ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.35
Committed: Tue Sep 7 20:13:13 2021 UTC (2 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +3 -3 lines
Log Message:
fix(bsdf2ttree, bsdf2klems): reduced threshold to avoid "sticking" behavior in interpolant

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.35 static const char RCSid[] = "$Id: bsdfrep.c,v 2.34 2020/10/26 21:12:20 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12     #include <math.h>
13     #include "rtio.h"
14     #include "resolu.h"
15     #include "bsdfrep.h"
16 greg 2.29 #include "random.h"
17 greg 2.19 /* name and manufacturer if known */
18     char bsdf_name[256];
19     char bsdf_manuf[256];
20 greg 2.5 /* active grid resolution */
21     int grid_res = GRIDRES;
22    
23 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
24 greg 2.1 int inp_coverage = 0;
25     /* all incident angles in-plane so far? */
26     int single_plane_incident = -1;
27    
28     /* input/output orientations */
29     int input_orient = 0;
30     int output_orient = 0;
31    
32 greg 2.29 /* represented color space */
33     RBColor rbf_colorimetry = RBCunknown;
34    
35     const char *RBCident[] = {
36     "CIE-Y", "CIE-XYZ", "Spectral", "Unknown"
37     };
38    
39 greg 2.12 /* BSDF histogram */
40 greg 2.15 unsigned long bsdf_hist[HISTLEN];
41 greg 2.12
42     /* BSDF value for boundary regions */
43     double bsdf_min = 0;
44 greg 2.30 double bsdf_spec_val = 0;
45 greg 2.26 double bsdf_spec_rad = 0;
46 greg 2.12
47 greg 2.1 /* processed incident DSF measurements */
48     RBFNODE *dsf_list = NULL;
49    
50     /* RBF-linking matrices (edges) */
51     MIGRATION *mig_list = NULL;
52    
53     /* current input direction */
54     double theta_in_deg, phi_in_deg;
55    
56 greg 2.34 /* header line sharing callback */
57     int (*sir_headshare)(char *s) = NULL;
58    
59 greg 2.1 /* Register new input direction */
60     int
61     new_input_direction(double new_theta, double new_phi)
62     {
63     /* normalize angle ranges */
64     while (new_theta < -180.)
65     new_theta += 360.;
66     while (new_theta > 180.)
67     new_theta -= 360.;
68     if (new_theta < 0) {
69     new_theta = -new_theta;
70     new_phi += 180.;
71     }
72     while (new_phi < 0)
73     new_phi += 360.;
74     while (new_phi >= 360.)
75     new_phi -= 360.;
76 greg 2.28 /* check input orientation */
77     if (!input_orient)
78     input_orient = 1 - 2*(new_theta > 90.);
79     else if (input_orient > 0 ^ new_theta < 90.) {
80     fprintf(stderr,
81     "%s: Cannot handle input angles on both sides of surface\n",
82     progname);
83     return(0);
84     }
85     if ((theta_in_deg = new_theta) < 1.0)
86     return(1); /* don't rely on phi near normal */
87 greg 2.1 if (single_plane_incident > 0) /* check input coverage */
88     single_plane_incident = (round(new_phi) == round(phi_in_deg));
89     else if (single_plane_incident < 0)
90     single_plane_incident = 1;
91     phi_in_deg = new_phi;
92     if ((1. < new_phi) & (new_phi < 89.))
93     inp_coverage |= INP_QUAD1;
94     else if ((91. < new_phi) & (new_phi < 179.))
95     inp_coverage |= INP_QUAD2;
96     else if ((181. < new_phi) & (new_phi < 269.))
97     inp_coverage |= INP_QUAD3;
98     else if ((271. < new_phi) & (new_phi < 359.))
99     inp_coverage |= INP_QUAD4;
100     return(1);
101     }
102    
103     /* Apply symmetry to the given vector based on distribution */
104     int
105     use_symmetry(FVECT vec)
106     {
107 greg 2.11 const double phi = get_phi360(vec);
108 greg 2.1
109     switch (inp_coverage) {
110     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
111     break;
112     case INP_QUAD1|INP_QUAD2:
113     if ((-FTINY > phi) | (phi > 180.+FTINY))
114     goto mir_y;
115     break;
116     case INP_QUAD2|INP_QUAD3:
117     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
118     goto mir_x;
119     break;
120     case INP_QUAD3|INP_QUAD4:
121     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
122     goto mir_y;
123     break;
124     case INP_QUAD4|INP_QUAD1:
125     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
126     goto mir_x;
127     break;
128     case INP_QUAD1:
129     if ((-FTINY > phi) | (phi > 90.+FTINY))
130     switch ((int)(phi*(1./90.))) {
131     case 1: goto mir_x;
132     case 2: goto mir_xy;
133     case 3: goto mir_y;
134     }
135     break;
136     case INP_QUAD2:
137     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
138     switch ((int)(phi*(1./90.))) {
139     case 0: goto mir_x;
140     case 2: goto mir_y;
141     case 3: goto mir_xy;
142     }
143     break;
144     case INP_QUAD3:
145     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
146     switch ((int)(phi*(1./90.))) {
147     case 0: goto mir_xy;
148     case 1: goto mir_y;
149     case 3: goto mir_x;
150     }
151     break;
152     case INP_QUAD4:
153     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
154     switch ((int)(phi*(1./90.))) {
155     case 0: goto mir_y;
156     case 1: goto mir_xy;
157     case 2: goto mir_x;
158     }
159     break;
160     default:
161     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
162     progname, inp_coverage);
163     exit(1);
164     }
165     return(0); /* in range */
166     mir_x:
167     vec[0] = -vec[0];
168     return(MIRROR_X);
169     mir_y:
170     vec[1] = -vec[1];
171     return(MIRROR_Y);
172     mir_xy:
173     vec[0] = -vec[0];
174     vec[1] = -vec[1];
175     return(MIRROR_X|MIRROR_Y);
176     }
177    
178     /* Reverse symmetry based on what was done before */
179     void
180     rev_symmetry(FVECT vec, int sym)
181     {
182     if (sym & MIRROR_X)
183     vec[0] = -vec[0];
184     if (sym & MIRROR_Y)
185     vec[1] = -vec[1];
186     }
187    
188     /* Reverse symmetry for an RBF distribution */
189     void
190     rev_rbf_symmetry(RBFNODE *rbf, int sym)
191     {
192     int n;
193    
194     rev_symmetry(rbf->invec, sym);
195     if (sym & MIRROR_X)
196     for (n = rbf->nrbf; n-- > 0; )
197 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
198 greg 2.1 if (sym & MIRROR_Y)
199     for (n = rbf->nrbf; n-- > 0; )
200 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
201 greg 2.1 }
202    
203 greg 2.6 /* Rotate RBF to correspond to given incident vector */
204     void
205     rotate_rbf(RBFNODE *rbf, const FVECT invec)
206     {
207     static const FVECT vnorm = {.0, .0, 1.};
208     const double phi = atan2(invec[1],invec[0]) -
209     atan2(rbf->invec[1],rbf->invec[0]);
210     FVECT outvec;
211     int pos[2];
212     int n;
213 greg 2.8
214 greg 2.24 for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) {
215 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
216     spinvector(outvec, outvec, vnorm, phi);
217     pos_from_vec(pos, outvec);
218     rbf->rbfa[n].gx = pos[0];
219     rbf->rbfa[n].gy = pos[1];
220     }
221     VCOPY(rbf->invec, invec);
222     }
223    
224 greg 2.1 /* Compute outgoing vector from grid position */
225     void
226     ovec_from_pos(FVECT vec, int xpos, int ypos)
227     {
228     double uv[2];
229     double r2;
230    
231 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
232 greg 2.1 /* uniform hemispherical projection */
233     r2 = uv[0]*uv[0] + uv[1]*uv[1];
234     vec[0] = vec[1] = sqrt(2. - r2);
235     vec[0] *= uv[0];
236     vec[1] *= uv[1];
237     vec[2] = output_orient*(1. - r2);
238     }
239    
240     /* Compute grid position from normalized input/output vector */
241     void
242     pos_from_vec(int pos[2], const FVECT vec)
243     {
244     double sq[2]; /* uniform hemispherical projection */
245     double norm = 1./sqrt(1. + fabs(vec[2]));
246    
247     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
248    
249 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
250     pos[1] = (int)(sq[1]*grid_res);
251 greg 2.1 }
252    
253 greg 2.14 /* Compute volume associated with Gaussian lobe */
254     double
255     rbf_volume(const RBFVAL *rbfp)
256     {
257     double rad = R2ANG(rbfp->crad);
258     FVECT odir;
259     double elev, integ;
260     /* infinite integral approximation */
261     integ = (2.*M_PI) * rbfp->peak * rad*rad;
262     /* check if we're near horizon */
263     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
264     elev = output_orient*odir[2];
265     /* apply cut-off correction if > 1% */
266     if (elev < 2.8*rad) {
267     /* elev = asin(elev); /* this is so crude, anyway... */
268     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
269     }
270     return(integ);
271     }
272    
273 greg 2.29 /* Evaluate BSDF at the given normalized outgoing direction in color */
274     SDError
275     eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec)
276 greg 2.1 {
277 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
278 greg 2.16 int pos[2];
279 greg 2.8 double res = 0;
280 greg 2.29 double usum = 0, vsum = 0;
281 greg 2.1 const RBFVAL *rbfp;
282     FVECT odir;
283 greg 2.16 double rad2;
284 greg 2.1 int n;
285 greg 2.29 /* assign default value */
286     sv->spec = c_dfcolor;
287     sv->cieY = bsdf_min;
288 greg 2.14 /* check for wrong side */
289 greg 2.29 if (outvec[2] > 0 ^ output_orient > 0) {
290     strcpy(SDerrorDetail, "Wrong-side scattering query");
291     return(SDEargument);
292     }
293     if (rp == NULL) /* return minimum if no information avail. */
294     return(SDEnone);
295 greg 2.16 /* optimization for fast lobe culling */
296     pos_from_vec(pos, outvec);
297 greg 2.14 /* sum radial basis function */
298 greg 2.1 rbfp = rp->rbfa;
299     for (n = rp->nrbf; n--; rbfp++) {
300 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
301     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
302 greg 2.29 double val;
303 greg 2.16 rad2 = R2ANG(rbfp->crad);
304     rad2 *= rad2;
305 greg 2.17 if (d2 > rad2*rfact2)
306 greg 2.16 continue;
307 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
308 greg 2.29 val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
309     if (rbf_colorimetry == RBCtristimulus) {
310     usum += val * (rbfp->chroma & 0xff);
311     vsum += val * (rbfp->chroma>>8 & 0xff);
312     }
313     res += val;
314 greg 2.1 }
315 greg 2.31 sv->cieY = res / COSF(outvec[2]);
316     if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */
317     sv->cieY = bsdf_min;
318     } else if (rbf_colorimetry == RBCtristimulus) {
319 greg 2.29 C_CHROMA cres = (int)(usum/res + frandom());
320     cres |= (int)(vsum/res + frandom()) << 8;
321     c_decodeChroma(&sv->spec, cres);
322     }
323     return(SDEnone);
324     }
325    
326     /* Evaluate BSDF at the given normalized outgoing direction in Y */
327     double
328     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
329     {
330     SDValue sv;
331    
332     if (eval_rbfcol(&sv, rp, outvec) == SDEnone)
333     return(sv.cieY);
334    
335     return(0.0);
336 greg 2.1 }
337    
338     /* Insert a new directional scattering function in our global list */
339     int
340     insert_dsf(RBFNODE *newrbf)
341     {
342     RBFNODE *rbf, *rbf_last;
343     int pos;
344     /* check for redundant meas. */
345     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
346     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
347     fprintf(stderr,
348 greg 2.22 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
349     progname, get_theta180(newrbf->invec),
350     get_phi360(newrbf->invec));
351 greg 2.1 free(newrbf);
352     return(-1);
353     }
354     /* keep in ascending theta order */
355     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
356     rbf_last = rbf, rbf = rbf->next)
357     if (single_plane_incident && input_orient*rbf->invec[2] <
358     input_orient*newrbf->invec[2])
359     break;
360     if (rbf_last == NULL) { /* insert new node in list */
361     newrbf->ord = 0;
362     newrbf->next = dsf_list;
363     dsf_list = newrbf;
364     } else {
365     newrbf->ord = rbf_last->ord + 1;
366     newrbf->next = rbf;
367     rbf_last->next = newrbf;
368     }
369     rbf_last = newrbf;
370     while (rbf != NULL) { /* update ordinal positions */
371     rbf->ord = rbf_last->ord + 1;
372     rbf_last = rbf;
373     rbf = rbf->next;
374     }
375     return(newrbf->ord);
376     }
377    
378     /* Get the DSF indicated by its ordinal position */
379     RBFNODE *
380     get_dsf(int ord)
381     {
382     RBFNODE *rbf;
383    
384     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
385 greg 2.3 if (rbf->ord == ord)
386 greg 2.1 return(rbf);
387     return(NULL);
388     }
389    
390     /* Get triangle surface orientation (unnormalized) */
391     void
392     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
393     {
394     FVECT v2minus1, v3minus2;
395    
396     VSUB(v2minus1, v2, v1);
397     VSUB(v3minus2, v3, v2);
398     VCROSS(vres, v2minus1, v3minus2);
399     }
400    
401     /* Determine if vertex order is reversed (inward normal) */
402     int
403     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
404     {
405     FVECT tor;
406    
407     tri_orient(tor, v1, v2, v3);
408    
409     return(DOT(tor, v2) < 0.);
410     }
411    
412     /* Find vertices completing triangles on either side of the given edge */
413     int
414     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
415     {
416 greg 2.4 const MIGRATION *ej1, *ej2;
417 greg 2.1 RBFNODE *tv;
418    
419     rbfv[0] = rbfv[1] = NULL;
420     if (mig == NULL)
421     return(0);
422 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
423     ej1 = nextedge(mig->rbfv[0],ej1)) {
424     if (ej1 == mig)
425 greg 2.1 continue;
426 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
427 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
428     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
429     rbfv[is_rev_tri(mig->rbfv[0]->invec,
430     mig->rbfv[1]->invec,
431     tv->invec)] = tv;
432     break;
433     }
434     }
435     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
436     }
437    
438 greg 2.25 /* Return single-lobe specular RBF for the given incident direction */
439     RBFNODE *
440     def_rbf_spec(const FVECT invec)
441     {
442     RBFNODE *rbf;
443     FVECT ovec;
444     int pos[2];
445    
446     if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */
447     return(NULL);
448 greg 2.30 if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0))
449 greg 2.25 return(NULL); /* nothing set */
450     rbf = (RBFNODE *)malloc(sizeof(RBFNODE));
451     if (rbf == NULL)
452     return(NULL);
453     ovec[0] = -invec[0];
454     ovec[1] = -invec[1];
455     ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1);
456     pos_from_vec(pos, ovec);
457     rbf->ord = 0;
458     rbf->next = NULL;
459     rbf->ejl = NULL;
460     VCOPY(rbf->invec, invec);
461     rbf->nrbf = 1;
462 greg 2.30 rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]);
463 greg 2.29 rbf->rbfa[0].chroma = c_dfchroma;
464 greg 2.26 rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad);
465 greg 2.25 rbf->rbfa[0].gx = pos[0];
466     rbf->rbfa[0].gy = pos[1];
467     rbf->vtotal = rbf_volume(rbf->rbfa);
468     return(rbf);
469     }
470    
471 greg 2.20 /* Advect and allocate new RBF along edge (internal call) */
472     RBFNODE *
473     e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
474     {
475     double cthresh = FTINY;
476     RBFNODE *rbf;
477     int n, i, j;
478     double t, full_dist;
479     /* get relative position */
480     t = Acos(DOT(invec, mig->rbfv[0]->invec));
481 greg 2.35 if (t <= .001) { /* near first DSF */
482 greg 2.20 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
483     rbf = (RBFNODE *)malloc(n);
484     if (rbf == NULL)
485     goto memerr;
486     memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
487     rbf->next = NULL; rbf->ejl = NULL;
488     return(rbf);
489     }
490     full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
491 greg 2.35 if (t >= full_dist-.001) { /* near second DSF */
492 greg 2.20 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
493     rbf = (RBFNODE *)malloc(n);
494     if (rbf == NULL)
495     goto memerr;
496     memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
497     rbf->next = NULL; rbf->ejl = NULL;
498     return(rbf);
499     }
500     t /= full_dist;
501     tryagain:
502     n = 0; /* count migrating particles */
503     for (i = 0; i < mtx_nrows(mig); i++)
504     for (j = 0; j < mtx_ncols(mig); j++)
505     n += (mtx_coef(mig,i,j) > cthresh);
506     /* are we over our limit? */
507     if ((lobe_lim > 0) & (n > lobe_lim)) {
508     cthresh = cthresh*2. + 10.*FTINY;
509     goto tryagain;
510     }
511     #ifdef DEBUG
512     fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
513     mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
514     #endif
515     rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
516     if (rbf == NULL)
517     goto memerr;
518     rbf->next = NULL; rbf->ejl = NULL;
519     VCOPY(rbf->invec, invec);
520     rbf->nrbf = n;
521     rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
522     n = 0; /* advect RBF lobes */
523     for (i = 0; i < mtx_nrows(mig); i++) {
524     const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
525     const float peak0 = rbf0i->peak;
526     const double rad0 = R2ANG(rbf0i->crad);
527 greg 2.29 C_COLOR cc0;
528 greg 2.20 FVECT v0;
529     float mv;
530     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
531 greg 2.29 c_decodeChroma(&cc0, rbf0i->chroma);
532 greg 2.20 for (j = 0; j < mtx_ncols(mig); j++)
533     if ((mv = mtx_coef(mig,i,j)) > cthresh) {
534     const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
535     double rad2;
536     FVECT v;
537     int pos[2];
538     rad2 = R2ANG(rbf1j->crad);
539     rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
540     rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
541     rad0*rad0/rad2;
542 greg 2.29 if (rbf_colorimetry == RBCtristimulus) {
543     C_COLOR cres;
544     c_decodeChroma(&cres, rbf1j->chroma);
545     c_cmix(&cres, 1.-t, &cc0, t, &cres);
546     rbf->rbfa[n].chroma = c_encodeChroma(&cres);
547     } else
548     rbf->rbfa[n].chroma = c_dfchroma;
549 greg 2.20 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
550     ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
551     geodesic(v, v0, v, t, GEOD_REL);
552     pos_from_vec(pos, v);
553     rbf->rbfa[n].gx = pos[0];
554     rbf->rbfa[n].gy = pos[1];
555     ++n;
556     }
557     }
558     rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
559     return(rbf);
560     memerr:
561     fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
562     exit(1);
563     return(NULL); /* pro forma return */
564     }
565    
566 greg 2.4 /* Clear our BSDF representation and free memory */
567     void
568     clear_bsdf_rep(void)
569     {
570     while (mig_list != NULL) {
571     MIGRATION *mig = mig_list;
572     mig_list = mig->next;
573     free(mig);
574     }
575     while (dsf_list != NULL) {
576     RBFNODE *rbf = dsf_list;
577     dsf_list = rbf->next;
578     free(rbf);
579     }
580 greg 2.19 bsdf_name[0] = '\0';
581     bsdf_manuf[0] = '\0';
582 greg 2.4 inp_coverage = 0;
583     single_plane_incident = -1;
584     input_orient = output_orient = 0;
585 greg 2.29 rbf_colorimetry = RBCunknown;
586 greg 2.5 grid_res = GRIDRES;
587 greg 2.31 memset(bsdf_hist, 0, sizeof(bsdf_hist));
588 greg 2.25 bsdf_min = 0;
589 greg 2.30 bsdf_spec_val = 0;
590 greg 2.26 bsdf_spec_rad = 0;
591 greg 2.4 }
592    
593 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
594     void
595     save_bsdf_rep(FILE *ofp)
596     {
597     RBFNODE *rbf;
598     MIGRATION *mig;
599     int i, n;
600     /* finish header */
601 greg 2.19 if (bsdf_name[0])
602     fprintf(ofp, "NAME=%s\n", bsdf_name);
603     if (bsdf_manuf[0])
604     fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
605 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
606     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
607 greg 2.29 fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]);
608 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
609 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
610 greg 2.30 if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0))
611     fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad);
612 greg 2.1 fputformat(BSDFREP_FMT, ofp);
613     fputc('\n', ofp);
614 greg 2.29 putint(BSDFREP_MAGIC, 2, ofp);
615 greg 2.1 /* write each DSF */
616     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
617     putint(rbf->ord, 4, ofp);
618     putflt(rbf->invec[0], ofp);
619     putflt(rbf->invec[1], ofp);
620     putflt(rbf->invec[2], ofp);
621     putflt(rbf->vtotal, ofp);
622     putint(rbf->nrbf, 4, ofp);
623     for (i = 0; i < rbf->nrbf; i++) {
624     putflt(rbf->rbfa[i].peak, ofp);
625 greg 2.29 putint(rbf->rbfa[i].chroma, 2, ofp);
626 greg 2.1 putint(rbf->rbfa[i].crad, 2, ofp);
627 greg 2.29 putint(rbf->rbfa[i].gx, 2, ofp);
628     putint(rbf->rbfa[i].gy, 2, ofp);
629 greg 2.1 }
630     }
631     putint(-1, 4, ofp); /* terminator */
632     /* write each migration matrix */
633 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
634     int zerocnt = 0;
635 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
636     putint(mig->rbfv[1]->ord, 4, ofp);
637 greg 2.2 /* write out as sparse data */
638 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
639 greg 2.2 for (i = 0; i < n; i++) {
640 greg 2.3 if (zerocnt == 0xff) {
641     putint(0xff, 1, ofp); zerocnt = 0;
642 greg 2.2 }
643     if (mig->mtx[i] != 0) {
644     putint(zerocnt, 1, ofp); zerocnt = 0;
645     putflt(mig->mtx[i], ofp);
646     } else
647     ++zerocnt;
648     }
649     putint(zerocnt, 1, ofp);
650 greg 2.1 }
651     putint(-1, 4, ofp); /* terminator */
652     putint(-1, 4, ofp);
653     if (fflush(ofp) == EOF) {
654     fprintf(stderr, "%s: error writing BSDF interpolant\n",
655     progname);
656     exit(1);
657     }
658     }
659    
660 greg 2.2 /* Check header line for critical information */
661     static int
662     headline(char *s, void *p)
663     {
664 greg 2.32 char fmt[MAXFMTLEN];
665 greg 2.29 int i;
666 greg 2.2
667 greg 2.34 if (isheadid(s))
668     return(0);
669 greg 2.19 if (!strncmp(s, "NAME=", 5)) {
670     strcpy(bsdf_name, s+5);
671     bsdf_name[strlen(bsdf_name)-1] = '\0';
672 greg 2.34 return(1);
673 greg 2.19 }
674     if (!strncmp(s, "MANUFACT=", 9)) {
675     strcpy(bsdf_manuf, s+9);
676     bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
677 greg 2.34 return(1);
678 greg 2.19 }
679 greg 2.2 if (!strncmp(s, "SYMMETRY=", 9)) {
680     inp_coverage = atoi(s+9);
681     single_plane_incident = !inp_coverage;
682 greg 2.34 return(1);
683 greg 2.2 }
684     if (!strncmp(s, "IO_SIDES=", 9)) {
685     sscanf(s+9, "%d %d", &input_orient, &output_orient);
686 greg 2.34 return(1);
687 greg 2.2 }
688 greg 2.29 if (!strncmp(s, "COLORIMETRY=", 12)) {
689     fmt[0] = '\0';
690     sscanf(s+12, "%s", fmt);
691     for (i = RBCunknown; i >= 0; i--)
692     if (!strcmp(fmt, RBCident[i]))
693     break;
694     if (i < 0)
695     return(-1);
696     rbf_colorimetry = i;
697 greg 2.34 return(1);
698 greg 2.29 }
699 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
700     sscanf(s+8, "%d", &grid_res);
701 greg 2.34 return(1);
702 greg 2.5 }
703 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
704     sscanf(s+8, "%lf", &bsdf_min);
705 greg 2.34 return(1);
706 greg 2.12 }
707 greg 2.25 if (!strncmp(s, "BSDFSPEC=", 9)) {
708 greg 2.30 sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad);
709 greg 2.34 return(1);
710 greg 2.25 }
711 greg 2.34 if (formatval(fmt, s))
712     return (strcmp(fmt, BSDFREP_FMT) ? -1 : 0);
713     if (sir_headshare != NULL)
714     return ((*sir_headshare)(s));
715 greg 2.2 return(0);
716     }
717    
718 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
719     int
720     load_bsdf_rep(FILE *ifp)
721     {
722     RBFNODE rbfh;
723     int from_ord, to_ord;
724     int i;
725 greg 2.4
726     clear_bsdf_rep();
727 greg 2.5 if (ifp == NULL)
728     return(0);
729 greg 2.21 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
730 greg 2.23 !input_orient | !output_orient |
731 greg 2.29 (grid_res < 16) | (grid_res > 0xffff)) {
732 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
733     progname);
734     return(0);
735     }
736 greg 2.29 if (getint(2, ifp) != BSDFREP_MAGIC) {
737     fprintf(stderr, "%s: bad magic number for BSDF interpolant\n",
738     progname);
739     return(0);
740     }
741 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
742 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
743     RBFNODE *newrbf;
744    
745     rbfh.invec[0] = getflt(ifp);
746     rbfh.invec[1] = getflt(ifp);
747     rbfh.invec[2] = getflt(ifp);
748 greg 2.9 if (normalize(rbfh.invec) == 0) {
749     fprintf(stderr, "%s: zero incident vector\n", progname);
750     return(0);
751     }
752 greg 2.3 rbfh.vtotal = getflt(ifp);
753 greg 2.1 rbfh.nrbf = getint(4, ifp);
754     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
755     sizeof(RBFVAL)*(rbfh.nrbf-1));
756     if (newrbf == NULL)
757     goto memerr;
758 greg 2.18 *newrbf = rbfh;
759 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
760     newrbf->rbfa[i].peak = getflt(ifp);
761 greg 2.29 newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff;
762 greg 2.1 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
763 greg 2.29 newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff;
764     newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff;
765 greg 2.1 }
766     if (feof(ifp))
767     goto badEOF;
768     /* insert in global list */
769     if (insert_dsf(newrbf) != rbfh.ord) {
770     fprintf(stderr, "%s: error adding DSF\n", progname);
771     return(0);
772     }
773     }
774     /* read each migration matrix */
775     while ((from_ord = getint(4, ifp)) >= 0 &&
776     (to_ord = getint(4, ifp)) >= 0) {
777     RBFNODE *from_rbf = get_dsf(from_ord);
778     RBFNODE *to_rbf = get_dsf(to_ord);
779     MIGRATION *newmig;
780     int n;
781    
782     if ((from_rbf == NULL) | (to_rbf == NULL)) {
783     fprintf(stderr,
784     "%s: bad DSF reference in migration edge\n",
785     progname);
786     return(0);
787     }
788     n = from_rbf->nrbf * to_rbf->nrbf;
789     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
790     sizeof(float)*(n-1));
791     if (newmig == NULL)
792     goto memerr;
793     newmig->rbfv[0] = from_rbf;
794     newmig->rbfv[1] = to_rbf;
795 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
796     for (i = 0; ; ) { /* read sparse data */
797     int zc = getint(1, ifp) & 0xff;
798     if ((i += zc) >= n)
799     break;
800 greg 2.3 if (zc == 0xff)
801     continue;
802 greg 2.2 newmig->mtx[i++] = getflt(ifp);
803     }
804 greg 2.1 if (feof(ifp))
805     goto badEOF;
806     /* insert in edge lists */
807     newmig->enxt[0] = from_rbf->ejl;
808     from_rbf->ejl = newmig;
809     newmig->enxt[1] = to_rbf->ejl;
810     to_rbf->ejl = newmig;
811     /* push onto global list */
812     newmig->next = mig_list;
813     mig_list = newmig;
814     }
815     return(1); /* success! */
816     memerr:
817     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
818     exit(1);
819     badEOF:
820     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
821     return(0);
822     }