ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.38
Committed: Sun May 18 01:46:05 2025 UTC (7 days, 2 hours ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.37: +47 -3 lines
Log Message:
perf(bsdf2klems,bsdf2ttree): Improved evaluation speed by 40% using 128K table

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.38 static const char RCSid[] = "$Id: bsdfrep.c,v 2.37 2021/12/15 01:38:50 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12     #include <math.h>
13     #include "rtio.h"
14     #include "resolu.h"
15     #include "bsdfrep.h"
16 greg 2.29 #include "random.h"
17 greg 2.19 /* name and manufacturer if known */
18     char bsdf_name[256];
19     char bsdf_manuf[256];
20 greg 2.5 /* active grid resolution */
21     int grid_res = GRIDRES;
22    
23 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
24 greg 2.1 int inp_coverage = 0;
25     /* all incident angles in-plane so far? */
26     int single_plane_incident = -1;
27    
28     /* input/output orientations */
29     int input_orient = 0;
30     int output_orient = 0;
31    
32 greg 2.29 /* represented color space */
33     RBColor rbf_colorimetry = RBCunknown;
34    
35     const char *RBCident[] = {
36     "CIE-Y", "CIE-XYZ", "Spectral", "Unknown"
37     };
38    
39 greg 2.12 /* BSDF histogram */
40 greg 2.15 unsigned long bsdf_hist[HISTLEN];
41 greg 2.12
42     /* BSDF value for boundary regions */
43     double bsdf_min = 0;
44 greg 2.30 double bsdf_spec_val = 0;
45 greg 2.26 double bsdf_spec_rad = 0;
46 greg 2.12
47 greg 2.1 /* processed incident DSF measurements */
48     RBFNODE *dsf_list = NULL;
49    
50     /* RBF-linking matrices (edges) */
51     MIGRATION *mig_list = NULL;
52    
53     /* current input direction */
54     double theta_in_deg, phi_in_deg;
55    
56 greg 2.34 /* header line sharing callback */
57     int (*sir_headshare)(char *s) = NULL;
58    
59 greg 2.1 /* Register new input direction */
60     int
61     new_input_direction(double new_theta, double new_phi)
62     {
63     /* normalize angle ranges */
64     while (new_theta < -180.)
65     new_theta += 360.;
66     while (new_theta > 180.)
67     new_theta -= 360.;
68     if (new_theta < 0) {
69     new_theta = -new_theta;
70     new_phi += 180.;
71     }
72     while (new_phi < 0)
73     new_phi += 360.;
74     while (new_phi >= 360.)
75     new_phi -= 360.;
76 greg 2.28 /* check input orientation */
77     if (!input_orient)
78     input_orient = 1 - 2*(new_theta > 90.);
79     else if (input_orient > 0 ^ new_theta < 90.) {
80     fprintf(stderr,
81     "%s: Cannot handle input angles on both sides of surface\n",
82     progname);
83     return(0);
84     }
85     if ((theta_in_deg = new_theta) < 1.0)
86     return(1); /* don't rely on phi near normal */
87 greg 2.1 if (single_plane_incident > 0) /* check input coverage */
88     single_plane_incident = (round(new_phi) == round(phi_in_deg));
89     else if (single_plane_incident < 0)
90     single_plane_incident = 1;
91     phi_in_deg = new_phi;
92     if ((1. < new_phi) & (new_phi < 89.))
93     inp_coverage |= INP_QUAD1;
94     else if ((91. < new_phi) & (new_phi < 179.))
95     inp_coverage |= INP_QUAD2;
96     else if ((181. < new_phi) & (new_phi < 269.))
97     inp_coverage |= INP_QUAD3;
98     else if ((271. < new_phi) & (new_phi < 359.))
99     inp_coverage |= INP_QUAD4;
100     return(1);
101     }
102    
103     /* Apply symmetry to the given vector based on distribution */
104     int
105     use_symmetry(FVECT vec)
106     {
107 greg 2.36 double phi = get_phi360(vec);
108     /* because of -0. issue */
109     while (phi >= 360.) phi -= 360.;
110     while (phi < 0.) phi += 360.;
111 greg 2.1
112     switch (inp_coverage) {
113     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
114     break;
115     case INP_QUAD1|INP_QUAD2:
116     if ((-FTINY > phi) | (phi > 180.+FTINY))
117     goto mir_y;
118     break;
119     case INP_QUAD2|INP_QUAD3:
120     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
121     goto mir_x;
122     break;
123     case INP_QUAD3|INP_QUAD4:
124     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
125     goto mir_y;
126     break;
127     case INP_QUAD4|INP_QUAD1:
128     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
129     goto mir_x;
130     break;
131     case INP_QUAD1:
132     if ((-FTINY > phi) | (phi > 90.+FTINY))
133     switch ((int)(phi*(1./90.))) {
134     case 1: goto mir_x;
135     case 2: goto mir_xy;
136     case 3: goto mir_y;
137     }
138     break;
139     case INP_QUAD2:
140     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
141     switch ((int)(phi*(1./90.))) {
142     case 0: goto mir_x;
143     case 2: goto mir_y;
144     case 3: goto mir_xy;
145     }
146     break;
147     case INP_QUAD3:
148     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
149     switch ((int)(phi*(1./90.))) {
150     case 0: goto mir_xy;
151     case 1: goto mir_y;
152     case 3: goto mir_x;
153     }
154     break;
155     case INP_QUAD4:
156     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
157     switch ((int)(phi*(1./90.))) {
158     case 0: goto mir_y;
159     case 1: goto mir_xy;
160     case 2: goto mir_x;
161     }
162     break;
163     default:
164     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
165     progname, inp_coverage);
166     exit(1);
167     }
168     return(0); /* in range */
169     mir_x:
170     vec[0] = -vec[0];
171     return(MIRROR_X);
172     mir_y:
173     vec[1] = -vec[1];
174     return(MIRROR_Y);
175     mir_xy:
176     vec[0] = -vec[0];
177     vec[1] = -vec[1];
178     return(MIRROR_X|MIRROR_Y);
179     }
180    
181     /* Reverse symmetry based on what was done before */
182     void
183     rev_symmetry(FVECT vec, int sym)
184     {
185     if (sym & MIRROR_X)
186     vec[0] = -vec[0];
187     if (sym & MIRROR_Y)
188     vec[1] = -vec[1];
189     }
190    
191     /* Reverse symmetry for an RBF distribution */
192     void
193     rev_rbf_symmetry(RBFNODE *rbf, int sym)
194     {
195     int n;
196    
197     rev_symmetry(rbf->invec, sym);
198     if (sym & MIRROR_X)
199     for (n = rbf->nrbf; n-- > 0; )
200 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
201 greg 2.1 if (sym & MIRROR_Y)
202     for (n = rbf->nrbf; n-- > 0; )
203 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
204 greg 2.1 }
205    
206 greg 2.6 /* Rotate RBF to correspond to given incident vector */
207     void
208     rotate_rbf(RBFNODE *rbf, const FVECT invec)
209     {
210     static const FVECT vnorm = {.0, .0, 1.};
211     const double phi = atan2(invec[1],invec[0]) -
212     atan2(rbf->invec[1],rbf->invec[0]);
213     FVECT outvec;
214     int pos[2];
215     int n;
216 greg 2.8
217 greg 2.24 for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) {
218 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
219     spinvector(outvec, outvec, vnorm, phi);
220     pos_from_vec(pos, outvec);
221     rbf->rbfa[n].gx = pos[0];
222     rbf->rbfa[n].gy = pos[1];
223     }
224     VCOPY(rbf->invec, invec);
225     }
226    
227 greg 2.1 /* Compute outgoing vector from grid position */
228 greg 2.38 #if 1
229 greg 2.1 void
230     ovec_from_pos(FVECT vec, int xpos, int ypos)
231 greg 2.38 { /* precomputed table version */
232     static int qsiz = 0;
233     static float (*q_uv)[2] = NULL;
234    
235     if (vec == NULL) { /* just free table? */
236     if (q_uv) free(q_uv);
237     qsiz = 0;
238     return;
239     }
240     if (qsiz != grid_res>>1) {
241     int x, y; /* (re)make positive quadrant table */
242     RREAL uv[2];
243     double r;
244     if (q_uv) free(q_uv);
245     qsiz = grid_res>>1;
246     q_uv = (float (*)[2])malloc(sizeof(float)*2*qsiz*qsiz);
247     for (y = qsiz; y--; )
248     for (x = qsiz; x--; ) {
249     square2disk(uv, 0.5 + (x+.5)/grid_res,
250     0.5 + (y+.5)/grid_res);
251     /* uniform hemispherical projection */
252     r = sqrt(2. - uv[0]*uv[0] - uv[1]*uv[1]);
253     q_uv[qsiz*y + x][0] = (float)(r*uv[0]);
254     q_uv[qsiz*y + x][1] = (float)(r*uv[1]);
255     }
256     }
257     /* put in positive quadrant */
258     if (xpos >= qsiz) { xpos -= qsiz; vec[0] = 1.; }
259     else { xpos = qsiz-1 - xpos; vec[0] = -1.; }
260     if (ypos >= qsiz) { ypos -= qsiz; vec[1] = 1.; }
261     else { ypos = qsiz-1 - ypos; vec[1] = -1.; }
262    
263     vec[0] *= (RREAL)q_uv[qsiz*ypos + xpos][0];
264     vec[1] *= (RREAL)q_uv[qsiz*ypos + xpos][1];
265     vec[2] = output_orient*sqrt(1. - vec[0]*vec[0] - vec[1]*vec[1]);
266     }
267     #else
268     void
269     ovec_from_pos(FVECT vec, int xpos, int ypos)
270     { /* table-free version */
271 greg 2.37 RREAL uv[2];
272 greg 2.1 double r2;
273 greg 2.38
274     if (vec == NULL)
275     return;
276    
277 greg 2.37 square2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
278 greg 2.1 /* uniform hemispherical projection */
279     r2 = uv[0]*uv[0] + uv[1]*uv[1];
280     vec[0] = vec[1] = sqrt(2. - r2);
281     vec[0] *= uv[0];
282     vec[1] *= uv[1];
283     vec[2] = output_orient*(1. - r2);
284     }
285 greg 2.38 #endif
286 greg 2.1
287     /* Compute grid position from normalized input/output vector */
288     void
289     pos_from_vec(int pos[2], const FVECT vec)
290     {
291 greg 2.37 RREAL sq[2]; /* uniform hemispherical projection */
292 greg 2.1 double norm = 1./sqrt(1. + fabs(vec[2]));
293    
294 greg 2.37 disk2square(sq, vec[0]*norm, vec[1]*norm);
295 greg 2.1
296 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
297     pos[1] = (int)(sq[1]*grid_res);
298 greg 2.1 }
299    
300 greg 2.14 /* Compute volume associated with Gaussian lobe */
301     double
302     rbf_volume(const RBFVAL *rbfp)
303     {
304     double rad = R2ANG(rbfp->crad);
305     FVECT odir;
306     double elev, integ;
307     /* infinite integral approximation */
308     integ = (2.*M_PI) * rbfp->peak * rad*rad;
309     /* check if we're near horizon */
310     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
311     elev = output_orient*odir[2];
312     /* apply cut-off correction if > 1% */
313     if (elev < 2.8*rad) {
314     /* elev = asin(elev); /* this is so crude, anyway... */
315     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
316     }
317     return(integ);
318     }
319    
320 greg 2.29 /* Evaluate BSDF at the given normalized outgoing direction in color */
321     SDError
322     eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec)
323 greg 2.1 {
324 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
325 greg 2.16 int pos[2];
326 greg 2.8 double res = 0;
327 greg 2.29 double usum = 0, vsum = 0;
328 greg 2.1 const RBFVAL *rbfp;
329     FVECT odir;
330 greg 2.16 double rad2;
331 greg 2.1 int n;
332 greg 2.29 /* assign default value */
333     sv->spec = c_dfcolor;
334     sv->cieY = bsdf_min;
335 greg 2.14 /* check for wrong side */
336 greg 2.29 if (outvec[2] > 0 ^ output_orient > 0) {
337     strcpy(SDerrorDetail, "Wrong-side scattering query");
338     return(SDEargument);
339     }
340     if (rp == NULL) /* return minimum if no information avail. */
341     return(SDEnone);
342 greg 2.16 /* optimization for fast lobe culling */
343     pos_from_vec(pos, outvec);
344 greg 2.14 /* sum radial basis function */
345 greg 2.1 rbfp = rp->rbfa;
346     for (n = rp->nrbf; n--; rbfp++) {
347 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
348     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
349 greg 2.29 double val;
350 greg 2.16 rad2 = R2ANG(rbfp->crad);
351     rad2 *= rad2;
352 greg 2.17 if (d2 > rad2*rfact2)
353 greg 2.16 continue;
354 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
355 greg 2.29 val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
356     if (rbf_colorimetry == RBCtristimulus) {
357     usum += val * (rbfp->chroma & 0xff);
358     vsum += val * (rbfp->chroma>>8 & 0xff);
359     }
360     res += val;
361 greg 2.1 }
362 greg 2.31 sv->cieY = res / COSF(outvec[2]);
363     if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */
364     sv->cieY = bsdf_min;
365     } else if (rbf_colorimetry == RBCtristimulus) {
366 greg 2.29 C_CHROMA cres = (int)(usum/res + frandom());
367     cres |= (int)(vsum/res + frandom()) << 8;
368     c_decodeChroma(&sv->spec, cres);
369     }
370     return(SDEnone);
371     }
372    
373     /* Evaluate BSDF at the given normalized outgoing direction in Y */
374     double
375     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
376     {
377     SDValue sv;
378    
379     if (eval_rbfcol(&sv, rp, outvec) == SDEnone)
380     return(sv.cieY);
381    
382     return(0.0);
383 greg 2.1 }
384    
385     /* Insert a new directional scattering function in our global list */
386     int
387     insert_dsf(RBFNODE *newrbf)
388     {
389     RBFNODE *rbf, *rbf_last;
390     int pos;
391     /* check for redundant meas. */
392     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
393     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
394     fprintf(stderr,
395 greg 2.22 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
396     progname, get_theta180(newrbf->invec),
397     get_phi360(newrbf->invec));
398 greg 2.1 free(newrbf);
399     return(-1);
400     }
401     /* keep in ascending theta order */
402     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
403     rbf_last = rbf, rbf = rbf->next)
404     if (single_plane_incident && input_orient*rbf->invec[2] <
405     input_orient*newrbf->invec[2])
406     break;
407     if (rbf_last == NULL) { /* insert new node in list */
408     newrbf->ord = 0;
409     newrbf->next = dsf_list;
410     dsf_list = newrbf;
411     } else {
412     newrbf->ord = rbf_last->ord + 1;
413     newrbf->next = rbf;
414     rbf_last->next = newrbf;
415     }
416     rbf_last = newrbf;
417     while (rbf != NULL) { /* update ordinal positions */
418     rbf->ord = rbf_last->ord + 1;
419     rbf_last = rbf;
420     rbf = rbf->next;
421     }
422     return(newrbf->ord);
423     }
424    
425     /* Get the DSF indicated by its ordinal position */
426     RBFNODE *
427     get_dsf(int ord)
428     {
429     RBFNODE *rbf;
430    
431     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
432 greg 2.3 if (rbf->ord == ord)
433 greg 2.1 return(rbf);
434     return(NULL);
435     }
436    
437     /* Get triangle surface orientation (unnormalized) */
438     void
439     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
440     {
441     FVECT v2minus1, v3minus2;
442    
443     VSUB(v2minus1, v2, v1);
444     VSUB(v3minus2, v3, v2);
445     VCROSS(vres, v2minus1, v3minus2);
446     }
447    
448     /* Determine if vertex order is reversed (inward normal) */
449     int
450     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
451     {
452     FVECT tor;
453    
454     tri_orient(tor, v1, v2, v3);
455    
456     return(DOT(tor, v2) < 0.);
457     }
458    
459     /* Find vertices completing triangles on either side of the given edge */
460     int
461     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
462     {
463 greg 2.4 const MIGRATION *ej1, *ej2;
464 greg 2.1 RBFNODE *tv;
465    
466     rbfv[0] = rbfv[1] = NULL;
467     if (mig == NULL)
468     return(0);
469 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
470     ej1 = nextedge(mig->rbfv[0],ej1)) {
471     if (ej1 == mig)
472 greg 2.1 continue;
473 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
474 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
475     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
476     rbfv[is_rev_tri(mig->rbfv[0]->invec,
477     mig->rbfv[1]->invec,
478     tv->invec)] = tv;
479     break;
480     }
481     }
482     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
483     }
484    
485 greg 2.25 /* Return single-lobe specular RBF for the given incident direction */
486     RBFNODE *
487     def_rbf_spec(const FVECT invec)
488     {
489     RBFNODE *rbf;
490     FVECT ovec;
491     int pos[2];
492    
493     if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */
494     return(NULL);
495 greg 2.30 if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0))
496 greg 2.25 return(NULL); /* nothing set */
497     rbf = (RBFNODE *)malloc(sizeof(RBFNODE));
498     if (rbf == NULL)
499     return(NULL);
500     ovec[0] = -invec[0];
501     ovec[1] = -invec[1];
502     ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1);
503     pos_from_vec(pos, ovec);
504     rbf->ord = 0;
505     rbf->next = NULL;
506     rbf->ejl = NULL;
507     VCOPY(rbf->invec, invec);
508     rbf->nrbf = 1;
509 greg 2.30 rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]);
510 greg 2.29 rbf->rbfa[0].chroma = c_dfchroma;
511 greg 2.26 rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad);
512 greg 2.25 rbf->rbfa[0].gx = pos[0];
513     rbf->rbfa[0].gy = pos[1];
514     rbf->vtotal = rbf_volume(rbf->rbfa);
515     return(rbf);
516     }
517    
518 greg 2.20 /* Advect and allocate new RBF along edge (internal call) */
519     RBFNODE *
520     e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
521     {
522     double cthresh = FTINY;
523     RBFNODE *rbf;
524     int n, i, j;
525     double t, full_dist;
526     /* get relative position */
527     t = Acos(DOT(invec, mig->rbfv[0]->invec));
528 greg 2.35 if (t <= .001) { /* near first DSF */
529 greg 2.20 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
530     rbf = (RBFNODE *)malloc(n);
531     if (rbf == NULL)
532     goto memerr;
533     memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
534     rbf->next = NULL; rbf->ejl = NULL;
535     return(rbf);
536     }
537     full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
538 greg 2.35 if (t >= full_dist-.001) { /* near second DSF */
539 greg 2.20 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
540     rbf = (RBFNODE *)malloc(n);
541     if (rbf == NULL)
542     goto memerr;
543     memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
544     rbf->next = NULL; rbf->ejl = NULL;
545     return(rbf);
546     }
547     t /= full_dist;
548     tryagain:
549     n = 0; /* count migrating particles */
550     for (i = 0; i < mtx_nrows(mig); i++)
551     for (j = 0; j < mtx_ncols(mig); j++)
552     n += (mtx_coef(mig,i,j) > cthresh);
553     /* are we over our limit? */
554     if ((lobe_lim > 0) & (n > lobe_lim)) {
555     cthresh = cthresh*2. + 10.*FTINY;
556     goto tryagain;
557     }
558     #ifdef DEBUG
559     fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
560     mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
561     #endif
562     rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
563     if (rbf == NULL)
564     goto memerr;
565     rbf->next = NULL; rbf->ejl = NULL;
566     VCOPY(rbf->invec, invec);
567     rbf->nrbf = n;
568     rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
569     n = 0; /* advect RBF lobes */
570     for (i = 0; i < mtx_nrows(mig); i++) {
571     const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
572     const float peak0 = rbf0i->peak;
573     const double rad0 = R2ANG(rbf0i->crad);
574 greg 2.29 C_COLOR cc0;
575 greg 2.20 FVECT v0;
576     float mv;
577     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
578 greg 2.29 c_decodeChroma(&cc0, rbf0i->chroma);
579 greg 2.20 for (j = 0; j < mtx_ncols(mig); j++)
580     if ((mv = mtx_coef(mig,i,j)) > cthresh) {
581     const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
582     double rad2;
583     FVECT v;
584     int pos[2];
585     rad2 = R2ANG(rbf1j->crad);
586     rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
587     rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
588     rad0*rad0/rad2;
589 greg 2.29 if (rbf_colorimetry == RBCtristimulus) {
590     C_COLOR cres;
591     c_decodeChroma(&cres, rbf1j->chroma);
592     c_cmix(&cres, 1.-t, &cc0, t, &cres);
593     rbf->rbfa[n].chroma = c_encodeChroma(&cres);
594     } else
595     rbf->rbfa[n].chroma = c_dfchroma;
596 greg 2.20 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
597     ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
598     geodesic(v, v0, v, t, GEOD_REL);
599     pos_from_vec(pos, v);
600     rbf->rbfa[n].gx = pos[0];
601     rbf->rbfa[n].gy = pos[1];
602     ++n;
603     }
604     }
605     rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
606     return(rbf);
607     memerr:
608     fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
609     exit(1);
610     return(NULL); /* pro forma return */
611     }
612    
613 greg 2.4 /* Clear our BSDF representation and free memory */
614     void
615     clear_bsdf_rep(void)
616     {
617     while (mig_list != NULL) {
618     MIGRATION *mig = mig_list;
619     mig_list = mig->next;
620     free(mig);
621     }
622     while (dsf_list != NULL) {
623     RBFNODE *rbf = dsf_list;
624     dsf_list = rbf->next;
625     free(rbf);
626     }
627 greg 2.19 bsdf_name[0] = '\0';
628     bsdf_manuf[0] = '\0';
629 greg 2.4 inp_coverage = 0;
630     single_plane_incident = -1;
631     input_orient = output_orient = 0;
632 greg 2.29 rbf_colorimetry = RBCunknown;
633 greg 2.5 grid_res = GRIDRES;
634 greg 2.31 memset(bsdf_hist, 0, sizeof(bsdf_hist));
635 greg 2.25 bsdf_min = 0;
636 greg 2.30 bsdf_spec_val = 0;
637 greg 2.26 bsdf_spec_rad = 0;
638 greg 2.4 }
639    
640 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
641     void
642     save_bsdf_rep(FILE *ofp)
643     {
644     RBFNODE *rbf;
645     MIGRATION *mig;
646     int i, n;
647     /* finish header */
648 greg 2.19 if (bsdf_name[0])
649     fprintf(ofp, "NAME=%s\n", bsdf_name);
650     if (bsdf_manuf[0])
651     fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
652 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
653     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
654 greg 2.29 fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]);
655 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
656 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
657 greg 2.30 if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0))
658     fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad);
659 greg 2.1 fputformat(BSDFREP_FMT, ofp);
660     fputc('\n', ofp);
661 greg 2.29 putint(BSDFREP_MAGIC, 2, ofp);
662 greg 2.1 /* write each DSF */
663     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
664     putint(rbf->ord, 4, ofp);
665     putflt(rbf->invec[0], ofp);
666     putflt(rbf->invec[1], ofp);
667     putflt(rbf->invec[2], ofp);
668     putflt(rbf->vtotal, ofp);
669     putint(rbf->nrbf, 4, ofp);
670     for (i = 0; i < rbf->nrbf; i++) {
671     putflt(rbf->rbfa[i].peak, ofp);
672 greg 2.29 putint(rbf->rbfa[i].chroma, 2, ofp);
673 greg 2.1 putint(rbf->rbfa[i].crad, 2, ofp);
674 greg 2.29 putint(rbf->rbfa[i].gx, 2, ofp);
675     putint(rbf->rbfa[i].gy, 2, ofp);
676 greg 2.1 }
677     }
678     putint(-1, 4, ofp); /* terminator */
679     /* write each migration matrix */
680 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
681     int zerocnt = 0;
682 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
683     putint(mig->rbfv[1]->ord, 4, ofp);
684 greg 2.2 /* write out as sparse data */
685 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
686 greg 2.2 for (i = 0; i < n; i++) {
687 greg 2.3 if (zerocnt == 0xff) {
688     putint(0xff, 1, ofp); zerocnt = 0;
689 greg 2.2 }
690     if (mig->mtx[i] != 0) {
691     putint(zerocnt, 1, ofp); zerocnt = 0;
692     putflt(mig->mtx[i], ofp);
693     } else
694     ++zerocnt;
695     }
696     putint(zerocnt, 1, ofp);
697 greg 2.1 }
698     putint(-1, 4, ofp); /* terminator */
699     putint(-1, 4, ofp);
700     if (fflush(ofp) == EOF) {
701     fprintf(stderr, "%s: error writing BSDF interpolant\n",
702     progname);
703     exit(1);
704     }
705     }
706    
707 greg 2.2 /* Check header line for critical information */
708     static int
709     headline(char *s, void *p)
710     {
711 greg 2.32 char fmt[MAXFMTLEN];
712 greg 2.29 int i;
713 greg 2.2
714 greg 2.34 if (isheadid(s))
715     return(0);
716 greg 2.19 if (!strncmp(s, "NAME=", 5)) {
717     strcpy(bsdf_name, s+5);
718     bsdf_name[strlen(bsdf_name)-1] = '\0';
719 greg 2.34 return(1);
720 greg 2.19 }
721     if (!strncmp(s, "MANUFACT=", 9)) {
722     strcpy(bsdf_manuf, s+9);
723     bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
724 greg 2.34 return(1);
725 greg 2.19 }
726 greg 2.2 if (!strncmp(s, "SYMMETRY=", 9)) {
727     inp_coverage = atoi(s+9);
728     single_plane_incident = !inp_coverage;
729 greg 2.34 return(1);
730 greg 2.2 }
731     if (!strncmp(s, "IO_SIDES=", 9)) {
732     sscanf(s+9, "%d %d", &input_orient, &output_orient);
733 greg 2.34 return(1);
734 greg 2.2 }
735 greg 2.29 if (!strncmp(s, "COLORIMETRY=", 12)) {
736     fmt[0] = '\0';
737     sscanf(s+12, "%s", fmt);
738     for (i = RBCunknown; i >= 0; i--)
739     if (!strcmp(fmt, RBCident[i]))
740     break;
741     if (i < 0)
742     return(-1);
743     rbf_colorimetry = i;
744 greg 2.34 return(1);
745 greg 2.29 }
746 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
747     sscanf(s+8, "%d", &grid_res);
748 greg 2.34 return(1);
749 greg 2.5 }
750 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
751     sscanf(s+8, "%lf", &bsdf_min);
752 greg 2.34 return(1);
753 greg 2.12 }
754 greg 2.25 if (!strncmp(s, "BSDFSPEC=", 9)) {
755 greg 2.30 sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad);
756 greg 2.34 return(1);
757 greg 2.25 }
758 greg 2.34 if (formatval(fmt, s))
759     return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0);
760     if (sir_headshare != NULL)
761     return ((*sir_headshare)(s));
762 greg 2.2 return(0);
763     }
764    
765 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
766     int
767     load_bsdf_rep(FILE *ifp)
768     {
769     RBFNODE rbfh;
770     int from_ord, to_ord;
771     int i;
772 greg 2.4
773     clear_bsdf_rep();
774 greg 2.5 if (ifp == NULL)
775     return(0);
776 greg 2.21 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
777 greg 2.23 !input_orient | !output_orient |
778 greg 2.29 (grid_res < 16) | (grid_res > 0xffff)) {
779 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
780     progname);
781     return(0);
782     }
783 greg 2.29 if (getint(2, ifp) != BSDFREP_MAGIC) {
784     fprintf(stderr, "%s: bad magic number for BSDF interpolant\n",
785     progname);
786     return(0);
787     }
788 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
789 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
790     RBFNODE *newrbf;
791    
792     rbfh.invec[0] = getflt(ifp);
793     rbfh.invec[1] = getflt(ifp);
794     rbfh.invec[2] = getflt(ifp);
795 greg 2.9 if (normalize(rbfh.invec) == 0) {
796     fprintf(stderr, "%s: zero incident vector\n", progname);
797     return(0);
798     }
799 greg 2.3 rbfh.vtotal = getflt(ifp);
800 greg 2.1 rbfh.nrbf = getint(4, ifp);
801     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
802     sizeof(RBFVAL)*(rbfh.nrbf-1));
803     if (newrbf == NULL)
804     goto memerr;
805 greg 2.18 *newrbf = rbfh;
806 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
807     newrbf->rbfa[i].peak = getflt(ifp);
808 greg 2.29 newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff;
809 greg 2.1 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
810 greg 2.29 newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff;
811     newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff;
812 greg 2.1 }
813     if (feof(ifp))
814     goto badEOF;
815     /* insert in global list */
816     if (insert_dsf(newrbf) != rbfh.ord) {
817     fprintf(stderr, "%s: error adding DSF\n", progname);
818     return(0);
819     }
820     }
821     /* read each migration matrix */
822     while ((from_ord = getint(4, ifp)) >= 0 &&
823     (to_ord = getint(4, ifp)) >= 0) {
824     RBFNODE *from_rbf = get_dsf(from_ord);
825     RBFNODE *to_rbf = get_dsf(to_ord);
826     MIGRATION *newmig;
827     int n;
828    
829     if ((from_rbf == NULL) | (to_rbf == NULL)) {
830     fprintf(stderr,
831     "%s: bad DSF reference in migration edge\n",
832     progname);
833     return(0);
834     }
835     n = from_rbf->nrbf * to_rbf->nrbf;
836     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
837     sizeof(float)*(n-1));
838     if (newmig == NULL)
839     goto memerr;
840     newmig->rbfv[0] = from_rbf;
841     newmig->rbfv[1] = to_rbf;
842 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
843     for (i = 0; ; ) { /* read sparse data */
844     int zc = getint(1, ifp) & 0xff;
845     if ((i += zc) >= n)
846     break;
847 greg 2.3 if (zc == 0xff)
848     continue;
849 greg 2.2 newmig->mtx[i++] = getflt(ifp);
850     }
851 greg 2.1 if (feof(ifp))
852     goto badEOF;
853     /* insert in edge lists */
854     newmig->enxt[0] = from_rbf->ejl;
855     from_rbf->ejl = newmig;
856     newmig->enxt[1] = to_rbf->ejl;
857     to_rbf->ejl = newmig;
858     /* push onto global list */
859     newmig->next = mig_list;
860     mig_list = newmig;
861     }
862     return(1); /* success! */
863     memerr:
864     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
865     exit(1);
866     badEOF:
867     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
868     return(0);
869     }