| 34 |
|
|
| 35 |
|
/* BSDF value for boundary regions */ |
| 36 |
|
double bsdf_min = 0; |
| 37 |
+ |
float bsdf_spec_peak = 0; |
| 38 |
+ |
int bsdf_spec_crad = 0; |
| 39 |
|
|
| 40 |
|
/* processed incident DSF measurements */ |
| 41 |
|
RBFNODE *dsf_list = NULL; |
| 200 |
|
int pos[2]; |
| 201 |
|
int n; |
| 202 |
|
|
| 203 |
< |
for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) { |
| 203 |
> |
for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) { |
| 204 |
|
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
| 205 |
|
spinvector(outvec, outvec, vnorm, phi); |
| 206 |
|
pos_from_vec(pos, outvec); |
| 259 |
|
return(integ); |
| 260 |
|
} |
| 261 |
|
|
| 262 |
< |
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
| 262 |
> |
/* Evaluate BSDF at the given normalized outgoing direction */ |
| 263 |
|
double |
| 264 |
|
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
| 265 |
|
{ |
| 266 |
|
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
| 265 |
– |
double minval = bsdf_min*output_orient*outvec[2]; |
| 267 |
|
int pos[2]; |
| 268 |
|
double res = 0; |
| 269 |
|
const RBFVAL *rbfp; |
| 275 |
|
return(.0); |
| 276 |
|
/* use minimum if no information avail. */ |
| 277 |
|
if (rp == NULL) |
| 278 |
< |
return(minval); |
| 278 |
> |
return(bsdf_min); |
| 279 |
|
/* optimization for fast lobe culling */ |
| 280 |
|
pos_from_vec(pos, outvec); |
| 281 |
|
/* sum radial basis function */ |
| 290 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
| 291 |
|
res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
| 292 |
|
} |
| 293 |
< |
if (res < minval) /* never return less than minval */ |
| 294 |
< |
return(minval); |
| 293 |
> |
res /= output_orient*outvec[2]; |
| 294 |
> |
if (res < bsdf_min) /* never return less than bsdf_min */ |
| 295 |
> |
return(bsdf_min); |
| 296 |
|
return(res); |
| 297 |
|
} |
| 298 |
|
|
| 306 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 307 |
|
if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { |
| 308 |
|
fprintf(stderr, |
| 309 |
< |
"%s: Duplicate incident measurement (ignored)\n", |
| 310 |
< |
progname); |
| 309 |
> |
"%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n", |
| 310 |
> |
progname, get_theta180(newrbf->invec), |
| 311 |
> |
get_phi360(newrbf->invec)); |
| 312 |
|
free(newrbf); |
| 313 |
|
return(-1); |
| 314 |
|
} |
| 396 |
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
| 397 |
|
} |
| 398 |
|
|
| 399 |
+ |
/* Return single-lobe specular RBF for the given incident direction */ |
| 400 |
+ |
RBFNODE * |
| 401 |
+ |
def_rbf_spec(const FVECT invec) |
| 402 |
+ |
{ |
| 403 |
+ |
RBFNODE *rbf; |
| 404 |
+ |
FVECT ovec; |
| 405 |
+ |
int pos[2]; |
| 406 |
+ |
|
| 407 |
+ |
if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ |
| 408 |
+ |
return(NULL); |
| 409 |
+ |
if ((bsdf_spec_peak <= bsdf_min) | (bsdf_spec_crad <= 0)) |
| 410 |
+ |
return(NULL); /* nothing set */ |
| 411 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); |
| 412 |
+ |
if (rbf == NULL) |
| 413 |
+ |
return(NULL); |
| 414 |
+ |
ovec[0] = -invec[0]; |
| 415 |
+ |
ovec[1] = -invec[1]; |
| 416 |
+ |
ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1); |
| 417 |
+ |
pos_from_vec(pos, ovec); |
| 418 |
+ |
rbf->ord = 0; |
| 419 |
+ |
rbf->next = NULL; |
| 420 |
+ |
rbf->ejl = NULL; |
| 421 |
+ |
VCOPY(rbf->invec, invec); |
| 422 |
+ |
rbf->nrbf = 1; |
| 423 |
+ |
rbf->rbfa[0].peak = bsdf_spec_peak * output_orient*ovec[2]; |
| 424 |
+ |
rbf->rbfa[0].crad = bsdf_spec_crad; |
| 425 |
+ |
rbf->rbfa[0].gx = pos[0]; |
| 426 |
+ |
rbf->rbfa[0].gy = pos[1]; |
| 427 |
+ |
rbf->vtotal = rbf_volume(rbf->rbfa); |
| 428 |
+ |
return(rbf); |
| 429 |
+ |
} |
| 430 |
+ |
|
| 431 |
|
/* Advect and allocate new RBF along edge (internal call) */ |
| 432 |
|
RBFNODE * |
| 433 |
|
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
| 534 |
|
single_plane_incident = -1; |
| 535 |
|
input_orient = output_orient = 0; |
| 536 |
|
grid_res = GRIDRES; |
| 537 |
+ |
bsdf_min = 0; |
| 538 |
+ |
bsdf_spec_peak = 0; |
| 539 |
+ |
bsdf_spec_crad = 0; |
| 540 |
|
} |
| 541 |
|
|
| 542 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
| 555 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
| 556 |
|
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
| 557 |
|
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
| 558 |
+ |
if ((bsdf_spec_peak > bsdf_min) & (bsdf_spec_crad > 0)) |
| 559 |
+ |
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_peak, |
| 560 |
+ |
R2ANG(bsdf_spec_crad)); |
| 561 |
|
fputformat(BSDFREP_FMT, ofp); |
| 562 |
|
fputc('\n', ofp); |
| 563 |
|
/* write each DSF */ |
| 635 |
|
sscanf(s+8, "%lf", &bsdf_min); |
| 636 |
|
return(0); |
| 637 |
|
} |
| 638 |
+ |
if (!strncmp(s, "BSDFSPEC=", 9)) { |
| 639 |
+ |
float bsdf_spec_rad = 0; |
| 640 |
+ |
sscanf(s+9, "%f %f", &bsdf_spec_peak, &bsdf_spec_rad); |
| 641 |
+ |
bsdf_spec_crad = ANG2R(bsdf_spec_rad); |
| 642 |
+ |
return(0); |
| 643 |
+ |
} |
| 644 |
|
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
| 645 |
|
return(-1); |
| 646 |
|
return(0); |
| 658 |
|
if (ifp == NULL) |
| 659 |
|
return(0); |
| 660 |
|
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
| 661 |
< |
!input_orient | !output_orient) { |
| 661 |
> |
!input_orient | !output_orient | |
| 662 |
> |
(grid_res < 16) | (grid_res > 256)) { |
| 663 |
|
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
| 664 |
|
progname); |
| 665 |
|
return(0); |