1 |
greg |
2.1 |
#ifndef lint |
2 |
greg |
2.38 |
static const char RCSid[] = "$Id: bsdfrep.c,v 2.37 2021/12/15 01:38:50 greg Exp $"; |
3 |
greg |
2.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* Support BSDF representation as radial basis functions. |
6 |
|
|
* |
7 |
|
|
* G. Ward |
8 |
|
|
*/ |
9 |
|
|
|
10 |
|
|
#define _USE_MATH_DEFINES |
11 |
|
|
#include <stdlib.h> |
12 |
|
|
#include <math.h> |
13 |
|
|
#include "rtio.h" |
14 |
|
|
#include "resolu.h" |
15 |
|
|
#include "bsdfrep.h" |
16 |
greg |
2.29 |
#include "random.h" |
17 |
greg |
2.19 |
/* name and manufacturer if known */ |
18 |
|
|
char bsdf_name[256]; |
19 |
|
|
char bsdf_manuf[256]; |
20 |
greg |
2.5 |
/* active grid resolution */ |
21 |
|
|
int grid_res = GRIDRES; |
22 |
|
|
|
23 |
greg |
2.4 |
/* coverage/symmetry using INP_QUAD? flags */ |
24 |
greg |
2.1 |
int inp_coverage = 0; |
25 |
|
|
/* all incident angles in-plane so far? */ |
26 |
|
|
int single_plane_incident = -1; |
27 |
|
|
|
28 |
|
|
/* input/output orientations */ |
29 |
|
|
int input_orient = 0; |
30 |
|
|
int output_orient = 0; |
31 |
|
|
|
32 |
greg |
2.29 |
/* represented color space */ |
33 |
|
|
RBColor rbf_colorimetry = RBCunknown; |
34 |
|
|
|
35 |
|
|
const char *RBCident[] = { |
36 |
|
|
"CIE-Y", "CIE-XYZ", "Spectral", "Unknown" |
37 |
|
|
}; |
38 |
|
|
|
39 |
greg |
2.12 |
/* BSDF histogram */ |
40 |
greg |
2.15 |
unsigned long bsdf_hist[HISTLEN]; |
41 |
greg |
2.12 |
|
42 |
|
|
/* BSDF value for boundary regions */ |
43 |
|
|
double bsdf_min = 0; |
44 |
greg |
2.30 |
double bsdf_spec_val = 0; |
45 |
greg |
2.26 |
double bsdf_spec_rad = 0; |
46 |
greg |
2.12 |
|
47 |
greg |
2.1 |
/* processed incident DSF measurements */ |
48 |
|
|
RBFNODE *dsf_list = NULL; |
49 |
|
|
|
50 |
|
|
/* RBF-linking matrices (edges) */ |
51 |
|
|
MIGRATION *mig_list = NULL; |
52 |
|
|
|
53 |
|
|
/* current input direction */ |
54 |
|
|
double theta_in_deg, phi_in_deg; |
55 |
|
|
|
56 |
greg |
2.34 |
/* header line sharing callback */ |
57 |
|
|
int (*sir_headshare)(char *s) = NULL; |
58 |
|
|
|
59 |
greg |
2.1 |
/* Register new input direction */ |
60 |
|
|
int |
61 |
|
|
new_input_direction(double new_theta, double new_phi) |
62 |
|
|
{ |
63 |
|
|
/* normalize angle ranges */ |
64 |
|
|
while (new_theta < -180.) |
65 |
|
|
new_theta += 360.; |
66 |
|
|
while (new_theta > 180.) |
67 |
|
|
new_theta -= 360.; |
68 |
|
|
if (new_theta < 0) { |
69 |
|
|
new_theta = -new_theta; |
70 |
|
|
new_phi += 180.; |
71 |
|
|
} |
72 |
|
|
while (new_phi < 0) |
73 |
|
|
new_phi += 360.; |
74 |
|
|
while (new_phi >= 360.) |
75 |
|
|
new_phi -= 360.; |
76 |
greg |
2.28 |
/* check input orientation */ |
77 |
|
|
if (!input_orient) |
78 |
|
|
input_orient = 1 - 2*(new_theta > 90.); |
79 |
|
|
else if (input_orient > 0 ^ new_theta < 90.) { |
80 |
|
|
fprintf(stderr, |
81 |
|
|
"%s: Cannot handle input angles on both sides of surface\n", |
82 |
|
|
progname); |
83 |
|
|
return(0); |
84 |
|
|
} |
85 |
|
|
if ((theta_in_deg = new_theta) < 1.0) |
86 |
|
|
return(1); /* don't rely on phi near normal */ |
87 |
greg |
2.1 |
if (single_plane_incident > 0) /* check input coverage */ |
88 |
|
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
89 |
|
|
else if (single_plane_incident < 0) |
90 |
|
|
single_plane_incident = 1; |
91 |
|
|
phi_in_deg = new_phi; |
92 |
|
|
if ((1. < new_phi) & (new_phi < 89.)) |
93 |
|
|
inp_coverage |= INP_QUAD1; |
94 |
|
|
else if ((91. < new_phi) & (new_phi < 179.)) |
95 |
|
|
inp_coverage |= INP_QUAD2; |
96 |
|
|
else if ((181. < new_phi) & (new_phi < 269.)) |
97 |
|
|
inp_coverage |= INP_QUAD3; |
98 |
|
|
else if ((271. < new_phi) & (new_phi < 359.)) |
99 |
|
|
inp_coverage |= INP_QUAD4; |
100 |
|
|
return(1); |
101 |
|
|
} |
102 |
|
|
|
103 |
|
|
/* Apply symmetry to the given vector based on distribution */ |
104 |
|
|
int |
105 |
|
|
use_symmetry(FVECT vec) |
106 |
|
|
{ |
107 |
greg |
2.36 |
double phi = get_phi360(vec); |
108 |
|
|
/* because of -0. issue */ |
109 |
|
|
while (phi >= 360.) phi -= 360.; |
110 |
|
|
while (phi < 0.) phi += 360.; |
111 |
greg |
2.1 |
|
112 |
|
|
switch (inp_coverage) { |
113 |
|
|
case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4: |
114 |
|
|
break; |
115 |
|
|
case INP_QUAD1|INP_QUAD2: |
116 |
|
|
if ((-FTINY > phi) | (phi > 180.+FTINY)) |
117 |
|
|
goto mir_y; |
118 |
|
|
break; |
119 |
|
|
case INP_QUAD2|INP_QUAD3: |
120 |
|
|
if ((90.-FTINY > phi) | (phi > 270.+FTINY)) |
121 |
|
|
goto mir_x; |
122 |
|
|
break; |
123 |
|
|
case INP_QUAD3|INP_QUAD4: |
124 |
|
|
if ((180.-FTINY > phi) | (phi > 360.+FTINY)) |
125 |
|
|
goto mir_y; |
126 |
|
|
break; |
127 |
|
|
case INP_QUAD4|INP_QUAD1: |
128 |
|
|
if ((270.-FTINY > phi) & (phi > 90.+FTINY)) |
129 |
|
|
goto mir_x; |
130 |
|
|
break; |
131 |
|
|
case INP_QUAD1: |
132 |
|
|
if ((-FTINY > phi) | (phi > 90.+FTINY)) |
133 |
|
|
switch ((int)(phi*(1./90.))) { |
134 |
|
|
case 1: goto mir_x; |
135 |
|
|
case 2: goto mir_xy; |
136 |
|
|
case 3: goto mir_y; |
137 |
|
|
} |
138 |
|
|
break; |
139 |
|
|
case INP_QUAD2: |
140 |
|
|
if ((90.-FTINY > phi) | (phi > 180.+FTINY)) |
141 |
|
|
switch ((int)(phi*(1./90.))) { |
142 |
|
|
case 0: goto mir_x; |
143 |
|
|
case 2: goto mir_y; |
144 |
|
|
case 3: goto mir_xy; |
145 |
|
|
} |
146 |
|
|
break; |
147 |
|
|
case INP_QUAD3: |
148 |
|
|
if ((180.-FTINY > phi) | (phi > 270.+FTINY)) |
149 |
|
|
switch ((int)(phi*(1./90.))) { |
150 |
|
|
case 0: goto mir_xy; |
151 |
|
|
case 1: goto mir_y; |
152 |
|
|
case 3: goto mir_x; |
153 |
|
|
} |
154 |
|
|
break; |
155 |
|
|
case INP_QUAD4: |
156 |
|
|
if ((270.-FTINY > phi) | (phi > 360.+FTINY)) |
157 |
|
|
switch ((int)(phi*(1./90.))) { |
158 |
|
|
case 0: goto mir_y; |
159 |
|
|
case 1: goto mir_xy; |
160 |
|
|
case 2: goto mir_x; |
161 |
|
|
} |
162 |
|
|
break; |
163 |
|
|
default: |
164 |
|
|
fprintf(stderr, "%s: Illegal input coverage (%d)\n", |
165 |
|
|
progname, inp_coverage); |
166 |
|
|
exit(1); |
167 |
|
|
} |
168 |
|
|
return(0); /* in range */ |
169 |
|
|
mir_x: |
170 |
|
|
vec[0] = -vec[0]; |
171 |
|
|
return(MIRROR_X); |
172 |
|
|
mir_y: |
173 |
|
|
vec[1] = -vec[1]; |
174 |
|
|
return(MIRROR_Y); |
175 |
|
|
mir_xy: |
176 |
|
|
vec[0] = -vec[0]; |
177 |
|
|
vec[1] = -vec[1]; |
178 |
|
|
return(MIRROR_X|MIRROR_Y); |
179 |
|
|
} |
180 |
|
|
|
181 |
|
|
/* Reverse symmetry based on what was done before */ |
182 |
|
|
void |
183 |
|
|
rev_symmetry(FVECT vec, int sym) |
184 |
|
|
{ |
185 |
|
|
if (sym & MIRROR_X) |
186 |
|
|
vec[0] = -vec[0]; |
187 |
|
|
if (sym & MIRROR_Y) |
188 |
|
|
vec[1] = -vec[1]; |
189 |
|
|
} |
190 |
|
|
|
191 |
|
|
/* Reverse symmetry for an RBF distribution */ |
192 |
|
|
void |
193 |
|
|
rev_rbf_symmetry(RBFNODE *rbf, int sym) |
194 |
|
|
{ |
195 |
|
|
int n; |
196 |
|
|
|
197 |
|
|
rev_symmetry(rbf->invec, sym); |
198 |
|
|
if (sym & MIRROR_X) |
199 |
|
|
for (n = rbf->nrbf; n-- > 0; ) |
200 |
greg |
2.5 |
rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx; |
201 |
greg |
2.1 |
if (sym & MIRROR_Y) |
202 |
|
|
for (n = rbf->nrbf; n-- > 0; ) |
203 |
greg |
2.5 |
rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy; |
204 |
greg |
2.1 |
} |
205 |
|
|
|
206 |
greg |
2.6 |
/* Rotate RBF to correspond to given incident vector */ |
207 |
|
|
void |
208 |
|
|
rotate_rbf(RBFNODE *rbf, const FVECT invec) |
209 |
|
|
{ |
210 |
|
|
static const FVECT vnorm = {.0, .0, 1.}; |
211 |
|
|
const double phi = atan2(invec[1],invec[0]) - |
212 |
|
|
atan2(rbf->invec[1],rbf->invec[0]); |
213 |
|
|
FVECT outvec; |
214 |
|
|
int pos[2]; |
215 |
|
|
int n; |
216 |
greg |
2.8 |
|
217 |
greg |
2.24 |
for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) { |
218 |
greg |
2.6 |
ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy); |
219 |
|
|
spinvector(outvec, outvec, vnorm, phi); |
220 |
|
|
pos_from_vec(pos, outvec); |
221 |
|
|
rbf->rbfa[n].gx = pos[0]; |
222 |
|
|
rbf->rbfa[n].gy = pos[1]; |
223 |
|
|
} |
224 |
|
|
VCOPY(rbf->invec, invec); |
225 |
|
|
} |
226 |
|
|
|
227 |
greg |
2.1 |
/* Compute outgoing vector from grid position */ |
228 |
greg |
2.38 |
#if 1 |
229 |
greg |
2.1 |
void |
230 |
|
|
ovec_from_pos(FVECT vec, int xpos, int ypos) |
231 |
greg |
2.38 |
{ /* precomputed table version */ |
232 |
|
|
static int qsiz = 0; |
233 |
|
|
static float (*q_uv)[2] = NULL; |
234 |
|
|
|
235 |
|
|
if (vec == NULL) { /* just free table? */ |
236 |
|
|
if (q_uv) free(q_uv); |
237 |
|
|
qsiz = 0; |
238 |
|
|
return; |
239 |
|
|
} |
240 |
|
|
if (qsiz != grid_res>>1) { |
241 |
|
|
int x, y; /* (re)make positive quadrant table */ |
242 |
|
|
RREAL uv[2]; |
243 |
|
|
double r; |
244 |
|
|
if (q_uv) free(q_uv); |
245 |
|
|
qsiz = grid_res>>1; |
246 |
|
|
q_uv = (float (*)[2])malloc(sizeof(float)*2*qsiz*qsiz); |
247 |
|
|
for (y = qsiz; y--; ) |
248 |
|
|
for (x = qsiz; x--; ) { |
249 |
|
|
square2disk(uv, 0.5 + (x+.5)/grid_res, |
250 |
|
|
0.5 + (y+.5)/grid_res); |
251 |
|
|
/* uniform hemispherical projection */ |
252 |
|
|
r = sqrt(2. - uv[0]*uv[0] - uv[1]*uv[1]); |
253 |
|
|
q_uv[qsiz*y + x][0] = (float)(r*uv[0]); |
254 |
|
|
q_uv[qsiz*y + x][1] = (float)(r*uv[1]); |
255 |
|
|
} |
256 |
|
|
} |
257 |
|
|
/* put in positive quadrant */ |
258 |
|
|
if (xpos >= qsiz) { xpos -= qsiz; vec[0] = 1.; } |
259 |
|
|
else { xpos = qsiz-1 - xpos; vec[0] = -1.; } |
260 |
|
|
if (ypos >= qsiz) { ypos -= qsiz; vec[1] = 1.; } |
261 |
|
|
else { ypos = qsiz-1 - ypos; vec[1] = -1.; } |
262 |
|
|
|
263 |
|
|
vec[0] *= (RREAL)q_uv[qsiz*ypos + xpos][0]; |
264 |
|
|
vec[1] *= (RREAL)q_uv[qsiz*ypos + xpos][1]; |
265 |
|
|
vec[2] = output_orient*sqrt(1. - vec[0]*vec[0] - vec[1]*vec[1]); |
266 |
|
|
} |
267 |
|
|
#else |
268 |
|
|
void |
269 |
|
|
ovec_from_pos(FVECT vec, int xpos, int ypos) |
270 |
|
|
{ /* table-free version */ |
271 |
greg |
2.37 |
RREAL uv[2]; |
272 |
greg |
2.1 |
double r2; |
273 |
greg |
2.38 |
|
274 |
|
|
if (vec == NULL) |
275 |
|
|
return; |
276 |
|
|
|
277 |
greg |
2.37 |
square2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res); |
278 |
greg |
2.1 |
/* uniform hemispherical projection */ |
279 |
|
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
280 |
|
|
vec[0] = vec[1] = sqrt(2. - r2); |
281 |
|
|
vec[0] *= uv[0]; |
282 |
|
|
vec[1] *= uv[1]; |
283 |
|
|
vec[2] = output_orient*(1. - r2); |
284 |
|
|
} |
285 |
greg |
2.38 |
#endif |
286 |
greg |
2.1 |
|
287 |
|
|
/* Compute grid position from normalized input/output vector */ |
288 |
|
|
void |
289 |
|
|
pos_from_vec(int pos[2], const FVECT vec) |
290 |
|
|
{ |
291 |
greg |
2.37 |
RREAL sq[2]; /* uniform hemispherical projection */ |
292 |
greg |
2.1 |
double norm = 1./sqrt(1. + fabs(vec[2])); |
293 |
|
|
|
294 |
greg |
2.37 |
disk2square(sq, vec[0]*norm, vec[1]*norm); |
295 |
greg |
2.1 |
|
296 |
greg |
2.5 |
pos[0] = (int)(sq[0]*grid_res); |
297 |
|
|
pos[1] = (int)(sq[1]*grid_res); |
298 |
greg |
2.1 |
} |
299 |
|
|
|
300 |
greg |
2.14 |
/* Compute volume associated with Gaussian lobe */ |
301 |
|
|
double |
302 |
|
|
rbf_volume(const RBFVAL *rbfp) |
303 |
|
|
{ |
304 |
|
|
double rad = R2ANG(rbfp->crad); |
305 |
|
|
FVECT odir; |
306 |
|
|
double elev, integ; |
307 |
|
|
/* infinite integral approximation */ |
308 |
|
|
integ = (2.*M_PI) * rbfp->peak * rad*rad; |
309 |
|
|
/* check if we're near horizon */ |
310 |
|
|
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
311 |
|
|
elev = output_orient*odir[2]; |
312 |
|
|
/* apply cut-off correction if > 1% */ |
313 |
|
|
if (elev < 2.8*rad) { |
314 |
|
|
/* elev = asin(elev); /* this is so crude, anyway... */ |
315 |
|
|
integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad)); |
316 |
|
|
} |
317 |
|
|
return(integ); |
318 |
|
|
} |
319 |
|
|
|
320 |
greg |
2.29 |
/* Evaluate BSDF at the given normalized outgoing direction in color */ |
321 |
|
|
SDError |
322 |
|
|
eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec) |
323 |
greg |
2.1 |
{ |
324 |
greg |
2.17 |
const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res); |
325 |
greg |
2.16 |
int pos[2]; |
326 |
greg |
2.8 |
double res = 0; |
327 |
greg |
2.29 |
double usum = 0, vsum = 0; |
328 |
greg |
2.1 |
const RBFVAL *rbfp; |
329 |
|
|
FVECT odir; |
330 |
greg |
2.16 |
double rad2; |
331 |
greg |
2.1 |
int n; |
332 |
greg |
2.29 |
/* assign default value */ |
333 |
|
|
sv->spec = c_dfcolor; |
334 |
|
|
sv->cieY = bsdf_min; |
335 |
greg |
2.14 |
/* check for wrong side */ |
336 |
greg |
2.29 |
if (outvec[2] > 0 ^ output_orient > 0) { |
337 |
|
|
strcpy(SDerrorDetail, "Wrong-side scattering query"); |
338 |
|
|
return(SDEargument); |
339 |
|
|
} |
340 |
|
|
if (rp == NULL) /* return minimum if no information avail. */ |
341 |
|
|
return(SDEnone); |
342 |
greg |
2.16 |
/* optimization for fast lobe culling */ |
343 |
|
|
pos_from_vec(pos, outvec); |
344 |
greg |
2.14 |
/* sum radial basis function */ |
345 |
greg |
2.1 |
rbfp = rp->rbfa; |
346 |
|
|
for (n = rp->nrbf; n--; rbfp++) { |
347 |
greg |
2.16 |
int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) + |
348 |
|
|
(pos[1]-rbfp->gy)*(pos[1]-rbfp->gy); |
349 |
greg |
2.29 |
double val; |
350 |
greg |
2.16 |
rad2 = R2ANG(rbfp->crad); |
351 |
|
|
rad2 *= rad2; |
352 |
greg |
2.17 |
if (d2 > rad2*rfact2) |
353 |
greg |
2.16 |
continue; |
354 |
greg |
2.1 |
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
355 |
greg |
2.29 |
val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2); |
356 |
|
|
if (rbf_colorimetry == RBCtristimulus) { |
357 |
|
|
usum += val * (rbfp->chroma & 0xff); |
358 |
|
|
vsum += val * (rbfp->chroma>>8 & 0xff); |
359 |
|
|
} |
360 |
|
|
res += val; |
361 |
greg |
2.1 |
} |
362 |
greg |
2.31 |
sv->cieY = res / COSF(outvec[2]); |
363 |
|
|
if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */ |
364 |
|
|
sv->cieY = bsdf_min; |
365 |
|
|
} else if (rbf_colorimetry == RBCtristimulus) { |
366 |
greg |
2.29 |
C_CHROMA cres = (int)(usum/res + frandom()); |
367 |
|
|
cres |= (int)(vsum/res + frandom()) << 8; |
368 |
|
|
c_decodeChroma(&sv->spec, cres); |
369 |
|
|
} |
370 |
|
|
return(SDEnone); |
371 |
|
|
} |
372 |
|
|
|
373 |
|
|
/* Evaluate BSDF at the given normalized outgoing direction in Y */ |
374 |
|
|
double |
375 |
|
|
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
376 |
|
|
{ |
377 |
|
|
SDValue sv; |
378 |
|
|
|
379 |
|
|
if (eval_rbfcol(&sv, rp, outvec) == SDEnone) |
380 |
|
|
return(sv.cieY); |
381 |
|
|
|
382 |
|
|
return(0.0); |
383 |
greg |
2.1 |
} |
384 |
|
|
|
385 |
|
|
/* Insert a new directional scattering function in our global list */ |
386 |
|
|
int |
387 |
|
|
insert_dsf(RBFNODE *newrbf) |
388 |
|
|
{ |
389 |
|
|
RBFNODE *rbf, *rbf_last; |
390 |
|
|
int pos; |
391 |
|
|
/* check for redundant meas. */ |
392 |
|
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
393 |
|
|
if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { |
394 |
|
|
fprintf(stderr, |
395 |
greg |
2.22 |
"%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n", |
396 |
|
|
progname, get_theta180(newrbf->invec), |
397 |
|
|
get_phi360(newrbf->invec)); |
398 |
greg |
2.1 |
free(newrbf); |
399 |
|
|
return(-1); |
400 |
|
|
} |
401 |
|
|
/* keep in ascending theta order */ |
402 |
|
|
for (rbf_last = NULL, rbf = dsf_list; rbf != NULL; |
403 |
|
|
rbf_last = rbf, rbf = rbf->next) |
404 |
|
|
if (single_plane_incident && input_orient*rbf->invec[2] < |
405 |
|
|
input_orient*newrbf->invec[2]) |
406 |
|
|
break; |
407 |
|
|
if (rbf_last == NULL) { /* insert new node in list */ |
408 |
|
|
newrbf->ord = 0; |
409 |
|
|
newrbf->next = dsf_list; |
410 |
|
|
dsf_list = newrbf; |
411 |
|
|
} else { |
412 |
|
|
newrbf->ord = rbf_last->ord + 1; |
413 |
|
|
newrbf->next = rbf; |
414 |
|
|
rbf_last->next = newrbf; |
415 |
|
|
} |
416 |
|
|
rbf_last = newrbf; |
417 |
|
|
while (rbf != NULL) { /* update ordinal positions */ |
418 |
|
|
rbf->ord = rbf_last->ord + 1; |
419 |
|
|
rbf_last = rbf; |
420 |
|
|
rbf = rbf->next; |
421 |
|
|
} |
422 |
|
|
return(newrbf->ord); |
423 |
|
|
} |
424 |
|
|
|
425 |
|
|
/* Get the DSF indicated by its ordinal position */ |
426 |
|
|
RBFNODE * |
427 |
|
|
get_dsf(int ord) |
428 |
|
|
{ |
429 |
|
|
RBFNODE *rbf; |
430 |
|
|
|
431 |
|
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
432 |
greg |
2.3 |
if (rbf->ord == ord) |
433 |
greg |
2.1 |
return(rbf); |
434 |
|
|
return(NULL); |
435 |
|
|
} |
436 |
|
|
|
437 |
|
|
/* Get triangle surface orientation (unnormalized) */ |
438 |
|
|
void |
439 |
|
|
tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3) |
440 |
|
|
{ |
441 |
|
|
FVECT v2minus1, v3minus2; |
442 |
|
|
|
443 |
|
|
VSUB(v2minus1, v2, v1); |
444 |
|
|
VSUB(v3minus2, v3, v2); |
445 |
|
|
VCROSS(vres, v2minus1, v3minus2); |
446 |
|
|
} |
447 |
|
|
|
448 |
|
|
/* Determine if vertex order is reversed (inward normal) */ |
449 |
|
|
int |
450 |
|
|
is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3) |
451 |
|
|
{ |
452 |
|
|
FVECT tor; |
453 |
|
|
|
454 |
|
|
tri_orient(tor, v1, v2, v3); |
455 |
|
|
|
456 |
|
|
return(DOT(tor, v2) < 0.); |
457 |
|
|
} |
458 |
|
|
|
459 |
|
|
/* Find vertices completing triangles on either side of the given edge */ |
460 |
|
|
int |
461 |
|
|
get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) |
462 |
|
|
{ |
463 |
greg |
2.4 |
const MIGRATION *ej1, *ej2; |
464 |
greg |
2.1 |
RBFNODE *tv; |
465 |
|
|
|
466 |
|
|
rbfv[0] = rbfv[1] = NULL; |
467 |
|
|
if (mig == NULL) |
468 |
|
|
return(0); |
469 |
greg |
2.4 |
for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; |
470 |
|
|
ej1 = nextedge(mig->rbfv[0],ej1)) { |
471 |
|
|
if (ej1 == mig) |
472 |
greg |
2.1 |
continue; |
473 |
greg |
2.4 |
tv = opp_rbf(mig->rbfv[0],ej1); |
474 |
greg |
2.1 |
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
475 |
|
|
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
476 |
|
|
rbfv[is_rev_tri(mig->rbfv[0]->invec, |
477 |
|
|
mig->rbfv[1]->invec, |
478 |
|
|
tv->invec)] = tv; |
479 |
|
|
break; |
480 |
|
|
} |
481 |
|
|
} |
482 |
|
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
483 |
|
|
} |
484 |
|
|
|
485 |
greg |
2.25 |
/* Return single-lobe specular RBF for the given incident direction */ |
486 |
|
|
RBFNODE * |
487 |
|
|
def_rbf_spec(const FVECT invec) |
488 |
|
|
{ |
489 |
|
|
RBFNODE *rbf; |
490 |
|
|
FVECT ovec; |
491 |
|
|
int pos[2]; |
492 |
|
|
|
493 |
|
|
if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */ |
494 |
|
|
return(NULL); |
495 |
greg |
2.30 |
if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0)) |
496 |
greg |
2.25 |
return(NULL); /* nothing set */ |
497 |
|
|
rbf = (RBFNODE *)malloc(sizeof(RBFNODE)); |
498 |
|
|
if (rbf == NULL) |
499 |
|
|
return(NULL); |
500 |
|
|
ovec[0] = -invec[0]; |
501 |
|
|
ovec[1] = -invec[1]; |
502 |
|
|
ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1); |
503 |
|
|
pos_from_vec(pos, ovec); |
504 |
|
|
rbf->ord = 0; |
505 |
|
|
rbf->next = NULL; |
506 |
|
|
rbf->ejl = NULL; |
507 |
|
|
VCOPY(rbf->invec, invec); |
508 |
|
|
rbf->nrbf = 1; |
509 |
greg |
2.30 |
rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]); |
510 |
greg |
2.29 |
rbf->rbfa[0].chroma = c_dfchroma; |
511 |
greg |
2.26 |
rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad); |
512 |
greg |
2.25 |
rbf->rbfa[0].gx = pos[0]; |
513 |
|
|
rbf->rbfa[0].gy = pos[1]; |
514 |
|
|
rbf->vtotal = rbf_volume(rbf->rbfa); |
515 |
|
|
return(rbf); |
516 |
|
|
} |
517 |
|
|
|
518 |
greg |
2.20 |
/* Advect and allocate new RBF along edge (internal call) */ |
519 |
|
|
RBFNODE * |
520 |
|
|
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
521 |
|
|
{ |
522 |
|
|
double cthresh = FTINY; |
523 |
|
|
RBFNODE *rbf; |
524 |
|
|
int n, i, j; |
525 |
|
|
double t, full_dist; |
526 |
|
|
/* get relative position */ |
527 |
|
|
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
528 |
greg |
2.35 |
if (t <= .001) { /* near first DSF */ |
529 |
greg |
2.20 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
530 |
|
|
rbf = (RBFNODE *)malloc(n); |
531 |
|
|
if (rbf == NULL) |
532 |
|
|
goto memerr; |
533 |
|
|
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
534 |
|
|
rbf->next = NULL; rbf->ejl = NULL; |
535 |
|
|
return(rbf); |
536 |
|
|
} |
537 |
|
|
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
538 |
greg |
2.35 |
if (t >= full_dist-.001) { /* near second DSF */ |
539 |
greg |
2.20 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
540 |
|
|
rbf = (RBFNODE *)malloc(n); |
541 |
|
|
if (rbf == NULL) |
542 |
|
|
goto memerr; |
543 |
|
|
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
544 |
|
|
rbf->next = NULL; rbf->ejl = NULL; |
545 |
|
|
return(rbf); |
546 |
|
|
} |
547 |
|
|
t /= full_dist; |
548 |
|
|
tryagain: |
549 |
|
|
n = 0; /* count migrating particles */ |
550 |
|
|
for (i = 0; i < mtx_nrows(mig); i++) |
551 |
|
|
for (j = 0; j < mtx_ncols(mig); j++) |
552 |
|
|
n += (mtx_coef(mig,i,j) > cthresh); |
553 |
|
|
/* are we over our limit? */ |
554 |
|
|
if ((lobe_lim > 0) & (n > lobe_lim)) { |
555 |
|
|
cthresh = cthresh*2. + 10.*FTINY; |
556 |
|
|
goto tryagain; |
557 |
|
|
} |
558 |
|
|
#ifdef DEBUG |
559 |
|
|
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
560 |
|
|
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
561 |
|
|
#endif |
562 |
|
|
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
563 |
|
|
if (rbf == NULL) |
564 |
|
|
goto memerr; |
565 |
|
|
rbf->next = NULL; rbf->ejl = NULL; |
566 |
|
|
VCOPY(rbf->invec, invec); |
567 |
|
|
rbf->nrbf = n; |
568 |
|
|
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
569 |
|
|
n = 0; /* advect RBF lobes */ |
570 |
|
|
for (i = 0; i < mtx_nrows(mig); i++) { |
571 |
|
|
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
572 |
|
|
const float peak0 = rbf0i->peak; |
573 |
|
|
const double rad0 = R2ANG(rbf0i->crad); |
574 |
greg |
2.29 |
C_COLOR cc0; |
575 |
greg |
2.20 |
FVECT v0; |
576 |
|
|
float mv; |
577 |
|
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
578 |
greg |
2.29 |
c_decodeChroma(&cc0, rbf0i->chroma); |
579 |
greg |
2.20 |
for (j = 0; j < mtx_ncols(mig); j++) |
580 |
|
|
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
581 |
|
|
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
582 |
|
|
double rad2; |
583 |
|
|
FVECT v; |
584 |
|
|
int pos[2]; |
585 |
|
|
rad2 = R2ANG(rbf1j->crad); |
586 |
|
|
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
587 |
|
|
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
588 |
|
|
rad0*rad0/rad2; |
589 |
greg |
2.29 |
if (rbf_colorimetry == RBCtristimulus) { |
590 |
|
|
C_COLOR cres; |
591 |
|
|
c_decodeChroma(&cres, rbf1j->chroma); |
592 |
|
|
c_cmix(&cres, 1.-t, &cc0, t, &cres); |
593 |
|
|
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
594 |
|
|
} else |
595 |
|
|
rbf->rbfa[n].chroma = c_dfchroma; |
596 |
greg |
2.20 |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
597 |
|
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
598 |
|
|
geodesic(v, v0, v, t, GEOD_REL); |
599 |
|
|
pos_from_vec(pos, v); |
600 |
|
|
rbf->rbfa[n].gx = pos[0]; |
601 |
|
|
rbf->rbfa[n].gy = pos[1]; |
602 |
|
|
++n; |
603 |
|
|
} |
604 |
|
|
} |
605 |
|
|
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
606 |
|
|
return(rbf); |
607 |
|
|
memerr: |
608 |
|
|
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
609 |
|
|
exit(1); |
610 |
|
|
return(NULL); /* pro forma return */ |
611 |
|
|
} |
612 |
|
|
|
613 |
greg |
2.4 |
/* Clear our BSDF representation and free memory */ |
614 |
|
|
void |
615 |
|
|
clear_bsdf_rep(void) |
616 |
|
|
{ |
617 |
|
|
while (mig_list != NULL) { |
618 |
|
|
MIGRATION *mig = mig_list; |
619 |
|
|
mig_list = mig->next; |
620 |
|
|
free(mig); |
621 |
|
|
} |
622 |
|
|
while (dsf_list != NULL) { |
623 |
|
|
RBFNODE *rbf = dsf_list; |
624 |
|
|
dsf_list = rbf->next; |
625 |
|
|
free(rbf); |
626 |
|
|
} |
627 |
greg |
2.19 |
bsdf_name[0] = '\0'; |
628 |
|
|
bsdf_manuf[0] = '\0'; |
629 |
greg |
2.4 |
inp_coverage = 0; |
630 |
|
|
single_plane_incident = -1; |
631 |
|
|
input_orient = output_orient = 0; |
632 |
greg |
2.29 |
rbf_colorimetry = RBCunknown; |
633 |
greg |
2.5 |
grid_res = GRIDRES; |
634 |
greg |
2.31 |
memset(bsdf_hist, 0, sizeof(bsdf_hist)); |
635 |
greg |
2.25 |
bsdf_min = 0; |
636 |
greg |
2.30 |
bsdf_spec_val = 0; |
637 |
greg |
2.26 |
bsdf_spec_rad = 0; |
638 |
greg |
2.4 |
} |
639 |
|
|
|
640 |
greg |
2.1 |
/* Write our BSDF mesh interpolant out to the given binary stream */ |
641 |
|
|
void |
642 |
|
|
save_bsdf_rep(FILE *ofp) |
643 |
|
|
{ |
644 |
|
|
RBFNODE *rbf; |
645 |
|
|
MIGRATION *mig; |
646 |
|
|
int i, n; |
647 |
|
|
/* finish header */ |
648 |
greg |
2.19 |
if (bsdf_name[0]) |
649 |
|
|
fprintf(ofp, "NAME=%s\n", bsdf_name); |
650 |
|
|
if (bsdf_manuf[0]) |
651 |
|
|
fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf); |
652 |
greg |
2.2 |
fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage); |
653 |
|
|
fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient); |
654 |
greg |
2.29 |
fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]); |
655 |
greg |
2.5 |
fprintf(ofp, "GRIDRES=%d\n", grid_res); |
656 |
greg |
2.12 |
fprintf(ofp, "BSDFMIN=%g\n", bsdf_min); |
657 |
greg |
2.30 |
if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0)) |
658 |
|
|
fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad); |
659 |
greg |
2.1 |
fputformat(BSDFREP_FMT, ofp); |
660 |
|
|
fputc('\n', ofp); |
661 |
greg |
2.29 |
putint(BSDFREP_MAGIC, 2, ofp); |
662 |
greg |
2.1 |
/* write each DSF */ |
663 |
|
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
664 |
|
|
putint(rbf->ord, 4, ofp); |
665 |
|
|
putflt(rbf->invec[0], ofp); |
666 |
|
|
putflt(rbf->invec[1], ofp); |
667 |
|
|
putflt(rbf->invec[2], ofp); |
668 |
|
|
putflt(rbf->vtotal, ofp); |
669 |
|
|
putint(rbf->nrbf, 4, ofp); |
670 |
|
|
for (i = 0; i < rbf->nrbf; i++) { |
671 |
|
|
putflt(rbf->rbfa[i].peak, ofp); |
672 |
greg |
2.29 |
putint(rbf->rbfa[i].chroma, 2, ofp); |
673 |
greg |
2.1 |
putint(rbf->rbfa[i].crad, 2, ofp); |
674 |
greg |
2.29 |
putint(rbf->rbfa[i].gx, 2, ofp); |
675 |
|
|
putint(rbf->rbfa[i].gy, 2, ofp); |
676 |
greg |
2.1 |
} |
677 |
|
|
} |
678 |
|
|
putint(-1, 4, ofp); /* terminator */ |
679 |
|
|
/* write each migration matrix */ |
680 |
greg |
2.2 |
for (mig = mig_list; mig != NULL; mig = mig->next) { |
681 |
|
|
int zerocnt = 0; |
682 |
greg |
2.1 |
putint(mig->rbfv[0]->ord, 4, ofp); |
683 |
|
|
putint(mig->rbfv[1]->ord, 4, ofp); |
684 |
greg |
2.2 |
/* write out as sparse data */ |
685 |
greg |
2.1 |
n = mtx_nrows(mig) * mtx_ncols(mig); |
686 |
greg |
2.2 |
for (i = 0; i < n; i++) { |
687 |
greg |
2.3 |
if (zerocnt == 0xff) { |
688 |
|
|
putint(0xff, 1, ofp); zerocnt = 0; |
689 |
greg |
2.2 |
} |
690 |
|
|
if (mig->mtx[i] != 0) { |
691 |
|
|
putint(zerocnt, 1, ofp); zerocnt = 0; |
692 |
|
|
putflt(mig->mtx[i], ofp); |
693 |
|
|
} else |
694 |
|
|
++zerocnt; |
695 |
|
|
} |
696 |
|
|
putint(zerocnt, 1, ofp); |
697 |
greg |
2.1 |
} |
698 |
|
|
putint(-1, 4, ofp); /* terminator */ |
699 |
|
|
putint(-1, 4, ofp); |
700 |
|
|
if (fflush(ofp) == EOF) { |
701 |
|
|
fprintf(stderr, "%s: error writing BSDF interpolant\n", |
702 |
|
|
progname); |
703 |
|
|
exit(1); |
704 |
|
|
} |
705 |
|
|
} |
706 |
|
|
|
707 |
greg |
2.2 |
/* Check header line for critical information */ |
708 |
|
|
static int |
709 |
|
|
headline(char *s, void *p) |
710 |
|
|
{ |
711 |
greg |
2.32 |
char fmt[MAXFMTLEN]; |
712 |
greg |
2.29 |
int i; |
713 |
greg |
2.2 |
|
714 |
greg |
2.34 |
if (isheadid(s)) |
715 |
|
|
return(0); |
716 |
greg |
2.19 |
if (!strncmp(s, "NAME=", 5)) { |
717 |
|
|
strcpy(bsdf_name, s+5); |
718 |
|
|
bsdf_name[strlen(bsdf_name)-1] = '\0'; |
719 |
greg |
2.34 |
return(1); |
720 |
greg |
2.19 |
} |
721 |
|
|
if (!strncmp(s, "MANUFACT=", 9)) { |
722 |
|
|
strcpy(bsdf_manuf, s+9); |
723 |
|
|
bsdf_manuf[strlen(bsdf_manuf)-1] = '\0'; |
724 |
greg |
2.34 |
return(1); |
725 |
greg |
2.19 |
} |
726 |
greg |
2.2 |
if (!strncmp(s, "SYMMETRY=", 9)) { |
727 |
|
|
inp_coverage = atoi(s+9); |
728 |
|
|
single_plane_incident = !inp_coverage; |
729 |
greg |
2.34 |
return(1); |
730 |
greg |
2.2 |
} |
731 |
|
|
if (!strncmp(s, "IO_SIDES=", 9)) { |
732 |
|
|
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
733 |
greg |
2.34 |
return(1); |
734 |
greg |
2.2 |
} |
735 |
greg |
2.29 |
if (!strncmp(s, "COLORIMETRY=", 12)) { |
736 |
|
|
fmt[0] = '\0'; |
737 |
|
|
sscanf(s+12, "%s", fmt); |
738 |
|
|
for (i = RBCunknown; i >= 0; i--) |
739 |
|
|
if (!strcmp(fmt, RBCident[i])) |
740 |
|
|
break; |
741 |
|
|
if (i < 0) |
742 |
|
|
return(-1); |
743 |
|
|
rbf_colorimetry = i; |
744 |
greg |
2.34 |
return(1); |
745 |
greg |
2.29 |
} |
746 |
greg |
2.5 |
if (!strncmp(s, "GRIDRES=", 8)) { |
747 |
|
|
sscanf(s+8, "%d", &grid_res); |
748 |
greg |
2.34 |
return(1); |
749 |
greg |
2.5 |
} |
750 |
greg |
2.12 |
if (!strncmp(s, "BSDFMIN=", 8)) { |
751 |
|
|
sscanf(s+8, "%lf", &bsdf_min); |
752 |
greg |
2.34 |
return(1); |
753 |
greg |
2.12 |
} |
754 |
greg |
2.25 |
if (!strncmp(s, "BSDFSPEC=", 9)) { |
755 |
greg |
2.30 |
sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad); |
756 |
greg |
2.34 |
return(1); |
757 |
greg |
2.25 |
} |
758 |
greg |
2.34 |
if (formatval(fmt, s)) |
759 |
|
|
return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0); |
760 |
|
|
if (sir_headshare != NULL) |
761 |
|
|
return ((*sir_headshare)(s)); |
762 |
greg |
2.2 |
return(0); |
763 |
|
|
} |
764 |
|
|
|
765 |
greg |
2.1 |
/* Read a BSDF mesh interpolant from the given binary stream */ |
766 |
|
|
int |
767 |
|
|
load_bsdf_rep(FILE *ifp) |
768 |
|
|
{ |
769 |
|
|
RBFNODE rbfh; |
770 |
|
|
int from_ord, to_ord; |
771 |
|
|
int i; |
772 |
greg |
2.4 |
|
773 |
|
|
clear_bsdf_rep(); |
774 |
greg |
2.5 |
if (ifp == NULL) |
775 |
|
|
return(0); |
776 |
greg |
2.21 |
if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) | |
777 |
greg |
2.23 |
!input_orient | !output_orient | |
778 |
greg |
2.29 |
(grid_res < 16) | (grid_res > 0xffff)) { |
779 |
greg |
2.1 |
fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n", |
780 |
|
|
progname); |
781 |
|
|
return(0); |
782 |
|
|
} |
783 |
greg |
2.29 |
if (getint(2, ifp) != BSDFREP_MAGIC) { |
784 |
|
|
fprintf(stderr, "%s: bad magic number for BSDF interpolant\n", |
785 |
|
|
progname); |
786 |
|
|
return(0); |
787 |
|
|
} |
788 |
greg |
2.18 |
memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */ |
789 |
greg |
2.1 |
while ((rbfh.ord = getint(4, ifp)) >= 0) { |
790 |
|
|
RBFNODE *newrbf; |
791 |
|
|
|
792 |
|
|
rbfh.invec[0] = getflt(ifp); |
793 |
|
|
rbfh.invec[1] = getflt(ifp); |
794 |
|
|
rbfh.invec[2] = getflt(ifp); |
795 |
greg |
2.9 |
if (normalize(rbfh.invec) == 0) { |
796 |
|
|
fprintf(stderr, "%s: zero incident vector\n", progname); |
797 |
|
|
return(0); |
798 |
|
|
} |
799 |
greg |
2.3 |
rbfh.vtotal = getflt(ifp); |
800 |
greg |
2.1 |
rbfh.nrbf = getint(4, ifp); |
801 |
|
|
newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) + |
802 |
|
|
sizeof(RBFVAL)*(rbfh.nrbf-1)); |
803 |
|
|
if (newrbf == NULL) |
804 |
|
|
goto memerr; |
805 |
greg |
2.18 |
*newrbf = rbfh; |
806 |
greg |
2.1 |
for (i = 0; i < rbfh.nrbf; i++) { |
807 |
|
|
newrbf->rbfa[i].peak = getflt(ifp); |
808 |
greg |
2.29 |
newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff; |
809 |
greg |
2.1 |
newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff; |
810 |
greg |
2.29 |
newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff; |
811 |
|
|
newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff; |
812 |
greg |
2.1 |
} |
813 |
|
|
if (feof(ifp)) |
814 |
|
|
goto badEOF; |
815 |
|
|
/* insert in global list */ |
816 |
|
|
if (insert_dsf(newrbf) != rbfh.ord) { |
817 |
|
|
fprintf(stderr, "%s: error adding DSF\n", progname); |
818 |
|
|
return(0); |
819 |
|
|
} |
820 |
|
|
} |
821 |
|
|
/* read each migration matrix */ |
822 |
|
|
while ((from_ord = getint(4, ifp)) >= 0 && |
823 |
|
|
(to_ord = getint(4, ifp)) >= 0) { |
824 |
|
|
RBFNODE *from_rbf = get_dsf(from_ord); |
825 |
|
|
RBFNODE *to_rbf = get_dsf(to_ord); |
826 |
|
|
MIGRATION *newmig; |
827 |
|
|
int n; |
828 |
|
|
|
829 |
|
|
if ((from_rbf == NULL) | (to_rbf == NULL)) { |
830 |
|
|
fprintf(stderr, |
831 |
|
|
"%s: bad DSF reference in migration edge\n", |
832 |
|
|
progname); |
833 |
|
|
return(0); |
834 |
|
|
} |
835 |
|
|
n = from_rbf->nrbf * to_rbf->nrbf; |
836 |
|
|
newmig = (MIGRATION *)malloc(sizeof(MIGRATION) + |
837 |
|
|
sizeof(float)*(n-1)); |
838 |
|
|
if (newmig == NULL) |
839 |
|
|
goto memerr; |
840 |
|
|
newmig->rbfv[0] = from_rbf; |
841 |
|
|
newmig->rbfv[1] = to_rbf; |
842 |
greg |
2.2 |
memset(newmig->mtx, 0, sizeof(float)*n); |
843 |
|
|
for (i = 0; ; ) { /* read sparse data */ |
844 |
|
|
int zc = getint(1, ifp) & 0xff; |
845 |
|
|
if ((i += zc) >= n) |
846 |
|
|
break; |
847 |
greg |
2.3 |
if (zc == 0xff) |
848 |
|
|
continue; |
849 |
greg |
2.2 |
newmig->mtx[i++] = getflt(ifp); |
850 |
|
|
} |
851 |
greg |
2.1 |
if (feof(ifp)) |
852 |
|
|
goto badEOF; |
853 |
|
|
/* insert in edge lists */ |
854 |
|
|
newmig->enxt[0] = from_rbf->ejl; |
855 |
|
|
from_rbf->ejl = newmig; |
856 |
|
|
newmig->enxt[1] = to_rbf->ejl; |
857 |
|
|
to_rbf->ejl = newmig; |
858 |
|
|
/* push onto global list */ |
859 |
|
|
newmig->next = mig_list; |
860 |
|
|
mig_list = newmig; |
861 |
|
|
} |
862 |
|
|
return(1); /* success! */ |
863 |
|
|
memerr: |
864 |
|
|
fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname); |
865 |
|
|
exit(1); |
866 |
|
|
badEOF: |
867 |
|
|
fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname); |
868 |
|
|
return(0); |
869 |
|
|
} |