--- ray/src/cv/bsdfrep.c 2013/11/09 05:47:49 2.19 +++ ray/src/cv/bsdfrep.c 2014/08/22 05:38:44 2.27 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfrep.c,v 2.19 2013/11/09 05:47:49 greg Exp $"; +static const char RCSid[] = "$Id: bsdfrep.c,v 2.27 2014/08/22 05:38:44 greg Exp $"; #endif /* * Support BSDF representation as radial basis functions. @@ -34,6 +34,8 @@ unsigned long bsdf_hist[HISTLEN]; /* BSDF value for boundary regions */ double bsdf_min = 0; +double bsdf_spec_peak = 0; +double bsdf_spec_rad = 0; /* processed incident DSF measurements */ RBFNODE *dsf_list = NULL; @@ -198,7 +200,7 @@ rotate_rbf(RBFNODE *rbf, const FVECT invec) int pos[2]; int n; - for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) { + for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) { ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); spinvector(outvec, outvec, vnorm, phi); pos_from_vec(pos, outvec); @@ -257,12 +259,11 @@ rbf_volume(const RBFVAL *rbfp) return(integ); } -/* Evaluate RBF for DSF at the given normalized outgoing direction */ +/* Evaluate BSDF at the given normalized outgoing direction */ double eval_rbfrep(const RBFNODE *rp, const FVECT outvec) { const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); - double minval = bsdf_min*output_orient*outvec[2]; int pos[2]; double res = 0; const RBFVAL *rbfp; @@ -274,7 +275,7 @@ eval_rbfrep(const RBFNODE *rp, const FVECT outvec) return(.0); /* use minimum if no information avail. */ if (rp == NULL) - return(minval); + return(bsdf_min); /* optimization for fast lobe culling */ pos_from_vec(pos, outvec); /* sum radial basis function */ @@ -289,8 +290,9 @@ eval_rbfrep(const RBFNODE *rp, const FVECT outvec) ovec_from_pos(odir, rbfp->gx, rbfp->gy); res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); } - if (res < minval) /* never return less than minval */ - return(minval); + res /= COSF(outvec[2]); + if (res < bsdf_min) /* never return less than bsdf_min */ + return(bsdf_min); return(res); } @@ -304,8 +306,9 @@ insert_dsf(RBFNODE *newrbf) for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { fprintf(stderr, - "%s: Duplicate incident measurement (ignored)\n", - progname); + "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n", + progname, get_theta180(newrbf->invec), + get_phi360(newrbf->invec)); free(newrbf); return(-1); } @@ -393,6 +396,124 @@ get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) return((rbfv[0] != NULL) + (rbfv[1] != NULL)); } +/* Return single-lobe specular RBF for the given incident direction */ +RBFNODE * +def_rbf_spec(const FVECT invec) +{ + RBFNODE *rbf; + FVECT ovec; + int pos[2]; + + if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ + return(NULL); + if ((bsdf_spec_peak <= bsdf_min) | (bsdf_spec_rad <= 0)) + return(NULL); /* nothing set */ + rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); + if (rbf == NULL) + return(NULL); + ovec[0] = -invec[0]; + ovec[1] = -invec[1]; + ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1); + pos_from_vec(pos, ovec); + rbf->ord = 0; + rbf->next = NULL; + rbf->ejl = NULL; + VCOPY(rbf->invec, invec); + rbf->nrbf = 1; + rbf->rbfa[0].peak = bsdf_spec_peak * output_orient*ovec[2]; + rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad); + rbf->rbfa[0].gx = pos[0]; + rbf->rbfa[0].gy = pos[1]; + rbf->vtotal = rbf_volume(rbf->rbfa); + return(rbf); +} + +/* Advect and allocate new RBF along edge (internal call) */ +RBFNODE * +e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) +{ + double cthresh = FTINY; + RBFNODE *rbf; + int n, i, j; + double t, full_dist; + /* get relative position */ + t = Acos(DOT(invec, mig->rbfv[0]->invec)); + if (t < M_PI/grid_res) { /* near first DSF */ + n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); + rbf = (RBFNODE *)malloc(n); + if (rbf == NULL) + goto memerr; + memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ + rbf->next = NULL; rbf->ejl = NULL; + return(rbf); + } + full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); + if (t > full_dist-M_PI/grid_res) { /* near second DSF */ + n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); + rbf = (RBFNODE *)malloc(n); + if (rbf == NULL) + goto memerr; + memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ + rbf->next = NULL; rbf->ejl = NULL; + return(rbf); + } + t /= full_dist; +tryagain: + n = 0; /* count migrating particles */ + for (i = 0; i < mtx_nrows(mig); i++) + for (j = 0; j < mtx_ncols(mig); j++) + n += (mtx_coef(mig,i,j) > cthresh); + /* are we over our limit? */ + if ((lobe_lim > 0) & (n > lobe_lim)) { + cthresh = cthresh*2. + 10.*FTINY; + goto tryagain; + } +#ifdef DEBUG + fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", + mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); +#endif + rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); + if (rbf == NULL) + goto memerr; + rbf->next = NULL; rbf->ejl = NULL; + VCOPY(rbf->invec, invec); + rbf->nrbf = n; + rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; + n = 0; /* advect RBF lobes */ + for (i = 0; i < mtx_nrows(mig); i++) { + const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; + const float peak0 = rbf0i->peak; + const double rad0 = R2ANG(rbf0i->crad); + FVECT v0; + float mv; + ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); + for (j = 0; j < mtx_ncols(mig); j++) + if ((mv = mtx_coef(mig,i,j)) > cthresh) { + const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; + double rad2; + FVECT v; + int pos[2]; + rad2 = R2ANG(rbf1j->crad); + rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; + rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * + rad0*rad0/rad2; + rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); + ovec_from_pos(v, rbf1j->gx, rbf1j->gy); + geodesic(v, v0, v, t, GEOD_REL); + pos_from_vec(pos, v); + rbf->rbfa[n].gx = pos[0]; + rbf->rbfa[n].gy = pos[1]; + ++n; + } + } + rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ + return(rbf); +memerr: + fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); + exit(1); + return(NULL); /* pro forma return */ +} + /* Clear our BSDF representation and free memory */ void clear_bsdf_rep(void) @@ -413,6 +534,9 @@ clear_bsdf_rep(void) single_plane_incident = -1; input_orient = output_orient = 0; grid_res = GRIDRES; + bsdf_min = 0; + bsdf_spec_peak = 0; + bsdf_spec_rad = 0; } /* Write our BSDF mesh interpolant out to the given binary stream */ @@ -431,6 +555,8 @@ save_bsdf_rep(FILE *ofp) fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); fprintf(ofp, "GRIDRES=%d\n", grid_res); fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); + if ((bsdf_spec_peak > bsdf_min) & (bsdf_spec_rad > 0)) + fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_peak, bsdf_spec_rad); fputformat(BSDFREP_FMT, ofp); fputc('\n', ofp); /* write each DSF */ @@ -508,6 +634,10 @@ headline(char *s, void *p) sscanf(s+8, "%lf", &bsdf_min); return(0); } + if (!strncmp(s, "BSDFSPEC=", 9)) { + sscanf(s+9, "%lf %lf", &bsdf_spec_peak, &bsdf_spec_rad); + return(0); + } if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) return(-1); return(0); @@ -524,8 +654,9 @@ load_bsdf_rep(FILE *ifp) clear_bsdf_rep(); if (ifp == NULL) return(0); - if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 | - !input_orient | !output_orient) { + if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | + !input_orient | !output_orient | + (grid_res < 16) | (grid_res > 256)) { fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", progname); return(0);