 - 2*(new_theta > 90.); |
| 79 |
+ |
else if (input_orient > 0 ^ new_theta < 90.) { |
| 80 |
+ |
fprintf(stderr, |
| 81 |
+ |
"%s: Cannot handle input angles on both sides of surface\n", |
| 82 |
+ |
progname); |
| 83 |
+ |
return(0); |
| 84 |
+ |
} |
| 85 |
+ |
if ((theta_in_deg = new_theta) < 1.0) |
| 86 |
+ |
return(1); /* don't rely on phi near normal */ |
| 87 |
|
if (single_plane_incident > 0) /* check input coverage */ |
| 88 |
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
| 89 |
|
else if (single_plane_incident < 0) |
| 104 |
|
int |
| 105 |
|
use_symmetry(FVECT vec) |
| 106 |
|
{ |
| 107 |
< |
const double phi = get_phi360(vec); |
| 107 |
> |
double phi = get_phi360(vec); |
| 108 |
> |
/* because of -0. issue */ |
| 109 |
> |
while (phi >= 360.) phi -= 360.; |
| 110 |
> |
while (phi < 0.) phi += 360.; |
| 111 |
|
|
| 112 |
|
switch (inp_coverage) { |
| 113 |
|
case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: |
| 214 |
|
int pos[2]; |
| 215 |
|
int n; |
| 216 |
|
|
| 217 |
< |
for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) { |
| 217 |
> |
for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) { |
| 218 |
|
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
| 219 |
|
spinvector(outvec, outvec, vnorm, phi); |
| 220 |
|
pos_from_vec(pos, outvec); |
| 225 |
|
} |
| 226 |
|
|
| 227 |
|
/* Compute outgoing vector from grid position */ |
| 228 |
+ |
#if 1 |
| 229 |
|
void |
| 230 |
|
ovec_from_pos(FVECT vec, int xpos, int ypos) |
| 231 |
< |
{ |
| 232 |
< |
double uv[2]; |
| 231 |
> |
{ /* precomputed table version */ |
| 232 |
> |
static int qsiz = 0; |
| 233 |
> |
static float (*q_uv)[2] = NULL; |
| 234 |
> |
|
| 235 |
> |
if (vec == NULL) { /* just free table? */ |
| 236 |
> |
if (q_uv) free(q_uv); |
| 237 |
> |
qsiz = 0; |
| 238 |
> |
return; |
| 239 |
> |
} |
| 240 |
> |
if (qsiz != grid_res>>1) { |
| 241 |
> |
int x, y; /* (re)make positive quadrant table */ |
| 242 |
> |
RREAL uv[2]; |
| 243 |
> |
double r; |
| 244 |
> |
if (q_uv) free(q_uv); |
| 245 |
> |
qsiz = grid_res>>1; |
| 246 |
> |
q_uv = (float (*)[2])malloc(sizeof(float)*2*qsiz*qsiz); |
| 247 |
> |
for (y = qsiz; y--; ) |
| 248 |
> |
for (x = qsiz; x--; ) { |
| 249 |
> |
square2disk(uv, 0.5 + (x+.5)/grid_res, |
| 250 |
> |
0.5 + (y+.5)/grid_res); |
| 251 |
> |
/* uniform hemispherical projection */ |
| 252 |
> |
r = sqrt(2. - uv[0]*uv[0] - uv[1]*uv[1]); |
| 253 |
> |
q_uv[qsiz*y + x][0] = (float)(r*uv[0]); |
| 254 |
> |
q_uv[qsiz*y + x][1] = (float)(r*uv[1]); |
| 255 |
> |
} |
| 256 |
> |
} |
| 257 |
> |
/* put in positive quadrant */ |
| 258 |
> |
if (xpos >= qsiz) { xpos -= qsiz; vec[0] = 1.; } |
| 259 |
> |
else { xpos = qsiz-1 - xpos; vec[0] = -1.; } |
| 260 |
> |
if (ypos >= qsiz) { ypos -= qsiz; vec[1] = 1.; } |
| 261 |
> |
else { ypos = qsiz-1 - ypos; vec[1] = -1.; } |
| 262 |
> |
|
| 263 |
> |
vec[0] *= (RREAL)q_uv[qsiz*ypos + xpos][0]; |
| 264 |
> |
vec[1] *= (RREAL)q_uv[qsiz*ypos + xpos][1]; |
| 265 |
> |
vec[2] = output_orient*sqrt(1. - vec[0]*vec[0] - vec[1]*vec[1]); |
| 266 |
> |
} |
| 267 |
> |
#else |
| 268 |
> |
void |
| 269 |
> |
ovec_from_pos(FVECT vec, int xpos, int ypos) |
| 270 |
> |
{ /* table-free version */ |
| 271 |
> |
RREAL uv[2]; |
| 272 |
|
double r2; |
| 273 |
< |
|
| 274 |
< |
SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
| 273 |
> |
|
| 274 |
> |
if (vec == NULL) |
| 275 |
> |
return; |
| 276 |
> |
|
| 277 |
> |
square2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
| 278 |
|
/* uniform hemispherical projection */ |
| 279 |
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
| 280 |
|
vec[0] = vec[1] = sqrt(2. - r2); |
| 282 |
|
vec[1] *= uv[1]; |
| 283 |
|
vec[2] = output_orient*(1. - r2); |
| 284 |
|
} |
| 285 |
+ |
#endif |
| 286 |
|
|
| 287 |
|
/* Compute grid position from normalized input/output vector */ |
| 288 |
|
void |
| 289 |
|
pos_from_vec(int pos[2], const FVECT vec) |
| 290 |
|
{ |
| 291 |
< |
double sq[2]; /* uniform hemispherical projection */ |
| 291 |
> |
RREAL sq[2]; /* uniform hemispherical projection */ |
| 292 |
|
double norm = 1./sqrt(1. + fabs(vec[2])); |
| 293 |
|
|
| 294 |
< |
SDdisk2square(sq, vec[0]*norm, vec[1]*norm); |
| 294 |
> |
disk2square(sq, vec[0]*norm, vec[1]*norm); |
| 295 |
|
|
| 296 |
|
pos[0] = (int)(sq[0]*grid_res); |
| 297 |
|
pos[1] = (int)(sq[1]*grid_res); |
| 317 |
|
return(integ); |
| 318 |
|
} |
| 319 |
|
|
| 320 |
< |
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
| 321 |
< |
double |
| 322 |
< |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
| 320 |
> |
/* Evaluate BSDF at the given normalized outgoing direction in color */ |
| 321 |
> |
SDError |
| 322 |
> |
eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec) |
| 323 |
|
{ |
| 324 |
|
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
| 265 |
– |
double minval = bsdf_min*output_orient*outvec[2]; |
| 325 |
|
int pos[2]; |
| 326 |
|
double res = 0; |
| 327 |
+ |
double usum = 0, vsum = 0; |
| 328 |
|
const RBFVAL *rbfp; |
| 329 |
|
FVECT odir; |
| 330 |
|
double rad2; |
| 331 |
|
int n; |
| 332 |
+ |
/* assign default value */ |
| 333 |
+ |
sv->spec = c_dfcolor; |
| 334 |
+ |
sv->cieY = bsdf_min; |
| 335 |
|
/* check for wrong side */ |
| 336 |
< |
if (outvec[2] > 0 ^ output_orient > 0) |
| 337 |
< |
return(.0); |
| 338 |
< |
/* use minimum if no information avail. */ |
| 339 |
< |
if (rp == NULL) |
| 340 |
< |
return(minval); |
| 336 |
> |
if (outvec[2] > 0 ^ output_orient > 0) { |
| 337 |
> |
strcpy(SDerrorDetail, "Wrong-side scattering query"); |
| 338 |
> |
return(SDEargument); |
| 339 |
> |
} |
| 340 |
> |
if (rp == NULL) /* return minimum if no information avail. */ |
| 341 |
> |
return(SDEnone); |
| 342 |
|
/* optimization for fast lobe culling */ |
| 343 |
|
pos_from_vec(pos, outvec); |
| 344 |
|
/* sum radial basis function */ |
| 346 |
|
for (n = rp->nrbf; n--; rbfp++) { |
| 347 |
|
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
| 348 |
|
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
| 349 |
+ |
double val; |
| 350 |
|
rad2 = R2ANG(rbfp->crad); |
| 351 |
|
rad2 *= rad2; |
| 352 |
|
if (d2 > rad2*rfact2) |
| 353 |
|
continue; |
| 354 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
| 355 |
< |
res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
| 355 |
> |
val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
| 356 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
| 357 |
> |
usum += val * (rbfp->chroma & 0xff); |
| 358 |
> |
vsum += val * (rbfp->chroma>>8 & 0xff); |
| 359 |
> |
} |
| 360 |
> |
res += val; |
| 361 |
|
} |
| 362 |
< |
if (res < minval) /* never return less than minval */ |
| 363 |
< |
return(minval); |
| 364 |
< |
return(res); |
| 362 |
> |
sv->cieY = res / COSF(outvec[2]); |
| 363 |
> |
if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */ |
| 364 |
> |
sv->cieY = bsdf_min; |
| 365 |
> |
} else if (rbf_colorimetry == RBCtristimulus) { |
| 366 |
> |
C_CHROMA cres = (int)(usum/res + frandom()); |
| 367 |
> |
cres |= (int)(vsum/res + frandom()) << 8; |
| 368 |
> |
c_decodeChroma(&sv->spec, cres); |
| 369 |
> |
} |
| 370 |
> |
return(SDEnone); |
| 371 |
|
} |
| 372 |
|
|
| 373 |
+ |
/* Evaluate BSDF at the given normalized outgoing direction in Y */ |
| 374 |
+ |
double |
| 375 |
+ |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
| 376 |
+ |
{ |
| 377 |
+ |
SDValue sv; |
| 378 |
+ |
|
| 379 |
+ |
if (eval_rbfcol(&sv, rp, outvec) == SDEnone) |
| 380 |
+ |
return(sv.cieY); |
| 381 |
+ |
|
| 382 |
+ |
return(0.0); |
| 383 |
+ |
} |
| 384 |
+ |
|
| 385 |
|
/* Insert a new directional scattering function in our global list */ |
| 386 |
|
int |
| 387 |
|
insert_dsf(RBFNODE *newrbf) |
| 392 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 393 |
|
if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { |
| 394 |
|
fprintf(stderr, |
| 395 |
< |
"%s: Duplicate incident measurement (ignored)\n", |
| 396 |
< |
progname); |
| 395 |
> |
"%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n", |
| 396 |
> |
progname, get_theta180(newrbf->invec), |
| 397 |
> |
get_phi360(newrbf->invec)); |
| 398 |
|
free(newrbf); |
| 399 |
|
return(-1); |
| 400 |
|
} |
| 482 |
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
| 483 |
|
} |
| 484 |
|
|
| 485 |
+ |
/* Return single-lobe specular RBF for the given incident direction */ |
| 486 |
+ |
RBFNODE * |
| 487 |
+ |
def_rbf_spec(const FVECT invec) |
| 488 |
+ |
{ |
| 489 |
+ |
RBFNODE *rbf; |
| 490 |
+ |
FVECT ovec; |
| 491 |
+ |
int pos[2]; |
| 492 |
+ |
|
| 493 |
+ |
if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ |
| 494 |
+ |
return(NULL); |
| 495 |
+ |
if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0)) |
| 496 |
+ |
return(NULL); /* nothing set */ |
| 497 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); |
| 498 |
+ |
if (rbf == NULL) |
| 499 |
+ |
return(NULL); |
| 500 |
+ |
ovec[0] = -invec[0]; |
| 501 |
+ |
ovec[1] = -invec[1]; |
| 502 |
+ |
ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1); |
| 503 |
+ |
pos_from_vec(pos, ovec); |
| 504 |
+ |
rbf->ord = 0; |
| 505 |
+ |
rbf->next = NULL; |
| 506 |
+ |
rbf->ejl = NULL; |
| 507 |
+ |
VCOPY(rbf->invec, invec); |
| 508 |
+ |
rbf->nrbf = 1; |
| 509 |
+ |
rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]); |
| 510 |
+ |
rbf->rbfa[0].chroma = c_dfchroma; |
| 511 |
+ |
rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad); |
| 512 |
+ |
rbf->rbfa[0].gx = pos[0]; |
| 513 |
+ |
rbf->rbfa[0].gy = pos[1]; |
| 514 |
+ |
rbf->vtotal = rbf_volume(rbf->rbfa); |
| 515 |
+ |
return(rbf); |
| 516 |
+ |
} |
| 517 |
+ |
|
| 518 |
|
/* Advect and allocate new RBF along edge (internal call) */ |
| 519 |
|
RBFNODE * |
| 520 |
|
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
| 525 |
|
double t, full_dist; |
| 526 |
|
/* get relative position */ |
| 527 |
|
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
| 528 |
< |
if (t < M_PI/grid_res) { /* near first DSF */ |
| 528 |
> |
if (t <= .001) { /* near first DSF */ |
| 529 |
|
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
| 530 |
|
rbf = (RBFNODE *)malloc(n); |
| 531 |
|
if (rbf == NULL) |
| 535 |
|
return(rbf); |
| 536 |
|
} |
| 537 |
|
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
| 538 |
< |
if (t > full_dist-M_PI/grid_res) { /* near second DSF */ |
| 538 |
> |
if (t >= full_dist-.001) { /* near second DSF */ |
| 539 |
|
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
| 540 |
|
rbf = (RBFNODE *)malloc(n); |
| 541 |
|
if (rbf == NULL) |
| 571 |
|
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
| 572 |
|
const float peak0 = rbf0i->peak; |
| 573 |
|
const double rad0 = R2ANG(rbf0i->crad); |
| 574 |
+ |
C_COLOR cc0; |
| 575 |
|
FVECT v0; |
| 576 |
|
float mv; |
| 577 |
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 578 |
+ |
c_decodeChroma(&cc0, rbf0i->chroma); |
| 579 |
|
for (j = 0; j < mtx_ncols(mig); j++) |
| 580 |
|
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
| 581 |
|
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
| 586 |
|
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
| 587 |
|
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
| 588 |
|
rad0*rad0/rad2; |
| 589 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
| 590 |
+ |
C_COLOR cres; |
| 591 |
+ |
c_decodeChroma(&cres, rbf1j->chroma); |
| 592 |
+ |
c_cmix(&cres, 1.-t, &cc0, t, &cres); |
| 593 |
+ |
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
| 594 |
+ |
} else |
| 595 |
+ |
rbf->rbfa[n].chroma = c_dfchroma; |
| 596 |
|
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 597 |
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
| 598 |
|
geodesic(v, v0, v, t, GEOD_REL); |
| 629 |
|
inp_coverage = 0; |
| 630 |
|
single_plane_incident = -1; |
| 631 |
|
input_orient = output_orient = 0; |
| 632 |
+ |
rbf_colorimetry = RBCunknown; |
| 633 |
|
grid_res = GRIDRES; |
| 634 |
+ |
memset(bsdf_hist, 0, sizeof(bsdf_hist)); |
| 635 |
+ |
bsdf_min = 0; |
| 636 |
+ |
bsdf_spec_val = 0; |
| 637 |
+ |
bsdf_spec_rad = 0; |
| 638 |
|
} |
| 639 |
|
|
| 640 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
| 651 |
|
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
| 652 |
|
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
| 653 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
| 654 |
+ |
fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]); |
| 655 |
|
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
| 656 |
|
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
| 657 |
+ |
if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0)) |
| 658 |
+ |
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad); |
| 659 |
|
fputformat(BSDFREP_FMT, ofp); |
| 660 |
|
fputc('\n', ofp); |
| 661 |
+ |
putint(BSDFREP_MAGIC, 2, ofp); |
| 662 |
|
/* write each DSF */ |
| 663 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 664 |
|
putint(rbf->ord, 4, ofp); |
| 669 |
|
putint(rbf->nrbf, 4, ofp); |
| 670 |
|
for (i = 0; i < rbf->nrbf; i++) { |
| 671 |
|
putflt(rbf->rbfa[i].peak, ofp); |
| 672 |
+ |
putint(rbf->rbfa[i].chroma, 2, ofp); |
| 673 |
|
putint(rbf->rbfa[i].crad, 2, ofp); |
| 674 |
< |
putint(rbf->rbfa[i].gx, 1, ofp); |
| 675 |
< |
putint(rbf->rbfa[i].gy, 1, ofp); |
| 674 |
> |
putint(rbf->rbfa[i].gx, 2, ofp); |
| 675 |
> |
putint(rbf->rbfa[i].gy, 2, ofp); |
| 676 |
|
} |
| 677 |
|
} |
| 678 |
|
putint(-1, 4, ofp); /* terminator */ |
| 708 |
|
static int |
| 709 |
|
headline(char *s, void *p) |
| 710 |
|
{ |
| 711 |
< |
char fmt[32]; |
| 711 |
> |
char fmt[MAXFMTLEN]; |
| 712 |
> |
int i; |
| 713 |
|
|
| 714 |
+ |
if (isheadid(s)) |
| 715 |
+ |
return(0); |
| 716 |
|
if (!strncmp(s, "NAME=", 5)) { |
| 717 |
|
strcpy(bsdf_name, s+5); |
| 718 |
|
bsdf_name[strlen(bsdf_name)-1] = '\0'; |
| 719 |
+ |
return(1); |
| 720 |
|
} |
| 721 |
|
if (!strncmp(s, "MANUFACT=", 9)) { |
| 722 |
|
strcpy(bsdf_manuf, s+9); |
| 723 |
|
bsdf_manuf[strlen(bsdf_manuf)-1] = '\0'; |
| 724 |
+ |
return(1); |
| 725 |
|
} |
| 726 |
|
if (!strncmp(s, "SYMMETRY=", 9)) { |
| 727 |
|
inp_coverage = atoi(s+9); |
| 728 |
|
single_plane_incident = !inp_coverage; |
| 729 |
< |
return(0); |
| 729 |
> |
return(1); |
| 730 |
|
} |
| 731 |
|
if (!strncmp(s, "IO_SIDES=", 9)) { |
| 732 |
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
| 733 |
< |
return(0); |
| 733 |
> |
return(1); |
| 734 |
|
} |
| 735 |
+ |
if (!strncmp(s, "COLORIMETRY=", 12)) { |
| 736 |
+ |
fmt[0] = '\0'; |
| 737 |
+ |
sscanf(s+12, "%s", fmt); |
| 738 |
+ |
for (i = RBCunknown; i >= 0; i--) |
| 739 |
+ |
if (!strcmp(fmt, RBCident[i])) |
| 740 |
+ |
break; |
| 741 |
+ |
if (i < 0) |
| 742 |
+ |
return(-1); |
| 743 |
+ |
rbf_colorimetry = i; |
| 744 |
+ |
return(1); |
| 745 |
+ |
} |
| 746 |
|
if (!strncmp(s, "GRIDRES=", 8)) { |
| 747 |
|
sscanf(s+8, "%d", &grid_res); |
| 748 |
< |
return(0); |
| 748 |
> |
return(1); |
| 749 |
|
} |
| 750 |
|
if (!strncmp(s, "BSDFMIN=", 8)) { |
| 751 |
|
sscanf(s+8, "%lf", &bsdf_min); |
| 752 |
< |
return(0); |
| 752 |
> |
return(1); |
| 753 |
|
} |
| 754 |
< |
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
| 755 |
< |
return(-1); |
| 754 |
> |
if (!strncmp(s, "BSDFSPEC=", 9)) { |
| 755 |
> |
sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad); |
| 756 |
> |
return(1); |
| 757 |
> |
} |
| 758 |
> |
if (formatval(fmt, s)) |
| 759 |
> |
return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0); |
| 760 |
> |
if (sir_headshare != NULL) |
| 761 |
> |
return ((*sir_headshare)(s)); |
| 762 |
|
return(0); |
| 763 |
|
} |
| 764 |
|
|
| 774 |
|
if (ifp == NULL) |
| 775 |
|
return(0); |
| 776 |
|
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
| 777 |
< |
!input_orient | !output_orient) { |
| 777 |
> |
!input_orient | !output_orient | |
| 778 |
> |
(grid_res < 16) | (grid_res > 0xffff)) { |
| 779 |
|
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
| 780 |
|
progname); |
| 781 |
|
return(0); |
| 782 |
|
} |
| 783 |
+ |
if (getint(2, ifp) != BSDFREP_MAGIC) { |
| 784 |
+ |
fprintf(stderr, "%s: bad magic number for BSDF interpolant\n", |
| 785 |
+ |
progname); |
| 786 |
+ |
return(0); |
| 787 |
+ |
} |
| 788 |
|
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
| 789 |
|
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
| 790 |
|
RBFNODE *newrbf; |
| 805 |
|
*newrbf = rbfh; |
| 806 |
|
for (i = 0; i < rbfh.nrbf; i++) { |
| 807 |
|
newrbf->rbfa[i].peak = getflt(ifp); |
| 808 |
+ |
newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff; |
| 809 |
|
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
| 810 |
< |
newrbf->rbfa[i].gx = getint(1, ifp) & 0xff; |
| 811 |
< |
newrbf->rbfa[i].gy = getint(1, ifp) & 0xff; |
| 810 |
> |
newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff; |
| 811 |
> |
newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff; |
| 812 |
|
} |
| 813 |
|
if (feof(ifp)) |
| 814 |
|
goto badEOF; |