| 14 |
|
#include "rtio.h" |
| 15 |
|
#include "resolu.h" |
| 16 |
|
#include "bsdfrep.h" |
| 17 |
< |
/* which quadrants are represented */ |
| 17 |
> |
/* name and manufacturer if known */ |
| 18 |
> |
char bsdf_name[256]; |
| 19 |
> |
char bsdf_manuf[256]; |
| 20 |
> |
/* active grid resolution */ |
| 21 |
> |
int grid_res = GRIDRES; |
| 22 |
> |
|
| 23 |
> |
/* coverage/symmetry using INP_QUAD? flags */ |
| 24 |
|
int inp_coverage = 0; |
| 25 |
|
/* all incident angles in-plane so far? */ |
| 26 |
|
int single_plane_incident = -1; |
| 29 |
|
int input_orient = 0; |
| 30 |
|
int output_orient = 0; |
| 31 |
|
|
| 32 |
+ |
/* BSDF histogram */ |
| 33 |
+ |
unsigned long bsdf_hist[HISTLEN]; |
| 34 |
+ |
|
| 35 |
+ |
/* BSDF value for boundary regions */ |
| 36 |
+ |
double bsdf_min = 0; |
| 37 |
+ |
|
| 38 |
|
/* processed incident DSF measurements */ |
| 39 |
|
RBFNODE *dsf_list = NULL; |
| 40 |
|
|
| 65 |
|
new_theta = -new_theta; |
| 66 |
|
new_phi += 180.; |
| 67 |
|
} |
| 68 |
+ |
if ((theta_in_deg = new_theta) < 1.0) |
| 69 |
+ |
return(1); /* don't rely on phi near normal */ |
| 70 |
|
while (new_phi < 0) |
| 71 |
|
new_phi += 360.; |
| 72 |
|
while (new_phi >= 360.) |
| 75 |
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
| 76 |
|
else if (single_plane_incident < 0) |
| 77 |
|
single_plane_incident = 1; |
| 64 |
– |
theta_in_deg = new_theta; /* assume it's OK */ |
| 78 |
|
phi_in_deg = new_phi; |
| 79 |
|
if ((1. < new_phi) & (new_phi < 89.)) |
| 80 |
|
inp_coverage |= INP_QUAD1; |
| 91 |
|
int |
| 92 |
|
use_symmetry(FVECT vec) |
| 93 |
|
{ |
| 94 |
< |
double phi = get_phi360(vec); |
| 94 |
> |
const double phi = get_phi360(vec); |
| 95 |
|
|
| 96 |
|
switch (inp_coverage) { |
| 97 |
|
case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: |
| 181 |
|
rev_symmetry(rbf->invec, sym); |
| 182 |
|
if (sym & MIRROR_X) |
| 183 |
|
for (n = rbf->nrbf; n-- > 0; ) |
| 184 |
< |
rbf->rbfa[n].gx = GRIDRES-1 - rbf->rbfa[n].gx; |
| 184 |
> |
rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx; |
| 185 |
|
if (sym & MIRROR_Y) |
| 186 |
|
for (n = rbf->nrbf; n-- > 0; ) |
| 187 |
< |
rbf->rbfa[n].gy = GRIDRES-1 - rbf->rbfa[n].gy; |
| 187 |
> |
rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy; |
| 188 |
|
} |
| 189 |
|
|
| 190 |
< |
/* Compute volume associated with Gaussian lobe */ |
| 191 |
< |
double |
| 192 |
< |
rbf_volume(const RBFVAL *rbfp) |
| 190 |
> |
/* Rotate RBF to correspond to given incident vector */ |
| 191 |
> |
void |
| 192 |
> |
rotate_rbf(RBFNODE *rbf, const FVECT invec) |
| 193 |
|
{ |
| 194 |
< |
double rad = R2ANG(rbfp->crad); |
| 194 |
> |
static const FVECT vnorm = {.0, .0, 1.}; |
| 195 |
> |
const double phi = atan2(invec[1],invec[0]) - |
| 196 |
> |
atan2(rbf->invec[1],rbf->invec[0]); |
| 197 |
> |
FVECT outvec; |
| 198 |
> |
int pos[2]; |
| 199 |
> |
int n; |
| 200 |
|
|
| 201 |
< |
return((2.*M_PI) * rbfp->peak * rad*rad); |
| 201 |
> |
for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) { |
| 202 |
> |
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
| 203 |
> |
spinvector(outvec, outvec, vnorm, phi); |
| 204 |
> |
pos_from_vec(pos, outvec); |
| 205 |
> |
rbf->rbfa[n].gx = pos[0]; |
| 206 |
> |
rbf->rbfa[n].gy = pos[1]; |
| 207 |
> |
} |
| 208 |
> |
VCOPY(rbf->invec, invec); |
| 209 |
|
} |
| 210 |
|
|
| 211 |
|
/* Compute outgoing vector from grid position */ |
| 215 |
|
double uv[2]; |
| 216 |
|
double r2; |
| 217 |
|
|
| 218 |
< |
SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5)); |
| 218 |
> |
SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
| 219 |
|
/* uniform hemispherical projection */ |
| 220 |
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
| 221 |
|
vec[0] = vec[1] = sqrt(2. - r2); |
| 233 |
|
|
| 234 |
|
SDdisk2square(sq, vec[0]*norm, vec[1]*norm); |
| 235 |
|
|
| 236 |
< |
pos[0] = (int)(sq[0]*GRIDRES); |
| 237 |
< |
pos[1] = (int)(sq[1]*GRIDRES); |
| 236 |
> |
pos[0] = (int)(sq[0]*grid_res); |
| 237 |
> |
pos[1] = (int)(sq[1]*grid_res); |
| 238 |
|
} |
| 239 |
|
|
| 240 |
+ |
/* Compute volume associated with Gaussian lobe */ |
| 241 |
+ |
double |
| 242 |
+ |
rbf_volume(const RBFVAL *rbfp) |
| 243 |
+ |
{ |
| 244 |
+ |
double rad = R2ANG(rbfp->crad); |
| 245 |
+ |
FVECT odir; |
| 246 |
+ |
double elev, integ; |
| 247 |
+ |
/* infinite integral approximation */ |
| 248 |
+ |
integ = (2.*M_PI) * rbfp->peak * rad*rad; |
| 249 |
+ |
/* check if we're near horizon */ |
| 250 |
+ |
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
| 251 |
+ |
elev = output_orient*odir[2]; |
| 252 |
+ |
/* apply cut-off correction if > 1% */ |
| 253 |
+ |
if (elev < 2.8*rad) { |
| 254 |
+ |
/* elev = asin(elev); /* this is so crude, anyway... */ |
| 255 |
+ |
integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad)); |
| 256 |
+ |
} |
| 257 |
+ |
return(integ); |
| 258 |
+ |
} |
| 259 |
+ |
|
| 260 |
|
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
| 261 |
|
double |
| 262 |
|
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
| 263 |
|
{ |
| 264 |
< |
double res = .0; |
| 264 |
> |
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
| 265 |
> |
double minval = bsdf_min*output_orient*outvec[2]; |
| 266 |
> |
int pos[2]; |
| 267 |
> |
double res = 0; |
| 268 |
|
const RBFVAL *rbfp; |
| 269 |
|
FVECT odir; |
| 270 |
< |
double sig2; |
| 270 |
> |
double rad2; |
| 271 |
|
int n; |
| 272 |
< |
|
| 273 |
< |
if (rp == NULL) |
| 272 |
> |
/* check for wrong side */ |
| 273 |
> |
if (outvec[2] > 0 ^ output_orient > 0) |
| 274 |
|
return(.0); |
| 275 |
+ |
/* use minimum if no information avail. */ |
| 276 |
+ |
if (rp == NULL) |
| 277 |
+ |
return(minval); |
| 278 |
+ |
/* optimization for fast lobe culling */ |
| 279 |
+ |
pos_from_vec(pos, outvec); |
| 280 |
+ |
/* sum radial basis function */ |
| 281 |
|
rbfp = rp->rbfa; |
| 282 |
|
for (n = rp->nrbf; n--; rbfp++) { |
| 283 |
+ |
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
| 284 |
+ |
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
| 285 |
+ |
rad2 = R2ANG(rbfp->crad); |
| 286 |
+ |
rad2 *= rad2; |
| 287 |
+ |
if (d2 > rad2*rfact2) |
| 288 |
+ |
continue; |
| 289 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
| 290 |
< |
sig2 = R2ANG(rbfp->crad); |
| 231 |
< |
sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2); |
| 232 |
< |
if (sig2 > -19.) |
| 233 |
< |
res += rbfp->peak * exp(sig2); |
| 290 |
> |
res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
| 291 |
|
} |
| 292 |
+ |
if (res < minval) /* never return less than minval */ |
| 293 |
+ |
return(minval); |
| 294 |
|
return(res); |
| 295 |
|
} |
| 296 |
|
|
| 340 |
|
RBFNODE *rbf; |
| 341 |
|
|
| 342 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 343 |
< |
if (rbf->ord == ord); |
| 343 |
> |
if (rbf->ord == ord) |
| 344 |
|
return(rbf); |
| 345 |
|
return(NULL); |
| 346 |
|
} |
| 371 |
|
int |
| 372 |
|
get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) |
| 373 |
|
{ |
| 374 |
< |
const MIGRATION *ej, *ej2; |
| 374 |
> |
const MIGRATION *ej1, *ej2; |
| 375 |
|
RBFNODE *tv; |
| 376 |
|
|
| 377 |
|
rbfv[0] = rbfv[1] = NULL; |
| 378 |
|
if (mig == NULL) |
| 379 |
|
return(0); |
| 380 |
< |
for (ej = mig->rbfv[0]->ejl; ej != NULL; |
| 381 |
< |
ej = nextedge(mig->rbfv[0],ej)) { |
| 382 |
< |
if (ej == mig) |
| 380 |
> |
for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; |
| 381 |
> |
ej1 = nextedge(mig->rbfv[0],ej1)) { |
| 382 |
> |
if (ej1 == mig) |
| 383 |
|
continue; |
| 384 |
< |
tv = opp_rbf(mig->rbfv[0],ej); |
| 384 |
> |
tv = opp_rbf(mig->rbfv[0],ej1); |
| 385 |
|
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
| 386 |
|
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
| 387 |
|
rbfv[is_rev_tri(mig->rbfv[0]->invec, |
| 393 |
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
| 394 |
|
} |
| 395 |
|
|
| 396 |
+ |
/* Advect and allocate new RBF along edge (internal call) */ |
| 397 |
+ |
RBFNODE * |
| 398 |
+ |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
| 399 |
+ |
{ |
| 400 |
+ |
double cthresh = FTINY; |
| 401 |
+ |
RBFNODE *rbf; |
| 402 |
+ |
int n, i, j; |
| 403 |
+ |
double t, full_dist; |
| 404 |
+ |
/* get relative position */ |
| 405 |
+ |
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
| 406 |
+ |
if (t < M_PI/grid_res) { /* near first DSF */ |
| 407 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
| 408 |
+ |
rbf = (RBFNODE *)malloc(n); |
| 409 |
+ |
if (rbf == NULL) |
| 410 |
+ |
goto memerr; |
| 411 |
+ |
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
| 412 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
| 413 |
+ |
return(rbf); |
| 414 |
+ |
} |
| 415 |
+ |
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
| 416 |
+ |
if (t > full_dist-M_PI/grid_res) { /* near second DSF */ |
| 417 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
| 418 |
+ |
rbf = (RBFNODE *)malloc(n); |
| 419 |
+ |
if (rbf == NULL) |
| 420 |
+ |
goto memerr; |
| 421 |
+ |
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
| 422 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
| 423 |
+ |
return(rbf); |
| 424 |
+ |
} |
| 425 |
+ |
t /= full_dist; |
| 426 |
+ |
tryagain: |
| 427 |
+ |
n = 0; /* count migrating particles */ |
| 428 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) |
| 429 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
| 430 |
+ |
n += (mtx_coef(mig,i,j) > cthresh); |
| 431 |
+ |
/* are we over our limit? */ |
| 432 |
+ |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
| 433 |
+ |
cthresh = cthresh*2. + 10.*FTINY; |
| 434 |
+ |
goto tryagain; |
| 435 |
+ |
} |
| 436 |
+ |
#ifdef DEBUG |
| 437 |
+ |
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
| 438 |
+ |
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
| 439 |
+ |
#endif |
| 440 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
| 441 |
+ |
if (rbf == NULL) |
| 442 |
+ |
goto memerr; |
| 443 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
| 444 |
+ |
VCOPY(rbf->invec, invec); |
| 445 |
+ |
rbf->nrbf = n; |
| 446 |
+ |
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
| 447 |
+ |
n = 0; /* advect RBF lobes */ |
| 448 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) { |
| 449 |
+ |
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
| 450 |
+ |
const float peak0 = rbf0i->peak; |
| 451 |
+ |
const double rad0 = R2ANG(rbf0i->crad); |
| 452 |
+ |
FVECT v0; |
| 453 |
+ |
float mv; |
| 454 |
+ |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 455 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
| 456 |
+ |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
| 457 |
+ |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
| 458 |
+ |
double rad2; |
| 459 |
+ |
FVECT v; |
| 460 |
+ |
int pos[2]; |
| 461 |
+ |
rad2 = R2ANG(rbf1j->crad); |
| 462 |
+ |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
| 463 |
+ |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
| 464 |
+ |
rad0*rad0/rad2; |
| 465 |
+ |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 466 |
+ |
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
| 467 |
+ |
geodesic(v, v0, v, t, GEOD_REL); |
| 468 |
+ |
pos_from_vec(pos, v); |
| 469 |
+ |
rbf->rbfa[n].gx = pos[0]; |
| 470 |
+ |
rbf->rbfa[n].gy = pos[1]; |
| 471 |
+ |
++n; |
| 472 |
+ |
} |
| 473 |
+ |
} |
| 474 |
+ |
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
| 475 |
+ |
return(rbf); |
| 476 |
+ |
memerr: |
| 477 |
+ |
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
| 478 |
+ |
exit(1); |
| 479 |
+ |
return(NULL); /* pro forma return */ |
| 480 |
+ |
} |
| 481 |
+ |
|
| 482 |
+ |
/* Clear our BSDF representation and free memory */ |
| 483 |
+ |
void |
| 484 |
+ |
clear_bsdf_rep(void) |
| 485 |
+ |
{ |
| 486 |
+ |
while (mig_list != NULL) { |
| 487 |
+ |
MIGRATION *mig = mig_list; |
| 488 |
+ |
mig_list = mig->next; |
| 489 |
+ |
free(mig); |
| 490 |
+ |
} |
| 491 |
+ |
while (dsf_list != NULL) { |
| 492 |
+ |
RBFNODE *rbf = dsf_list; |
| 493 |
+ |
dsf_list = rbf->next; |
| 494 |
+ |
free(rbf); |
| 495 |
+ |
} |
| 496 |
+ |
bsdf_name[0] = '\0'; |
| 497 |
+ |
bsdf_manuf[0] = '\0'; |
| 498 |
+ |
inp_coverage = 0; |
| 499 |
+ |
single_plane_incident = -1; |
| 500 |
+ |
input_orient = output_orient = 0; |
| 501 |
+ |
grid_res = GRIDRES; |
| 502 |
+ |
} |
| 503 |
+ |
|
| 504 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
| 505 |
|
void |
| 506 |
|
save_bsdf_rep(FILE *ofp) |
| 509 |
|
MIGRATION *mig; |
| 510 |
|
int i, n; |
| 511 |
|
/* finish header */ |
| 512 |
+ |
if (bsdf_name[0]) |
| 513 |
+ |
fprintf(ofp, "NAME=%s\n", bsdf_name); |
| 514 |
+ |
if (bsdf_manuf[0]) |
| 515 |
+ |
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
| 516 |
|
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
| 517 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
| 518 |
+ |
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
| 519 |
+ |
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
| 520 |
|
fputformat(BSDFREP_FMT, ofp); |
| 521 |
|
fputc('\n', ofp); |
| 522 |
|
/* write each DSF */ |
| 543 |
|
/* write out as sparse data */ |
| 544 |
|
n = mtx_nrows(mig) * mtx_ncols(mig); |
| 545 |
|
for (i = 0; i < n; i++) { |
| 546 |
< |
if (zerocnt >= 0xff) { |
| 547 |
< |
putint(zerocnt, 1, ofp); zerocnt = 0; |
| 546 |
> |
if (zerocnt == 0xff) { |
| 547 |
> |
putint(0xff, 1, ofp); zerocnt = 0; |
| 548 |
|
} |
| 549 |
|
if (mig->mtx[i] != 0) { |
| 550 |
|
putint(zerocnt, 1, ofp); zerocnt = 0; |
| 569 |
|
{ |
| 570 |
|
char fmt[32]; |
| 571 |
|
|
| 572 |
+ |
if (!strncmp(s, "NAME=", 5)) { |
| 573 |
+ |
strcpy(bsdf_name, s+5); |
| 574 |
+ |
bsdf_name[strlen(bsdf_name)-1] = '\0'; |
| 575 |
+ |
} |
| 576 |
+ |
if (!strncmp(s, "MANUFACT=", 9)) { |
| 577 |
+ |
strcpy(bsdf_manuf, s+9); |
| 578 |
+ |
bsdf_manuf[strlen(bsdf_manuf)-1] = '\0'; |
| 579 |
+ |
} |
| 580 |
|
if (!strncmp(s, "SYMMETRY=", 9)) { |
| 581 |
|
inp_coverage = atoi(s+9); |
| 582 |
|
single_plane_incident = !inp_coverage; |
| 586 |
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
| 587 |
|
return(0); |
| 588 |
|
} |
| 589 |
+ |
if (!strncmp(s, "GRIDRES=", 8)) { |
| 590 |
+ |
sscanf(s+8, "%d", &grid_res); |
| 591 |
+ |
return(0); |
| 592 |
+ |
} |
| 593 |
+ |
if (!strncmp(s, "BSDFMIN=", 8)) { |
| 594 |
+ |
sscanf(s+8, "%lf", &bsdf_min); |
| 595 |
+ |
return(0); |
| 596 |
+ |
} |
| 597 |
|
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
| 598 |
|
return(-1); |
| 599 |
|
return(0); |
| 606 |
|
RBFNODE rbfh; |
| 607 |
|
int from_ord, to_ord; |
| 608 |
|
int i; |
| 609 |
< |
#ifdef DEBUG |
| 610 |
< |
if ((dsf_list != NULL) | (mig_list != NULL)) { |
| 611 |
< |
fprintf(stderr, |
| 423 |
< |
"%s: attempt to load BSDF interpolant over existing\n", |
| 424 |
< |
progname); |
| 609 |
> |
|
| 610 |
> |
clear_bsdf_rep(); |
| 611 |
> |
if (ifp == NULL) |
| 612 |
|
return(0); |
| 613 |
< |
} |
| 427 |
< |
#endif |
| 428 |
< |
input_orient = output_orient = 0; |
| 429 |
< |
single_plane_incident = -1; |
| 430 |
< |
if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 | |
| 613 |
> |
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
| 614 |
|
!input_orient | !output_orient) { |
| 615 |
|
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
| 616 |
|
progname); |
| 617 |
|
return(0); |
| 618 |
|
} |
| 619 |
< |
rbfh.next = NULL; /* read each DSF */ |
| 437 |
< |
rbfh.ejl = NULL; |
| 619 |
> |
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
| 620 |
|
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
| 621 |
|
RBFNODE *newrbf; |
| 622 |
|
|
| 623 |
|
rbfh.invec[0] = getflt(ifp); |
| 624 |
|
rbfh.invec[1] = getflt(ifp); |
| 625 |
|
rbfh.invec[2] = getflt(ifp); |
| 626 |
< |
rbfh.nrbf = getint(4, ifp); |
| 627 |
< |
if (!new_input_vector(rbfh.invec)) |
| 626 |
> |
if (normalize(rbfh.invec) == 0) { |
| 627 |
> |
fprintf(stderr, "%s: zero incident vector\n", progname); |
| 628 |
|
return(0); |
| 629 |
+ |
} |
| 630 |
+ |
rbfh.vtotal = getflt(ifp); |
| 631 |
+ |
rbfh.nrbf = getint(4, ifp); |
| 632 |
|
newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) + |
| 633 |
|
sizeof(RBFVAL)*(rbfh.nrbf-1)); |
| 634 |
|
if (newrbf == NULL) |
| 635 |
|
goto memerr; |
| 636 |
< |
memcpy(newrbf, &rbfh, sizeof(RBFNODE)); |
| 636 |
> |
*newrbf = rbfh; |
| 637 |
|
for (i = 0; i < rbfh.nrbf; i++) { |
| 638 |
|
newrbf->rbfa[i].peak = getflt(ifp); |
| 639 |
|
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
| 672 |
|
memset(newmig->mtx, 0, sizeof(float)*n); |
| 673 |
|
for (i = 0; ; ) { /* read sparse data */ |
| 674 |
|
int zc = getint(1, ifp) & 0xff; |
| 490 |
– |
if (zc == 0xff) { |
| 491 |
– |
i += 0xff; |
| 492 |
– |
continue; |
| 493 |
– |
} |
| 675 |
|
if ((i += zc) >= n) |
| 676 |
|
break; |
| 677 |
+ |
if (zc == 0xff) |
| 678 |
+ |
continue; |
| 679 |
|
newmig->mtx[i++] = getflt(ifp); |
| 680 |
|
} |
| 681 |
|
if (feof(ifp)) |