ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.33
Committed: Sat Dec 28 18:05:14 2019 UTC (4 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R3
Changes since 2.32: +1 -2 lines
Log Message:
Removed redundant include files

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.33 static const char RCSid[] = "$Id: bsdfrep.c,v 2.32 2018/08/02 18:33:42 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12     #include <math.h>
13     #include "rtio.h"
14     #include "resolu.h"
15     #include "bsdfrep.h"
16 greg 2.29 #include "random.h"
17 greg 2.19 /* name and manufacturer if known */
18     char bsdf_name[256];
19     char bsdf_manuf[256];
20 greg 2.5 /* active grid resolution */
21     int grid_res = GRIDRES;
22    
23 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
24 greg 2.1 int inp_coverage = 0;
25     /* all incident angles in-plane so far? */
26     int single_plane_incident = -1;
27    
28     /* input/output orientations */
29     int input_orient = 0;
30     int output_orient = 0;
31    
32 greg 2.29 /* represented color space */
33     RBColor rbf_colorimetry = RBCunknown;
34    
35     const char *RBCident[] = {
36     "CIE-Y", "CIE-XYZ", "Spectral", "Unknown"
37     };
38    
39 greg 2.12 /* BSDF histogram */
40 greg 2.15 unsigned long bsdf_hist[HISTLEN];
41 greg 2.12
42     /* BSDF value for boundary regions */
43     double bsdf_min = 0;
44 greg 2.30 double bsdf_spec_val = 0;
45 greg 2.26 double bsdf_spec_rad = 0;
46 greg 2.12
47 greg 2.1 /* processed incident DSF measurements */
48     RBFNODE *dsf_list = NULL;
49    
50     /* RBF-linking matrices (edges) */
51     MIGRATION *mig_list = NULL;
52    
53     /* current input direction */
54     double theta_in_deg, phi_in_deg;
55    
56     /* Register new input direction */
57     int
58     new_input_direction(double new_theta, double new_phi)
59     {
60     /* normalize angle ranges */
61     while (new_theta < -180.)
62     new_theta += 360.;
63     while (new_theta > 180.)
64     new_theta -= 360.;
65     if (new_theta < 0) {
66     new_theta = -new_theta;
67     new_phi += 180.;
68     }
69     while (new_phi < 0)
70     new_phi += 360.;
71     while (new_phi >= 360.)
72     new_phi -= 360.;
73 greg 2.28 /* check input orientation */
74     if (!input_orient)
75     input_orient = 1 - 2*(new_theta > 90.);
76     else if (input_orient > 0 ^ new_theta < 90.) {
77     fprintf(stderr,
78     "%s: Cannot handle input angles on both sides of surface\n",
79     progname);
80     return(0);
81     }
82     if ((theta_in_deg = new_theta) < 1.0)
83     return(1); /* don't rely on phi near normal */
84 greg 2.1 if (single_plane_incident > 0) /* check input coverage */
85     single_plane_incident = (round(new_phi) == round(phi_in_deg));
86     else if (single_plane_incident < 0)
87     single_plane_incident = 1;
88     phi_in_deg = new_phi;
89     if ((1. < new_phi) & (new_phi < 89.))
90     inp_coverage |= INP_QUAD1;
91     else if ((91. < new_phi) & (new_phi < 179.))
92     inp_coverage |= INP_QUAD2;
93     else if ((181. < new_phi) & (new_phi < 269.))
94     inp_coverage |= INP_QUAD3;
95     else if ((271. < new_phi) & (new_phi < 359.))
96     inp_coverage |= INP_QUAD4;
97     return(1);
98     }
99    
100     /* Apply symmetry to the given vector based on distribution */
101     int
102     use_symmetry(FVECT vec)
103     {
104 greg 2.11 const double phi = get_phi360(vec);
105 greg 2.1
106     switch (inp_coverage) {
107     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
108     break;
109     case INP_QUAD1|INP_QUAD2:
110     if ((-FTINY > phi) | (phi > 180.+FTINY))
111     goto mir_y;
112     break;
113     case INP_QUAD2|INP_QUAD3:
114     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
115     goto mir_x;
116     break;
117     case INP_QUAD3|INP_QUAD4:
118     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
119     goto mir_y;
120     break;
121     case INP_QUAD4|INP_QUAD1:
122     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
123     goto mir_x;
124     break;
125     case INP_QUAD1:
126     if ((-FTINY > phi) | (phi > 90.+FTINY))
127     switch ((int)(phi*(1./90.))) {
128     case 1: goto mir_x;
129     case 2: goto mir_xy;
130     case 3: goto mir_y;
131     }
132     break;
133     case INP_QUAD2:
134     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
135     switch ((int)(phi*(1./90.))) {
136     case 0: goto mir_x;
137     case 2: goto mir_y;
138     case 3: goto mir_xy;
139     }
140     break;
141     case INP_QUAD3:
142     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
143     switch ((int)(phi*(1./90.))) {
144     case 0: goto mir_xy;
145     case 1: goto mir_y;
146     case 3: goto mir_x;
147     }
148     break;
149     case INP_QUAD4:
150     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
151     switch ((int)(phi*(1./90.))) {
152     case 0: goto mir_y;
153     case 1: goto mir_xy;
154     case 2: goto mir_x;
155     }
156     break;
157     default:
158     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
159     progname, inp_coverage);
160     exit(1);
161     }
162     return(0); /* in range */
163     mir_x:
164     vec[0] = -vec[0];
165     return(MIRROR_X);
166     mir_y:
167     vec[1] = -vec[1];
168     return(MIRROR_Y);
169     mir_xy:
170     vec[0] = -vec[0];
171     vec[1] = -vec[1];
172     return(MIRROR_X|MIRROR_Y);
173     }
174    
175     /* Reverse symmetry based on what was done before */
176     void
177     rev_symmetry(FVECT vec, int sym)
178     {
179     if (sym & MIRROR_X)
180     vec[0] = -vec[0];
181     if (sym & MIRROR_Y)
182     vec[1] = -vec[1];
183     }
184    
185     /* Reverse symmetry for an RBF distribution */
186     void
187     rev_rbf_symmetry(RBFNODE *rbf, int sym)
188     {
189     int n;
190    
191     rev_symmetry(rbf->invec, sym);
192     if (sym & MIRROR_X)
193     for (n = rbf->nrbf; n-- > 0; )
194 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
195 greg 2.1 if (sym & MIRROR_Y)
196     for (n = rbf->nrbf; n-- > 0; )
197 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
198 greg 2.1 }
199    
200 greg 2.6 /* Rotate RBF to correspond to given incident vector */
201     void
202     rotate_rbf(RBFNODE *rbf, const FVECT invec)
203     {
204     static const FVECT vnorm = {.0, .0, 1.};
205     const double phi = atan2(invec[1],invec[0]) -
206     atan2(rbf->invec[1],rbf->invec[0]);
207     FVECT outvec;
208     int pos[2];
209     int n;
210 greg 2.8
211 greg 2.24 for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) {
212 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
213     spinvector(outvec, outvec, vnorm, phi);
214     pos_from_vec(pos, outvec);
215     rbf->rbfa[n].gx = pos[0];
216     rbf->rbfa[n].gy = pos[1];
217     }
218     VCOPY(rbf->invec, invec);
219     }
220    
221 greg 2.1 /* Compute outgoing vector from grid position */
222     void
223     ovec_from_pos(FVECT vec, int xpos, int ypos)
224     {
225     double uv[2];
226     double r2;
227    
228 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
229 greg 2.1 /* uniform hemispherical projection */
230     r2 = uv[0]*uv[0] + uv[1]*uv[1];
231     vec[0] = vec[1] = sqrt(2. - r2);
232     vec[0] *= uv[0];
233     vec[1] *= uv[1];
234     vec[2] = output_orient*(1. - r2);
235     }
236    
237     /* Compute grid position from normalized input/output vector */
238     void
239     pos_from_vec(int pos[2], const FVECT vec)
240     {
241     double sq[2]; /* uniform hemispherical projection */
242     double norm = 1./sqrt(1. + fabs(vec[2]));
243    
244     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
245    
246 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
247     pos[1] = (int)(sq[1]*grid_res);
248 greg 2.1 }
249    
250 greg 2.14 /* Compute volume associated with Gaussian lobe */
251     double
252     rbf_volume(const RBFVAL *rbfp)
253     {
254     double rad = R2ANG(rbfp->crad);
255     FVECT odir;
256     double elev, integ;
257     /* infinite integral approximation */
258     integ = (2.*M_PI) * rbfp->peak * rad*rad;
259     /* check if we're near horizon */
260     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
261     elev = output_orient*odir[2];
262     /* apply cut-off correction if > 1% */
263     if (elev < 2.8*rad) {
264     /* elev = asin(elev); /* this is so crude, anyway... */
265     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
266     }
267     return(integ);
268     }
269    
270 greg 2.29 /* Evaluate BSDF at the given normalized outgoing direction in color */
271     SDError
272     eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec)
273 greg 2.1 {
274 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
275 greg 2.16 int pos[2];
276 greg 2.8 double res = 0;
277 greg 2.29 double usum = 0, vsum = 0;
278 greg 2.1 const RBFVAL *rbfp;
279     FVECT odir;
280 greg 2.16 double rad2;
281 greg 2.1 int n;
282 greg 2.29 /* assign default value */
283     sv->spec = c_dfcolor;
284     sv->cieY = bsdf_min;
285 greg 2.14 /* check for wrong side */
286 greg 2.29 if (outvec[2] > 0 ^ output_orient > 0) {
287     strcpy(SDerrorDetail, "Wrong-side scattering query");
288     return(SDEargument);
289     }
290     if (rp == NULL) /* return minimum if no information avail. */
291     return(SDEnone);
292 greg 2.16 /* optimization for fast lobe culling */
293     pos_from_vec(pos, outvec);
294 greg 2.14 /* sum radial basis function */
295 greg 2.1 rbfp = rp->rbfa;
296     for (n = rp->nrbf; n--; rbfp++) {
297 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
298     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
299 greg 2.29 double val;
300 greg 2.16 rad2 = R2ANG(rbfp->crad);
301     rad2 *= rad2;
302 greg 2.17 if (d2 > rad2*rfact2)
303 greg 2.16 continue;
304 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
305 greg 2.29 val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
306     if (rbf_colorimetry == RBCtristimulus) {
307     usum += val * (rbfp->chroma & 0xff);
308     vsum += val * (rbfp->chroma>>8 & 0xff);
309     }
310     res += val;
311 greg 2.1 }
312 greg 2.31 sv->cieY = res / COSF(outvec[2]);
313     if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */
314     sv->cieY = bsdf_min;
315     } else if (rbf_colorimetry == RBCtristimulus) {
316 greg 2.29 C_CHROMA cres = (int)(usum/res + frandom());
317     cres |= (int)(vsum/res + frandom()) << 8;
318     c_decodeChroma(&sv->spec, cres);
319     }
320     return(SDEnone);
321     }
322    
323     /* Evaluate BSDF at the given normalized outgoing direction in Y */
324     double
325     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
326     {
327     SDValue sv;
328    
329     if (eval_rbfcol(&sv, rp, outvec) == SDEnone)
330     return(sv.cieY);
331    
332     return(0.0);
333 greg 2.1 }
334    
335     /* Insert a new directional scattering function in our global list */
336     int
337     insert_dsf(RBFNODE *newrbf)
338     {
339     RBFNODE *rbf, *rbf_last;
340     int pos;
341     /* check for redundant meas. */
342     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
343     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
344     fprintf(stderr,
345 greg 2.22 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
346     progname, get_theta180(newrbf->invec),
347     get_phi360(newrbf->invec));
348 greg 2.1 free(newrbf);
349     return(-1);
350     }
351     /* keep in ascending theta order */
352     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
353     rbf_last = rbf, rbf = rbf->next)
354     if (single_plane_incident && input_orient*rbf->invec[2] <
355     input_orient*newrbf->invec[2])
356     break;
357     if (rbf_last == NULL) { /* insert new node in list */
358     newrbf->ord = 0;
359     newrbf->next = dsf_list;
360     dsf_list = newrbf;
361     } else {
362     newrbf->ord = rbf_last->ord + 1;
363     newrbf->next = rbf;
364     rbf_last->next = newrbf;
365     }
366     rbf_last = newrbf;
367     while (rbf != NULL) { /* update ordinal positions */
368     rbf->ord = rbf_last->ord + 1;
369     rbf_last = rbf;
370     rbf = rbf->next;
371     }
372     return(newrbf->ord);
373     }
374    
375     /* Get the DSF indicated by its ordinal position */
376     RBFNODE *
377     get_dsf(int ord)
378     {
379     RBFNODE *rbf;
380    
381     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
382 greg 2.3 if (rbf->ord == ord)
383 greg 2.1 return(rbf);
384     return(NULL);
385     }
386    
387     /* Get triangle surface orientation (unnormalized) */
388     void
389     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
390     {
391     FVECT v2minus1, v3minus2;
392    
393     VSUB(v2minus1, v2, v1);
394     VSUB(v3minus2, v3, v2);
395     VCROSS(vres, v2minus1, v3minus2);
396     }
397    
398     /* Determine if vertex order is reversed (inward normal) */
399     int
400     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
401     {
402     FVECT tor;
403    
404     tri_orient(tor, v1, v2, v3);
405    
406     return(DOT(tor, v2) < 0.);
407     }
408    
409     /* Find vertices completing triangles on either side of the given edge */
410     int
411     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
412     {
413 greg 2.4 const MIGRATION *ej1, *ej2;
414 greg 2.1 RBFNODE *tv;
415    
416     rbfv[0] = rbfv[1] = NULL;
417     if (mig == NULL)
418     return(0);
419 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
420     ej1 = nextedge(mig->rbfv[0],ej1)) {
421     if (ej1 == mig)
422 greg 2.1 continue;
423 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
424 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
425     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
426     rbfv[is_rev_tri(mig->rbfv[0]->invec,
427     mig->rbfv[1]->invec,
428     tv->invec)] = tv;
429     break;
430     }
431     }
432     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
433     }
434    
435 greg 2.25 /* Return single-lobe specular RBF for the given incident direction */
436     RBFNODE *
437     def_rbf_spec(const FVECT invec)
438     {
439     RBFNODE *rbf;
440     FVECT ovec;
441     int pos[2];
442    
443     if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */
444     return(NULL);
445 greg 2.30 if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0))
446 greg 2.25 return(NULL); /* nothing set */
447     rbf = (RBFNODE *)malloc(sizeof(RBFNODE));
448     if (rbf == NULL)
449     return(NULL);
450     ovec[0] = -invec[0];
451     ovec[1] = -invec[1];
452     ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1);
453     pos_from_vec(pos, ovec);
454     rbf->ord = 0;
455     rbf->next = NULL;
456     rbf->ejl = NULL;
457     VCOPY(rbf->invec, invec);
458     rbf->nrbf = 1;
459 greg 2.30 rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]);
460 greg 2.29 rbf->rbfa[0].chroma = c_dfchroma;
461 greg 2.26 rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad);
462 greg 2.25 rbf->rbfa[0].gx = pos[0];
463     rbf->rbfa[0].gy = pos[1];
464     rbf->vtotal = rbf_volume(rbf->rbfa);
465     return(rbf);
466     }
467    
468 greg 2.20 /* Advect and allocate new RBF along edge (internal call) */
469     RBFNODE *
470     e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
471     {
472     double cthresh = FTINY;
473     RBFNODE *rbf;
474     int n, i, j;
475     double t, full_dist;
476     /* get relative position */
477     t = Acos(DOT(invec, mig->rbfv[0]->invec));
478     if (t < M_PI/grid_res) { /* near first DSF */
479     n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
480     rbf = (RBFNODE *)malloc(n);
481     if (rbf == NULL)
482     goto memerr;
483     memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
484     rbf->next = NULL; rbf->ejl = NULL;
485     return(rbf);
486     }
487     full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
488     if (t > full_dist-M_PI/grid_res) { /* near second DSF */
489     n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
490     rbf = (RBFNODE *)malloc(n);
491     if (rbf == NULL)
492     goto memerr;
493     memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
494     rbf->next = NULL; rbf->ejl = NULL;
495     return(rbf);
496     }
497     t /= full_dist;
498     tryagain:
499     n = 0; /* count migrating particles */
500     for (i = 0; i < mtx_nrows(mig); i++)
501     for (j = 0; j < mtx_ncols(mig); j++)
502     n += (mtx_coef(mig,i,j) > cthresh);
503     /* are we over our limit? */
504     if ((lobe_lim > 0) & (n > lobe_lim)) {
505     cthresh = cthresh*2. + 10.*FTINY;
506     goto tryagain;
507     }
508     #ifdef DEBUG
509     fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
510     mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
511     #endif
512     rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
513     if (rbf == NULL)
514     goto memerr;
515     rbf->next = NULL; rbf->ejl = NULL;
516     VCOPY(rbf->invec, invec);
517     rbf->nrbf = n;
518     rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
519     n = 0; /* advect RBF lobes */
520     for (i = 0; i < mtx_nrows(mig); i++) {
521     const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
522     const float peak0 = rbf0i->peak;
523     const double rad0 = R2ANG(rbf0i->crad);
524 greg 2.29 C_COLOR cc0;
525 greg 2.20 FVECT v0;
526     float mv;
527     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
528 greg 2.29 c_decodeChroma(&cc0, rbf0i->chroma);
529 greg 2.20 for (j = 0; j < mtx_ncols(mig); j++)
530     if ((mv = mtx_coef(mig,i,j)) > cthresh) {
531     const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
532     double rad2;
533     FVECT v;
534     int pos[2];
535     rad2 = R2ANG(rbf1j->crad);
536     rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
537     rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
538     rad0*rad0/rad2;
539 greg 2.29 if (rbf_colorimetry == RBCtristimulus) {
540     C_COLOR cres;
541     c_decodeChroma(&cres, rbf1j->chroma);
542     c_cmix(&cres, 1.-t, &cc0, t, &cres);
543     rbf->rbfa[n].chroma = c_encodeChroma(&cres);
544     } else
545     rbf->rbfa[n].chroma = c_dfchroma;
546 greg 2.20 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
547     ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
548     geodesic(v, v0, v, t, GEOD_REL);
549     pos_from_vec(pos, v);
550     rbf->rbfa[n].gx = pos[0];
551     rbf->rbfa[n].gy = pos[1];
552     ++n;
553     }
554     }
555     rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
556     return(rbf);
557     memerr:
558     fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
559     exit(1);
560     return(NULL); /* pro forma return */
561     }
562    
563 greg 2.4 /* Clear our BSDF representation and free memory */
564     void
565     clear_bsdf_rep(void)
566     {
567     while (mig_list != NULL) {
568     MIGRATION *mig = mig_list;
569     mig_list = mig->next;
570     free(mig);
571     }
572     while (dsf_list != NULL) {
573     RBFNODE *rbf = dsf_list;
574     dsf_list = rbf->next;
575     free(rbf);
576     }
577 greg 2.19 bsdf_name[0] = '\0';
578     bsdf_manuf[0] = '\0';
579 greg 2.4 inp_coverage = 0;
580     single_plane_incident = -1;
581     input_orient = output_orient = 0;
582 greg 2.29 rbf_colorimetry = RBCunknown;
583 greg 2.5 grid_res = GRIDRES;
584 greg 2.31 memset(bsdf_hist, 0, sizeof(bsdf_hist));
585 greg 2.25 bsdf_min = 0;
586 greg 2.30 bsdf_spec_val = 0;
587 greg 2.26 bsdf_spec_rad = 0;
588 greg 2.4 }
589    
590 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
591     void
592     save_bsdf_rep(FILE *ofp)
593     {
594     RBFNODE *rbf;
595     MIGRATION *mig;
596     int i, n;
597     /* finish header */
598 greg 2.19 if (bsdf_name[0])
599     fprintf(ofp, "NAME=%s\n", bsdf_name);
600     if (bsdf_manuf[0])
601     fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
602 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
603     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
604 greg 2.29 fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]);
605 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
606 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
607 greg 2.30 if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0))
608     fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad);
609 greg 2.1 fputformat(BSDFREP_FMT, ofp);
610     fputc('\n', ofp);
611 greg 2.29 putint(BSDFREP_MAGIC, 2, ofp);
612 greg 2.1 /* write each DSF */
613     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
614     putint(rbf->ord, 4, ofp);
615     putflt(rbf->invec[0], ofp);
616     putflt(rbf->invec[1], ofp);
617     putflt(rbf->invec[2], ofp);
618     putflt(rbf->vtotal, ofp);
619     putint(rbf->nrbf, 4, ofp);
620     for (i = 0; i < rbf->nrbf; i++) {
621     putflt(rbf->rbfa[i].peak, ofp);
622 greg 2.29 putint(rbf->rbfa[i].chroma, 2, ofp);
623 greg 2.1 putint(rbf->rbfa[i].crad, 2, ofp);
624 greg 2.29 putint(rbf->rbfa[i].gx, 2, ofp);
625     putint(rbf->rbfa[i].gy, 2, ofp);
626 greg 2.1 }
627     }
628     putint(-1, 4, ofp); /* terminator */
629     /* write each migration matrix */
630 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
631     int zerocnt = 0;
632 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
633     putint(mig->rbfv[1]->ord, 4, ofp);
634 greg 2.2 /* write out as sparse data */
635 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
636 greg 2.2 for (i = 0; i < n; i++) {
637 greg 2.3 if (zerocnt == 0xff) {
638     putint(0xff, 1, ofp); zerocnt = 0;
639 greg 2.2 }
640     if (mig->mtx[i] != 0) {
641     putint(zerocnt, 1, ofp); zerocnt = 0;
642     putflt(mig->mtx[i], ofp);
643     } else
644     ++zerocnt;
645     }
646     putint(zerocnt, 1, ofp);
647 greg 2.1 }
648     putint(-1, 4, ofp); /* terminator */
649     putint(-1, 4, ofp);
650     if (fflush(ofp) == EOF) {
651     fprintf(stderr, "%s: error writing BSDF interpolant\n",
652     progname);
653     exit(1);
654     }
655     }
656    
657 greg 2.2 /* Check header line for critical information */
658     static int
659     headline(char *s, void *p)
660     {
661 greg 2.32 char fmt[MAXFMTLEN];
662 greg 2.29 int i;
663 greg 2.2
664 greg 2.19 if (!strncmp(s, "NAME=", 5)) {
665     strcpy(bsdf_name, s+5);
666     bsdf_name[strlen(bsdf_name)-1] = '\0';
667     }
668     if (!strncmp(s, "MANUFACT=", 9)) {
669     strcpy(bsdf_manuf, s+9);
670     bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
671     }
672 greg 2.2 if (!strncmp(s, "SYMMETRY=", 9)) {
673     inp_coverage = atoi(s+9);
674     single_plane_incident = !inp_coverage;
675     return(0);
676     }
677     if (!strncmp(s, "IO_SIDES=", 9)) {
678     sscanf(s+9, "%d %d", &input_orient, &output_orient);
679     return(0);
680     }
681 greg 2.29 if (!strncmp(s, "COLORIMETRY=", 12)) {
682     fmt[0] = '\0';
683     sscanf(s+12, "%s", fmt);
684     for (i = RBCunknown; i >= 0; i--)
685     if (!strcmp(fmt, RBCident[i]))
686     break;
687     if (i < 0)
688     return(-1);
689     rbf_colorimetry = i;
690     return(0);
691     }
692 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
693     sscanf(s+8, "%d", &grid_res);
694     return(0);
695     }
696 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
697     sscanf(s+8, "%lf", &bsdf_min);
698     return(0);
699     }
700 greg 2.25 if (!strncmp(s, "BSDFSPEC=", 9)) {
701 greg 2.30 sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad);
702 greg 2.25 return(0);
703     }
704 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
705     return(-1);
706     return(0);
707     }
708    
709 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
710     int
711     load_bsdf_rep(FILE *ifp)
712     {
713     RBFNODE rbfh;
714     int from_ord, to_ord;
715     int i;
716 greg 2.4
717     clear_bsdf_rep();
718 greg 2.5 if (ifp == NULL)
719     return(0);
720 greg 2.21 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
721 greg 2.23 !input_orient | !output_orient |
722 greg 2.29 (grid_res < 16) | (grid_res > 0xffff)) {
723 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
724     progname);
725     return(0);
726     }
727 greg 2.29 if (getint(2, ifp) != BSDFREP_MAGIC) {
728     fprintf(stderr, "%s: bad magic number for BSDF interpolant\n",
729     progname);
730     return(0);
731     }
732 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
733 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
734     RBFNODE *newrbf;
735    
736     rbfh.invec[0] = getflt(ifp);
737     rbfh.invec[1] = getflt(ifp);
738     rbfh.invec[2] = getflt(ifp);
739 greg 2.9 if (normalize(rbfh.invec) == 0) {
740     fprintf(stderr, "%s: zero incident vector\n", progname);
741     return(0);
742     }
743 greg 2.3 rbfh.vtotal = getflt(ifp);
744 greg 2.1 rbfh.nrbf = getint(4, ifp);
745     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
746     sizeof(RBFVAL)*(rbfh.nrbf-1));
747     if (newrbf == NULL)
748     goto memerr;
749 greg 2.18 *newrbf = rbfh;
750 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
751     newrbf->rbfa[i].peak = getflt(ifp);
752 greg 2.29 newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff;
753 greg 2.1 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
754 greg 2.29 newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff;
755     newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff;
756 greg 2.1 }
757     if (feof(ifp))
758     goto badEOF;
759     /* insert in global list */
760     if (insert_dsf(newrbf) != rbfh.ord) {
761     fprintf(stderr, "%s: error adding DSF\n", progname);
762     return(0);
763     }
764     }
765     /* read each migration matrix */
766     while ((from_ord = getint(4, ifp)) >= 0 &&
767     (to_ord = getint(4, ifp)) >= 0) {
768     RBFNODE *from_rbf = get_dsf(from_ord);
769     RBFNODE *to_rbf = get_dsf(to_ord);
770     MIGRATION *newmig;
771     int n;
772    
773     if ((from_rbf == NULL) | (to_rbf == NULL)) {
774     fprintf(stderr,
775     "%s: bad DSF reference in migration edge\n",
776     progname);
777     return(0);
778     }
779     n = from_rbf->nrbf * to_rbf->nrbf;
780     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
781     sizeof(float)*(n-1));
782     if (newmig == NULL)
783     goto memerr;
784     newmig->rbfv[0] = from_rbf;
785     newmig->rbfv[1] = to_rbf;
786 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
787     for (i = 0; ; ) { /* read sparse data */
788     int zc = getint(1, ifp) & 0xff;
789     if ((i += zc) >= n)
790     break;
791 greg 2.3 if (zc == 0xff)
792     continue;
793 greg 2.2 newmig->mtx[i++] = getflt(ifp);
794     }
795 greg 2.1 if (feof(ifp))
796     goto badEOF;
797     /* insert in edge lists */
798     newmig->enxt[0] = from_rbf->ejl;
799     from_rbf->ejl = newmig;
800     newmig->enxt[1] = to_rbf->ejl;
801     to_rbf->ejl = newmig;
802     /* push onto global list */
803     newmig->next = mig_list;
804     mig_list = newmig;
805     }
806     return(1); /* success! */
807     memerr:
808     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
809     exit(1);
810     badEOF:
811     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
812     return(0);
813     }