ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.6
Committed: Thu Nov 8 00:31:17 2012 UTC (11 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.5: +32 -2 lines
Log Message:
Isotropic BRDF interpolation seems to work now

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.6 static const char RCSid[] = "$Id: bsdfrep.c,v 2.5 2012/11/07 03:04:23 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12 greg 2.2 #include <string.h>
13 greg 2.1 #include <math.h>
14     #include "rtio.h"
15     #include "resolu.h"
16     #include "bsdfrep.h"
17 greg 2.5 /* active grid resolution */
18     int grid_res = GRIDRES;
19    
20 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
21 greg 2.1 int inp_coverage = 0;
22     /* all incident angles in-plane so far? */
23     int single_plane_incident = -1;
24    
25     /* input/output orientations */
26     int input_orient = 0;
27     int output_orient = 0;
28    
29     /* processed incident DSF measurements */
30     RBFNODE *dsf_list = NULL;
31    
32     /* RBF-linking matrices (edges) */
33     MIGRATION *mig_list = NULL;
34    
35     /* current input direction */
36     double theta_in_deg, phi_in_deg;
37    
38     /* Register new input direction */
39     int
40     new_input_direction(double new_theta, double new_phi)
41     {
42     if (!input_orient) /* check input orientation */
43     input_orient = 1 - 2*(new_theta > 90.);
44     else if (input_orient > 0 ^ new_theta < 90.) {
45     fprintf(stderr,
46     "%s: Cannot handle input angles on both sides of surface\n",
47     progname);
48     return(0);
49     }
50     /* normalize angle ranges */
51     while (new_theta < -180.)
52     new_theta += 360.;
53     while (new_theta > 180.)
54     new_theta -= 360.;
55     if (new_theta < 0) {
56     new_theta = -new_theta;
57     new_phi += 180.;
58     }
59 greg 2.6 if ((theta_in_deg = new_theta) < 1.0)
60     return(1); /* don't rely on phi near normal */
61 greg 2.1 while (new_phi < 0)
62     new_phi += 360.;
63     while (new_phi >= 360.)
64     new_phi -= 360.;
65     if (single_plane_incident > 0) /* check input coverage */
66     single_plane_incident = (round(new_phi) == round(phi_in_deg));
67     else if (single_plane_incident < 0)
68     single_plane_incident = 1;
69     phi_in_deg = new_phi;
70     if ((1. < new_phi) & (new_phi < 89.))
71     inp_coverage |= INP_QUAD1;
72     else if ((91. < new_phi) & (new_phi < 179.))
73     inp_coverage |= INP_QUAD2;
74     else if ((181. < new_phi) & (new_phi < 269.))
75     inp_coverage |= INP_QUAD3;
76     else if ((271. < new_phi) & (new_phi < 359.))
77     inp_coverage |= INP_QUAD4;
78     return(1);
79     }
80    
81     /* Apply symmetry to the given vector based on distribution */
82     int
83     use_symmetry(FVECT vec)
84     {
85     double phi = get_phi360(vec);
86    
87     switch (inp_coverage) {
88     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
89     break;
90     case INP_QUAD1|INP_QUAD2:
91     if ((-FTINY > phi) | (phi > 180.+FTINY))
92     goto mir_y;
93     break;
94     case INP_QUAD2|INP_QUAD3:
95     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
96     goto mir_x;
97     break;
98     case INP_QUAD3|INP_QUAD4:
99     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
100     goto mir_y;
101     break;
102     case INP_QUAD4|INP_QUAD1:
103     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
104     goto mir_x;
105     break;
106     case INP_QUAD1:
107     if ((-FTINY > phi) | (phi > 90.+FTINY))
108     switch ((int)(phi*(1./90.))) {
109     case 1: goto mir_x;
110     case 2: goto mir_xy;
111     case 3: goto mir_y;
112     }
113     break;
114     case INP_QUAD2:
115     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
116     switch ((int)(phi*(1./90.))) {
117     case 0: goto mir_x;
118     case 2: goto mir_y;
119     case 3: goto mir_xy;
120     }
121     break;
122     case INP_QUAD3:
123     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
124     switch ((int)(phi*(1./90.))) {
125     case 0: goto mir_xy;
126     case 1: goto mir_y;
127     case 3: goto mir_x;
128     }
129     break;
130     case INP_QUAD4:
131     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
132     switch ((int)(phi*(1./90.))) {
133     case 0: goto mir_y;
134     case 1: goto mir_xy;
135     case 2: goto mir_x;
136     }
137     break;
138     default:
139     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
140     progname, inp_coverage);
141     exit(1);
142     }
143     return(0); /* in range */
144     mir_x:
145     vec[0] = -vec[0];
146     return(MIRROR_X);
147     mir_y:
148     vec[1] = -vec[1];
149     return(MIRROR_Y);
150     mir_xy:
151     vec[0] = -vec[0];
152     vec[1] = -vec[1];
153     return(MIRROR_X|MIRROR_Y);
154     }
155    
156     /* Reverse symmetry based on what was done before */
157     void
158     rev_symmetry(FVECT vec, int sym)
159     {
160     if (sym & MIRROR_X)
161     vec[0] = -vec[0];
162     if (sym & MIRROR_Y)
163     vec[1] = -vec[1];
164     }
165    
166     /* Reverse symmetry for an RBF distribution */
167     void
168     rev_rbf_symmetry(RBFNODE *rbf, int sym)
169     {
170     int n;
171    
172     rev_symmetry(rbf->invec, sym);
173     if (sym & MIRROR_X)
174     for (n = rbf->nrbf; n-- > 0; )
175 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
176 greg 2.1 if (sym & MIRROR_Y)
177     for (n = rbf->nrbf; n-- > 0; )
178 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
179 greg 2.1 }
180    
181 greg 2.6 /* Rotate RBF to correspond to given incident vector */
182     void
183     rotate_rbf(RBFNODE *rbf, const FVECT invec)
184     {
185     static const FVECT vnorm = {.0, .0, 1.};
186     const double phi = atan2(invec[1],invec[0]) -
187     atan2(rbf->invec[1],rbf->invec[0]);
188     FVECT outvec;
189     int pos[2];
190     int n;
191     #ifdef DEBUG
192     {
193     double tdiff = 180./M_PI*fabs(acos(invec[2])-acos(rbf->invec[2]));
194     if (tdiff >= 1.5)
195     fprintf(stderr,
196     "%s: Warning - rotated theta differs by %.1f degrees\n",
197     progname, tdiff);
198     }
199     #endif
200     for (n = rbf->nrbf; n-- > 0; ) {
201     ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
202     spinvector(outvec, outvec, vnorm, phi);
203     pos_from_vec(pos, outvec);
204     rbf->rbfa[n].gx = pos[0];
205     rbf->rbfa[n].gy = pos[1];
206     }
207     VCOPY(rbf->invec, invec);
208     }
209    
210 greg 2.1 /* Compute volume associated with Gaussian lobe */
211     double
212     rbf_volume(const RBFVAL *rbfp)
213     {
214     double rad = R2ANG(rbfp->crad);
215    
216     return((2.*M_PI) * rbfp->peak * rad*rad);
217     }
218    
219     /* Compute outgoing vector from grid position */
220     void
221     ovec_from_pos(FVECT vec, int xpos, int ypos)
222     {
223     double uv[2];
224     double r2;
225    
226 greg 2.5 SDsquare2disk(uv, (1./grid_res)*(xpos+.5), (1./grid_res)*(ypos+.5));
227 greg 2.1 /* uniform hemispherical projection */
228     r2 = uv[0]*uv[0] + uv[1]*uv[1];
229     vec[0] = vec[1] = sqrt(2. - r2);
230     vec[0] *= uv[0];
231     vec[1] *= uv[1];
232     vec[2] = output_orient*(1. - r2);
233     }
234    
235     /* Compute grid position from normalized input/output vector */
236     void
237     pos_from_vec(int pos[2], const FVECT vec)
238     {
239     double sq[2]; /* uniform hemispherical projection */
240     double norm = 1./sqrt(1. + fabs(vec[2]));
241    
242     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
243    
244 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
245     pos[1] = (int)(sq[1]*grid_res);
246 greg 2.1 }
247    
248     /* Evaluate RBF for DSF at the given normalized outgoing direction */
249     double
250     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
251     {
252     double res = .0;
253     const RBFVAL *rbfp;
254     FVECT odir;
255     double sig2;
256     int n;
257    
258     if (rp == NULL)
259     return(.0);
260     rbfp = rp->rbfa;
261     for (n = rp->nrbf; n--; rbfp++) {
262     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
263     sig2 = R2ANG(rbfp->crad);
264     sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
265     if (sig2 > -19.)
266     res += rbfp->peak * exp(sig2);
267     }
268     return(res);
269     }
270    
271     /* Insert a new directional scattering function in our global list */
272     int
273     insert_dsf(RBFNODE *newrbf)
274     {
275     RBFNODE *rbf, *rbf_last;
276     int pos;
277     /* check for redundant meas. */
278     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
279     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
280     fprintf(stderr,
281     "%s: Duplicate incident measurement (ignored)\n",
282     progname);
283     free(newrbf);
284     return(-1);
285     }
286     /* keep in ascending theta order */
287     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
288     rbf_last = rbf, rbf = rbf->next)
289     if (single_plane_incident && input_orient*rbf->invec[2] <
290     input_orient*newrbf->invec[2])
291     break;
292     if (rbf_last == NULL) { /* insert new node in list */
293     newrbf->ord = 0;
294     newrbf->next = dsf_list;
295     dsf_list = newrbf;
296     } else {
297     newrbf->ord = rbf_last->ord + 1;
298     newrbf->next = rbf;
299     rbf_last->next = newrbf;
300     }
301     rbf_last = newrbf;
302     while (rbf != NULL) { /* update ordinal positions */
303     rbf->ord = rbf_last->ord + 1;
304     rbf_last = rbf;
305     rbf = rbf->next;
306     }
307     return(newrbf->ord);
308     }
309    
310     /* Get the DSF indicated by its ordinal position */
311     RBFNODE *
312     get_dsf(int ord)
313     {
314     RBFNODE *rbf;
315    
316     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
317 greg 2.3 if (rbf->ord == ord)
318 greg 2.1 return(rbf);
319     return(NULL);
320     }
321    
322     /* Get triangle surface orientation (unnormalized) */
323     void
324     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
325     {
326     FVECT v2minus1, v3minus2;
327    
328     VSUB(v2minus1, v2, v1);
329     VSUB(v3minus2, v3, v2);
330     VCROSS(vres, v2minus1, v3minus2);
331     }
332    
333     /* Determine if vertex order is reversed (inward normal) */
334     int
335     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
336     {
337     FVECT tor;
338    
339     tri_orient(tor, v1, v2, v3);
340    
341     return(DOT(tor, v2) < 0.);
342     }
343    
344     /* Find vertices completing triangles on either side of the given edge */
345     int
346     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
347     {
348 greg 2.4 const MIGRATION *ej1, *ej2;
349 greg 2.1 RBFNODE *tv;
350    
351     rbfv[0] = rbfv[1] = NULL;
352     if (mig == NULL)
353     return(0);
354 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
355     ej1 = nextedge(mig->rbfv[0],ej1)) {
356     if (ej1 == mig)
357 greg 2.1 continue;
358 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
359 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
360     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
361     rbfv[is_rev_tri(mig->rbfv[0]->invec,
362     mig->rbfv[1]->invec,
363     tv->invec)] = tv;
364     break;
365     }
366     }
367     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
368     }
369    
370 greg 2.4 /* Clear our BSDF representation and free memory */
371     void
372     clear_bsdf_rep(void)
373     {
374     while (mig_list != NULL) {
375     MIGRATION *mig = mig_list;
376     mig_list = mig->next;
377     free(mig);
378     }
379     while (dsf_list != NULL) {
380     RBFNODE *rbf = dsf_list;
381     dsf_list = rbf->next;
382     free(rbf);
383     }
384     inp_coverage = 0;
385     single_plane_incident = -1;
386     input_orient = output_orient = 0;
387 greg 2.5 grid_res = GRIDRES;
388 greg 2.4 }
389    
390 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
391     void
392     save_bsdf_rep(FILE *ofp)
393     {
394     RBFNODE *rbf;
395     MIGRATION *mig;
396     int i, n;
397     /* finish header */
398 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
399     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
400 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
401 greg 2.1 fputformat(BSDFREP_FMT, ofp);
402     fputc('\n', ofp);
403     /* write each DSF */
404     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
405     putint(rbf->ord, 4, ofp);
406     putflt(rbf->invec[0], ofp);
407     putflt(rbf->invec[1], ofp);
408     putflt(rbf->invec[2], ofp);
409     putflt(rbf->vtotal, ofp);
410     putint(rbf->nrbf, 4, ofp);
411     for (i = 0; i < rbf->nrbf; i++) {
412     putflt(rbf->rbfa[i].peak, ofp);
413     putint(rbf->rbfa[i].crad, 2, ofp);
414     putint(rbf->rbfa[i].gx, 1, ofp);
415     putint(rbf->rbfa[i].gy, 1, ofp);
416     }
417     }
418     putint(-1, 4, ofp); /* terminator */
419     /* write each migration matrix */
420 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
421     int zerocnt = 0;
422 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
423     putint(mig->rbfv[1]->ord, 4, ofp);
424 greg 2.2 /* write out as sparse data */
425 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
426 greg 2.2 for (i = 0; i < n; i++) {
427 greg 2.3 if (zerocnt == 0xff) {
428     putint(0xff, 1, ofp); zerocnt = 0;
429 greg 2.2 }
430     if (mig->mtx[i] != 0) {
431     putint(zerocnt, 1, ofp); zerocnt = 0;
432     putflt(mig->mtx[i], ofp);
433     } else
434     ++zerocnt;
435     }
436     putint(zerocnt, 1, ofp);
437 greg 2.1 }
438     putint(-1, 4, ofp); /* terminator */
439     putint(-1, 4, ofp);
440     if (fflush(ofp) == EOF) {
441     fprintf(stderr, "%s: error writing BSDF interpolant\n",
442     progname);
443     exit(1);
444     }
445     }
446    
447 greg 2.2 /* Check header line for critical information */
448     static int
449     headline(char *s, void *p)
450     {
451     char fmt[32];
452    
453     if (!strncmp(s, "SYMMETRY=", 9)) {
454     inp_coverage = atoi(s+9);
455     single_plane_incident = !inp_coverage;
456     return(0);
457     }
458     if (!strncmp(s, "IO_SIDES=", 9)) {
459     sscanf(s+9, "%d %d", &input_orient, &output_orient);
460     return(0);
461     }
462 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
463     sscanf(s+8, "%d", &grid_res);
464     return(0);
465     }
466 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
467     return(-1);
468     return(0);
469     }
470    
471 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
472     int
473     load_bsdf_rep(FILE *ifp)
474     {
475     RBFNODE rbfh;
476     int from_ord, to_ord;
477     int i;
478 greg 2.4
479     clear_bsdf_rep();
480 greg 2.5 if (ifp == NULL)
481     return(0);
482 greg 2.2 if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 |
483     !input_orient | !output_orient) {
484 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
485     progname);
486     return(0);
487     }
488     rbfh.next = NULL; /* read each DSF */
489     rbfh.ejl = NULL;
490     while ((rbfh.ord = getint(4, ifp)) >= 0) {
491     RBFNODE *newrbf;
492    
493     rbfh.invec[0] = getflt(ifp);
494     rbfh.invec[1] = getflt(ifp);
495     rbfh.invec[2] = getflt(ifp);
496 greg 2.3 rbfh.vtotal = getflt(ifp);
497 greg 2.1 rbfh.nrbf = getint(4, ifp);
498     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
499     sizeof(RBFVAL)*(rbfh.nrbf-1));
500     if (newrbf == NULL)
501     goto memerr;
502     memcpy(newrbf, &rbfh, sizeof(RBFNODE));
503     for (i = 0; i < rbfh.nrbf; i++) {
504     newrbf->rbfa[i].peak = getflt(ifp);
505     newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
506     newrbf->rbfa[i].gx = getint(1, ifp) & 0xff;
507     newrbf->rbfa[i].gy = getint(1, ifp) & 0xff;
508     }
509     if (feof(ifp))
510     goto badEOF;
511     /* insert in global list */
512     if (insert_dsf(newrbf) != rbfh.ord) {
513     fprintf(stderr, "%s: error adding DSF\n", progname);
514     return(0);
515     }
516     }
517     /* read each migration matrix */
518     while ((from_ord = getint(4, ifp)) >= 0 &&
519     (to_ord = getint(4, ifp)) >= 0) {
520     RBFNODE *from_rbf = get_dsf(from_ord);
521     RBFNODE *to_rbf = get_dsf(to_ord);
522     MIGRATION *newmig;
523     int n;
524    
525     if ((from_rbf == NULL) | (to_rbf == NULL)) {
526     fprintf(stderr,
527     "%s: bad DSF reference in migration edge\n",
528     progname);
529     return(0);
530     }
531     n = from_rbf->nrbf * to_rbf->nrbf;
532     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
533     sizeof(float)*(n-1));
534     if (newmig == NULL)
535     goto memerr;
536     newmig->rbfv[0] = from_rbf;
537     newmig->rbfv[1] = to_rbf;
538 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
539     for (i = 0; ; ) { /* read sparse data */
540     int zc = getint(1, ifp) & 0xff;
541     if ((i += zc) >= n)
542     break;
543 greg 2.3 if (zc == 0xff)
544     continue;
545 greg 2.2 newmig->mtx[i++] = getflt(ifp);
546     }
547 greg 2.1 if (feof(ifp))
548     goto badEOF;
549     /* insert in edge lists */
550     newmig->enxt[0] = from_rbf->ejl;
551     from_rbf->ejl = newmig;
552     newmig->enxt[1] = to_rbf->ejl;
553     to_rbf->ejl = newmig;
554     /* push onto global list */
555     newmig->next = mig_list;
556     mig_list = newmig;
557     }
558     return(1); /* success! */
559     memerr:
560     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
561     exit(1);
562     badEOF:
563     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
564     return(0);
565     }