14 |
|
#include "rtio.h" |
15 |
|
#include "resolu.h" |
16 |
|
#include "bsdfrep.h" |
17 |
< |
/* which quadrants are represented */ |
17 |
> |
/* name and manufacturer if known */ |
18 |
> |
char bsdf_name[256]; |
19 |
> |
char bsdf_manuf[256]; |
20 |
> |
/* active grid resolution */ |
21 |
> |
int grid_res = GRIDRES; |
22 |
> |
|
23 |
> |
/* coverage/symmetry using INP_QUAD? flags */ |
24 |
|
int inp_coverage = 0; |
25 |
|
/* all incident angles in-plane so far? */ |
26 |
|
int single_plane_incident = -1; |
29 |
|
int input_orient = 0; |
30 |
|
int output_orient = 0; |
31 |
|
|
32 |
+ |
/* BSDF histogram */ |
33 |
+ |
unsigned long bsdf_hist[HISTLEN]; |
34 |
+ |
|
35 |
+ |
/* BSDF value for boundary regions */ |
36 |
+ |
double bsdf_min = 0; |
37 |
+ |
|
38 |
|
/* processed incident DSF measurements */ |
39 |
|
RBFNODE *dsf_list = NULL; |
40 |
|
|
65 |
|
new_theta = -new_theta; |
66 |
|
new_phi += 180.; |
67 |
|
} |
68 |
+ |
if ((theta_in_deg = new_theta) < 1.0) |
69 |
+ |
return(1); /* don't rely on phi near normal */ |
70 |
|
while (new_phi < 0) |
71 |
|
new_phi += 360.; |
72 |
|
while (new_phi >= 360.) |
75 |
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
76 |
|
else if (single_plane_incident < 0) |
77 |
|
single_plane_incident = 1; |
64 |
– |
theta_in_deg = new_theta; /* assume it's OK */ |
78 |
|
phi_in_deg = new_phi; |
79 |
|
if ((1. < new_phi) & (new_phi < 89.)) |
80 |
|
inp_coverage |= INP_QUAD1; |
91 |
|
int |
92 |
|
use_symmetry(FVECT vec) |
93 |
|
{ |
94 |
< |
double phi = get_phi360(vec); |
94 |
> |
const double phi = get_phi360(vec); |
95 |
|
|
96 |
|
switch (inp_coverage) { |
97 |
|
case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: |
181 |
|
rev_symmetry(rbf->invec, sym); |
182 |
|
if (sym & MIRROR_X) |
183 |
|
for (n = rbf->nrbf; n-- > 0; ) |
184 |
< |
rbf->rbfa[n].gx = GRIDRES-1 - rbf->rbfa[n].gx; |
184 |
> |
rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx; |
185 |
|
if (sym & MIRROR_Y) |
186 |
|
for (n = rbf->nrbf; n-- > 0; ) |
187 |
< |
rbf->rbfa[n].gy = GRIDRES-1 - rbf->rbfa[n].gy; |
187 |
> |
rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy; |
188 |
|
} |
189 |
|
|
190 |
< |
/* Compute volume associated with Gaussian lobe */ |
191 |
< |
double |
192 |
< |
rbf_volume(const RBFVAL *rbfp) |
190 |
> |
/* Rotate RBF to correspond to given incident vector */ |
191 |
> |
void |
192 |
> |
rotate_rbf(RBFNODE *rbf, const FVECT invec) |
193 |
|
{ |
194 |
< |
double rad = R2ANG(rbfp->crad); |
194 |
> |
static const FVECT vnorm = {.0, .0, 1.}; |
195 |
> |
const double phi = atan2(invec[1],invec[0]) - |
196 |
> |
atan2(rbf->invec[1],rbf->invec[0]); |
197 |
> |
FVECT outvec; |
198 |
> |
int pos[2]; |
199 |
> |
int n; |
200 |
|
|
201 |
< |
return((2.*M_PI) * rbfp->peak * rad*rad); |
201 |
> |
for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) { |
202 |
> |
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
203 |
> |
spinvector(outvec, outvec, vnorm, phi); |
204 |
> |
pos_from_vec(pos, outvec); |
205 |
> |
rbf->rbfa[n].gx = pos[0]; |
206 |
> |
rbf->rbfa[n].gy = pos[1]; |
207 |
> |
} |
208 |
> |
VCOPY(rbf->invec, invec); |
209 |
|
} |
210 |
|
|
211 |
|
/* Compute outgoing vector from grid position */ |
215 |
|
double uv[2]; |
216 |
|
double r2; |
217 |
|
|
218 |
< |
SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5)); |
218 |
> |
SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
219 |
|
/* uniform hemispherical projection */ |
220 |
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
221 |
|
vec[0] = vec[1] = sqrt(2. - r2); |
233 |
|
|
234 |
|
SDdisk2square(sq, vec[0]*norm, vec[1]*norm); |
235 |
|
|
236 |
< |
pos[0] = (int)(sq[0]*GRIDRES); |
237 |
< |
pos[1] = (int)(sq[1]*GRIDRES); |
236 |
> |
pos[0] = (int)(sq[0]*grid_res); |
237 |
> |
pos[1] = (int)(sq[1]*grid_res); |
238 |
|
} |
239 |
|
|
240 |
+ |
/* Compute volume associated with Gaussian lobe */ |
241 |
+ |
double |
242 |
+ |
rbf_volume(const RBFVAL *rbfp) |
243 |
+ |
{ |
244 |
+ |
double rad = R2ANG(rbfp->crad); |
245 |
+ |
FVECT odir; |
246 |
+ |
double elev, integ; |
247 |
+ |
/* infinite integral approximation */ |
248 |
+ |
integ = (2.*M_PI) * rbfp->peak * rad*rad; |
249 |
+ |
/* check if we're near horizon */ |
250 |
+ |
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
251 |
+ |
elev = output_orient*odir[2]; |
252 |
+ |
/* apply cut-off correction if > 1% */ |
253 |
+ |
if (elev < 2.8*rad) { |
254 |
+ |
/* elev = asin(elev); /* this is so crude, anyway... */ |
255 |
+ |
integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad)); |
256 |
+ |
} |
257 |
+ |
return(integ); |
258 |
+ |
} |
259 |
+ |
|
260 |
|
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
261 |
|
double |
262 |
|
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
263 |
|
{ |
264 |
< |
double res = .0; |
264 |
> |
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
265 |
> |
double minval = bsdf_min*output_orient*outvec[2]; |
266 |
> |
int pos[2]; |
267 |
> |
double res = 0; |
268 |
|
const RBFVAL *rbfp; |
269 |
|
FVECT odir; |
270 |
< |
double sig2; |
270 |
> |
double rad2; |
271 |
|
int n; |
272 |
< |
|
273 |
< |
if (rp == NULL) |
272 |
> |
/* check for wrong side */ |
273 |
> |
if (outvec[2] > 0 ^ output_orient > 0) |
274 |
|
return(.0); |
275 |
+ |
/* use minimum if no information avail. */ |
276 |
+ |
if (rp == NULL) |
277 |
+ |
return(minval); |
278 |
+ |
/* optimization for fast lobe culling */ |
279 |
+ |
pos_from_vec(pos, outvec); |
280 |
+ |
/* sum radial basis function */ |
281 |
|
rbfp = rp->rbfa; |
282 |
|
for (n = rp->nrbf; n--; rbfp++) { |
283 |
+ |
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
284 |
+ |
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
285 |
+ |
rad2 = R2ANG(rbfp->crad); |
286 |
+ |
rad2 *= rad2; |
287 |
+ |
if (d2 > rad2*rfact2) |
288 |
+ |
continue; |
289 |
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
290 |
< |
sig2 = R2ANG(rbfp->crad); |
231 |
< |
sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2); |
232 |
< |
if (sig2 > -19.) |
233 |
< |
res += rbfp->peak * exp(sig2); |
290 |
> |
res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
291 |
|
} |
292 |
+ |
if (res < minval) /* never return less than minval */ |
293 |
+ |
return(minval); |
294 |
|
return(res); |
295 |
|
} |
296 |
|
|
340 |
|
RBFNODE *rbf; |
341 |
|
|
342 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
343 |
< |
if (rbf->ord == ord); |
343 |
> |
if (rbf->ord == ord) |
344 |
|
return(rbf); |
345 |
|
return(NULL); |
346 |
|
} |
371 |
|
int |
372 |
|
get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) |
373 |
|
{ |
374 |
< |
const MIGRATION *ej, *ej2; |
374 |
> |
const MIGRATION *ej1, *ej2; |
375 |
|
RBFNODE *tv; |
376 |
|
|
377 |
|
rbfv[0] = rbfv[1] = NULL; |
378 |
|
if (mig == NULL) |
379 |
|
return(0); |
380 |
< |
for (ej = mig->rbfv[0]->ejl; ej != NULL; |
381 |
< |
ej = nextedge(mig->rbfv[0],ej)) { |
382 |
< |
if (ej == mig) |
380 |
> |
for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; |
381 |
> |
ej1 = nextedge(mig->rbfv[0],ej1)) { |
382 |
> |
if (ej1 == mig) |
383 |
|
continue; |
384 |
< |
tv = opp_rbf(mig->rbfv[0],ej); |
384 |
> |
tv = opp_rbf(mig->rbfv[0],ej1); |
385 |
|
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
386 |
|
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
387 |
|
rbfv[is_rev_tri(mig->rbfv[0]->invec, |
393 |
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
394 |
|
} |
395 |
|
|
396 |
+ |
/* Advect and allocate new RBF along edge (internal call) */ |
397 |
+ |
RBFNODE * |
398 |
+ |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
399 |
+ |
{ |
400 |
+ |
double cthresh = FTINY; |
401 |
+ |
RBFNODE *rbf; |
402 |
+ |
int n, i, j; |
403 |
+ |
double t, full_dist; |
404 |
+ |
/* get relative position */ |
405 |
+ |
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
406 |
+ |
if (t < M_PI/grid_res) { /* near first DSF */ |
407 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
408 |
+ |
rbf = (RBFNODE *)malloc(n); |
409 |
+ |
if (rbf == NULL) |
410 |
+ |
goto memerr; |
411 |
+ |
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
412 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
413 |
+ |
return(rbf); |
414 |
+ |
} |
415 |
+ |
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
416 |
+ |
if (t > full_dist-M_PI/grid_res) { /* near second DSF */ |
417 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
418 |
+ |
rbf = (RBFNODE *)malloc(n); |
419 |
+ |
if (rbf == NULL) |
420 |
+ |
goto memerr; |
421 |
+ |
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
422 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
423 |
+ |
return(rbf); |
424 |
+ |
} |
425 |
+ |
t /= full_dist; |
426 |
+ |
tryagain: |
427 |
+ |
n = 0; /* count migrating particles */ |
428 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) |
429 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
430 |
+ |
n += (mtx_coef(mig,i,j) > cthresh); |
431 |
+ |
/* are we over our limit? */ |
432 |
+ |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
433 |
+ |
cthresh = cthresh*2. + 10.*FTINY; |
434 |
+ |
goto tryagain; |
435 |
+ |
} |
436 |
+ |
#ifdef DEBUG |
437 |
+ |
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
438 |
+ |
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
439 |
+ |
#endif |
440 |
+ |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
441 |
+ |
if (rbf == NULL) |
442 |
+ |
goto memerr; |
443 |
+ |
rbf->next = NULL; rbf->ejl = NULL; |
444 |
+ |
VCOPY(rbf->invec, invec); |
445 |
+ |
rbf->nrbf = n; |
446 |
+ |
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
447 |
+ |
n = 0; /* advect RBF lobes */ |
448 |
+ |
for (i = 0; i < mtx_nrows(mig); i++) { |
449 |
+ |
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
450 |
+ |
const float peak0 = rbf0i->peak; |
451 |
+ |
const double rad0 = R2ANG(rbf0i->crad); |
452 |
+ |
FVECT v0; |
453 |
+ |
float mv; |
454 |
+ |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
455 |
+ |
for (j = 0; j < mtx_ncols(mig); j++) |
456 |
+ |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
457 |
+ |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
458 |
+ |
double rad2; |
459 |
+ |
FVECT v; |
460 |
+ |
int pos[2]; |
461 |
+ |
rad2 = R2ANG(rbf1j->crad); |
462 |
+ |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
463 |
+ |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
464 |
+ |
rad0*rad0/rad2; |
465 |
+ |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
466 |
+ |
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
467 |
+ |
geodesic(v, v0, v, t, GEOD_REL); |
468 |
+ |
pos_from_vec(pos, v); |
469 |
+ |
rbf->rbfa[n].gx = pos[0]; |
470 |
+ |
rbf->rbfa[n].gy = pos[1]; |
471 |
+ |
++n; |
472 |
+ |
} |
473 |
+ |
} |
474 |
+ |
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
475 |
+ |
return(rbf); |
476 |
+ |
memerr: |
477 |
+ |
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
478 |
+ |
exit(1); |
479 |
+ |
return(NULL); /* pro forma return */ |
480 |
+ |
} |
481 |
+ |
|
482 |
+ |
/* Clear our BSDF representation and free memory */ |
483 |
+ |
void |
484 |
+ |
clear_bsdf_rep(void) |
485 |
+ |
{ |
486 |
+ |
while (mig_list != NULL) { |
487 |
+ |
MIGRATION *mig = mig_list; |
488 |
+ |
mig_list = mig->next; |
489 |
+ |
free(mig); |
490 |
+ |
} |
491 |
+ |
while (dsf_list != NULL) { |
492 |
+ |
RBFNODE *rbf = dsf_list; |
493 |
+ |
dsf_list = rbf->next; |
494 |
+ |
free(rbf); |
495 |
+ |
} |
496 |
+ |
bsdf_name[0] = '\0'; |
497 |
+ |
bsdf_manuf[0] = '\0'; |
498 |
+ |
inp_coverage = 0; |
499 |
+ |
single_plane_incident = -1; |
500 |
+ |
input_orient = output_orient = 0; |
501 |
+ |
grid_res = GRIDRES; |
502 |
+ |
} |
503 |
+ |
|
504 |
|
/* Write our BSDF mesh interpolant out to the given binary stream */ |
505 |
|
void |
506 |
|
save_bsdf_rep(FILE *ofp) |
509 |
|
MIGRATION *mig; |
510 |
|
int i, n; |
511 |
|
/* finish header */ |
512 |
+ |
if (bsdf_name[0]) |
513 |
+ |
fprintf(ofp, "NAME=%s\n", bsdf_name); |
514 |
+ |
if (bsdf_manuf[0]) |
515 |
+ |
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
516 |
|
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
517 |
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
518 |
+ |
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
519 |
+ |
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
520 |
|
fputformat(BSDFREP_FMT, ofp); |
521 |
|
fputc('\n', ofp); |
522 |
|
/* write each DSF */ |
543 |
|
/* write out as sparse data */ |
544 |
|
n = mtx_nrows(mig) * mtx_ncols(mig); |
545 |
|
for (i = 0; i < n; i++) { |
546 |
< |
if (zerocnt >= 0xff) { |
547 |
< |
putint(zerocnt, 1, ofp); zerocnt = 0; |
546 |
> |
if (zerocnt == 0xff) { |
547 |
> |
putint(0xff, 1, ofp); zerocnt = 0; |
548 |
|
} |
549 |
|
if (mig->mtx[i] != 0) { |
550 |
|
putint(zerocnt, 1, ofp); zerocnt = 0; |
569 |
|
{ |
570 |
|
char fmt[32]; |
571 |
|
|
572 |
+ |
if (!strncmp(s, "NAME=", 5)) { |
573 |
+ |
strcpy(bsdf_name, s+5); |
574 |
+ |
bsdf_name[strlen(bsdf_name)-1] = '\0'; |
575 |
+ |
} |
576 |
+ |
if (!strncmp(s, "MANUFACT=", 9)) { |
577 |
+ |
strcpy(bsdf_manuf, s+9); |
578 |
+ |
bsdf_manuf[strlen(bsdf_manuf)-1] = '\0'; |
579 |
+ |
} |
580 |
|
if (!strncmp(s, "SYMMETRY=", 9)) { |
581 |
|
inp_coverage = atoi(s+9); |
582 |
|
single_plane_incident = !inp_coverage; |
586 |
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
587 |
|
return(0); |
588 |
|
} |
589 |
+ |
if (!strncmp(s, "GRIDRES=", 8)) { |
590 |
+ |
sscanf(s+8, "%d", &grid_res); |
591 |
+ |
return(0); |
592 |
+ |
} |
593 |
+ |
if (!strncmp(s, "BSDFMIN=", 8)) { |
594 |
+ |
sscanf(s+8, "%lf", &bsdf_min); |
595 |
+ |
return(0); |
596 |
+ |
} |
597 |
|
if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT)) |
598 |
|
return(-1); |
599 |
|
return(0); |
606 |
|
RBFNODE rbfh; |
607 |
|
int from_ord, to_ord; |
608 |
|
int i; |
609 |
< |
#ifdef DEBUG |
610 |
< |
if ((dsf_list != NULL) | (mig_list != NULL)) { |
611 |
< |
fprintf(stderr, |
423 |
< |
"%s: attempt to load BSDF interpolant over existing\n", |
424 |
< |
progname); |
609 |
> |
|
610 |
> |
clear_bsdf_rep(); |
611 |
> |
if (ifp == NULL) |
612 |
|
return(0); |
613 |
< |
} |
427 |
< |
#endif |
428 |
< |
input_orient = output_orient = 0; |
429 |
< |
single_plane_incident = -1; |
430 |
< |
if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 | |
613 |
> |
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
614 |
|
!input_orient | !output_orient) { |
615 |
|
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
616 |
|
progname); |
617 |
|
return(0); |
618 |
|
} |
619 |
< |
rbfh.next = NULL; /* read each DSF */ |
437 |
< |
rbfh.ejl = NULL; |
619 |
> |
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
620 |
|
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
621 |
|
RBFNODE *newrbf; |
622 |
|
|
623 |
|
rbfh.invec[0] = getflt(ifp); |
624 |
|
rbfh.invec[1] = getflt(ifp); |
625 |
|
rbfh.invec[2] = getflt(ifp); |
626 |
< |
rbfh.nrbf = getint(4, ifp); |
627 |
< |
if (!new_input_vector(rbfh.invec)) |
626 |
> |
if (normalize(rbfh.invec) == 0) { |
627 |
> |
fprintf(stderr, "%s: zero incident vector\n", progname); |
628 |
|
return(0); |
629 |
+ |
} |
630 |
+ |
rbfh.vtotal = getflt(ifp); |
631 |
+ |
rbfh.nrbf = getint(4, ifp); |
632 |
|
newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) + |
633 |
|
sizeof(RBFVAL)*(rbfh.nrbf-1)); |
634 |
|
if (newrbf == NULL) |
635 |
|
goto memerr; |
636 |
< |
memcpy(newrbf, &rbfh, sizeof(RBFNODE)); |
636 |
> |
*newrbf = rbfh; |
637 |
|
for (i = 0; i < rbfh.nrbf; i++) { |
638 |
|
newrbf->rbfa[i].peak = getflt(ifp); |
639 |
|
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
672 |
|
memset(newmig->mtx, 0, sizeof(float)*n); |
673 |
|
for (i = 0; ; ) { /* read sparse data */ |
674 |
|
int zc = getint(1, ifp) & 0xff; |
490 |
– |
if (zc == 0xff) { |
491 |
– |
i += 0xff; |
492 |
– |
continue; |
493 |
– |
} |
675 |
|
if ((i += zc) >= n) |
676 |
|
break; |
677 |
+ |
if (zc == 0xff) |
678 |
+ |
continue; |
679 |
|
newmig->mtx[i++] = getflt(ifp); |
680 |
|
} |
681 |
|
if (feof(ifp)) |