ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.32
Committed: Thu Aug 2 18:33:42 2018 UTC (5 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2
Changes since 2.31: +2 -2 lines
Log Message:
Created MAXFMTLEN to guard against buffer overrun attacks in header input

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.32 static const char RCSid[] = "$Id: bsdfrep.c,v 2.31 2016/02/03 18:53:14 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12 greg 2.2 #include <string.h>
13 greg 2.1 #include <math.h>
14     #include "rtio.h"
15     #include "resolu.h"
16     #include "bsdfrep.h"
17 greg 2.29 #include "random.h"
18 greg 2.19 /* name and manufacturer if known */
19     char bsdf_name[256];
20     char bsdf_manuf[256];
21 greg 2.5 /* active grid resolution */
22     int grid_res = GRIDRES;
23    
24 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
25 greg 2.1 int inp_coverage = 0;
26     /* all incident angles in-plane so far? */
27     int single_plane_incident = -1;
28    
29     /* input/output orientations */
30     int input_orient = 0;
31     int output_orient = 0;
32    
33 greg 2.29 /* represented color space */
34     RBColor rbf_colorimetry = RBCunknown;
35    
36     const char *RBCident[] = {
37     "CIE-Y", "CIE-XYZ", "Spectral", "Unknown"
38     };
39    
40 greg 2.12 /* BSDF histogram */
41 greg 2.15 unsigned long bsdf_hist[HISTLEN];
42 greg 2.12
43     /* BSDF value for boundary regions */
44     double bsdf_min = 0;
45 greg 2.30 double bsdf_spec_val = 0;
46 greg 2.26 double bsdf_spec_rad = 0;
47 greg 2.12
48 greg 2.1 /* processed incident DSF measurements */
49     RBFNODE *dsf_list = NULL;
50    
51     /* RBF-linking matrices (edges) */
52     MIGRATION *mig_list = NULL;
53    
54     /* current input direction */
55     double theta_in_deg, phi_in_deg;
56    
57     /* Register new input direction */
58     int
59     new_input_direction(double new_theta, double new_phi)
60     {
61     /* normalize angle ranges */
62     while (new_theta < -180.)
63     new_theta += 360.;
64     while (new_theta > 180.)
65     new_theta -= 360.;
66     if (new_theta < 0) {
67     new_theta = -new_theta;
68     new_phi += 180.;
69     }
70     while (new_phi < 0)
71     new_phi += 360.;
72     while (new_phi >= 360.)
73     new_phi -= 360.;
74 greg 2.28 /* check input orientation */
75     if (!input_orient)
76     input_orient = 1 - 2*(new_theta > 90.);
77     else if (input_orient > 0 ^ new_theta < 90.) {
78     fprintf(stderr,
79     "%s: Cannot handle input angles on both sides of surface\n",
80     progname);
81     return(0);
82     }
83     if ((theta_in_deg = new_theta) < 1.0)
84     return(1); /* don't rely on phi near normal */
85 greg 2.1 if (single_plane_incident > 0) /* check input coverage */
86     single_plane_incident = (round(new_phi) == round(phi_in_deg));
87     else if (single_plane_incident < 0)
88     single_plane_incident = 1;
89     phi_in_deg = new_phi;
90     if ((1. < new_phi) & (new_phi < 89.))
91     inp_coverage |= INP_QUAD1;
92     else if ((91. < new_phi) & (new_phi < 179.))
93     inp_coverage |= INP_QUAD2;
94     else if ((181. < new_phi) & (new_phi < 269.))
95     inp_coverage |= INP_QUAD3;
96     else if ((271. < new_phi) & (new_phi < 359.))
97     inp_coverage |= INP_QUAD4;
98     return(1);
99     }
100    
101     /* Apply symmetry to the given vector based on distribution */
102     int
103     use_symmetry(FVECT vec)
104     {
105 greg 2.11 const double phi = get_phi360(vec);
106 greg 2.1
107     switch (inp_coverage) {
108     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
109     break;
110     case INP_QUAD1|INP_QUAD2:
111     if ((-FTINY > phi) | (phi > 180.+FTINY))
112     goto mir_y;
113     break;
114     case INP_QUAD2|INP_QUAD3:
115     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
116     goto mir_x;
117     break;
118     case INP_QUAD3|INP_QUAD4:
119     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
120     goto mir_y;
121     break;
122     case INP_QUAD4|INP_QUAD1:
123     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
124     goto mir_x;
125     break;
126     case INP_QUAD1:
127     if ((-FTINY > phi) | (phi > 90.+FTINY))
128     switch ((int)(phi*(1./90.))) {
129     case 1: goto mir_x;
130     case 2: goto mir_xy;
131     case 3: goto mir_y;
132     }
133     break;
134     case INP_QUAD2:
135     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
136     switch ((int)(phi*(1./90.))) {
137     case 0: goto mir_x;
138     case 2: goto mir_y;
139     case 3: goto mir_xy;
140     }
141     break;
142     case INP_QUAD3:
143     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
144     switch ((int)(phi*(1./90.))) {
145     case 0: goto mir_xy;
146     case 1: goto mir_y;
147     case 3: goto mir_x;
148     }
149     break;
150     case INP_QUAD4:
151     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
152     switch ((int)(phi*(1./90.))) {
153     case 0: goto mir_y;
154     case 1: goto mir_xy;
155     case 2: goto mir_x;
156     }
157     break;
158     default:
159     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
160     progname, inp_coverage);
161     exit(1);
162     }
163     return(0); /* in range */
164     mir_x:
165     vec[0] = -vec[0];
166     return(MIRROR_X);
167     mir_y:
168     vec[1] = -vec[1];
169     return(MIRROR_Y);
170     mir_xy:
171     vec[0] = -vec[0];
172     vec[1] = -vec[1];
173     return(MIRROR_X|MIRROR_Y);
174     }
175    
176     /* Reverse symmetry based on what was done before */
177     void
178     rev_symmetry(FVECT vec, int sym)
179     {
180     if (sym & MIRROR_X)
181     vec[0] = -vec[0];
182     if (sym & MIRROR_Y)
183     vec[1] = -vec[1];
184     }
185    
186     /* Reverse symmetry for an RBF distribution */
187     void
188     rev_rbf_symmetry(RBFNODE *rbf, int sym)
189     {
190     int n;
191    
192     rev_symmetry(rbf->invec, sym);
193     if (sym & MIRROR_X)
194     for (n = rbf->nrbf; n-- > 0; )
195 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
196 greg 2.1 if (sym & MIRROR_Y)
197     for (n = rbf->nrbf; n-- > 0; )
198 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
199 greg 2.1 }
200    
201 greg 2.6 /* Rotate RBF to correspond to given incident vector */
202     void
203     rotate_rbf(RBFNODE *rbf, const FVECT invec)
204     {
205     static const FVECT vnorm = {.0, .0, 1.};
206     const double phi = atan2(invec[1],invec[0]) -
207     atan2(rbf->invec[1],rbf->invec[0]);
208     FVECT outvec;
209     int pos[2];
210     int n;
211 greg 2.8
212 greg 2.24 for (n = (cos(phi) < 1.-FTINY)*rbf->nrbf; n-- > 0; ) {
213 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
214     spinvector(outvec, outvec, vnorm, phi);
215     pos_from_vec(pos, outvec);
216     rbf->rbfa[n].gx = pos[0];
217     rbf->rbfa[n].gy = pos[1];
218     }
219     VCOPY(rbf->invec, invec);
220     }
221    
222 greg 2.1 /* Compute outgoing vector from grid position */
223     void
224     ovec_from_pos(FVECT vec, int xpos, int ypos)
225     {
226     double uv[2];
227     double r2;
228    
229 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
230 greg 2.1 /* uniform hemispherical projection */
231     r2 = uv[0]*uv[0] + uv[1]*uv[1];
232     vec[0] = vec[1] = sqrt(2. - r2);
233     vec[0] *= uv[0];
234     vec[1] *= uv[1];
235     vec[2] = output_orient*(1. - r2);
236     }
237    
238     /* Compute grid position from normalized input/output vector */
239     void
240     pos_from_vec(int pos[2], const FVECT vec)
241     {
242     double sq[2]; /* uniform hemispherical projection */
243     double norm = 1./sqrt(1. + fabs(vec[2]));
244    
245     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
246    
247 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
248     pos[1] = (int)(sq[1]*grid_res);
249 greg 2.1 }
250    
251 greg 2.14 /* Compute volume associated with Gaussian lobe */
252     double
253     rbf_volume(const RBFVAL *rbfp)
254     {
255     double rad = R2ANG(rbfp->crad);
256     FVECT odir;
257     double elev, integ;
258     /* infinite integral approximation */
259     integ = (2.*M_PI) * rbfp->peak * rad*rad;
260     /* check if we're near horizon */
261     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
262     elev = output_orient*odir[2];
263     /* apply cut-off correction if > 1% */
264     if (elev < 2.8*rad) {
265     /* elev = asin(elev); /* this is so crude, anyway... */
266     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
267     }
268     return(integ);
269     }
270    
271 greg 2.29 /* Evaluate BSDF at the given normalized outgoing direction in color */
272     SDError
273     eval_rbfcol(SDValue *sv, const RBFNODE *rp, const FVECT outvec)
274 greg 2.1 {
275 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
276 greg 2.16 int pos[2];
277 greg 2.8 double res = 0;
278 greg 2.29 double usum = 0, vsum = 0;
279 greg 2.1 const RBFVAL *rbfp;
280     FVECT odir;
281 greg 2.16 double rad2;
282 greg 2.1 int n;
283 greg 2.29 /* assign default value */
284     sv->spec = c_dfcolor;
285     sv->cieY = bsdf_min;
286 greg 2.14 /* check for wrong side */
287 greg 2.29 if (outvec[2] > 0 ^ output_orient > 0) {
288     strcpy(SDerrorDetail, "Wrong-side scattering query");
289     return(SDEargument);
290     }
291     if (rp == NULL) /* return minimum if no information avail. */
292     return(SDEnone);
293 greg 2.16 /* optimization for fast lobe culling */
294     pos_from_vec(pos, outvec);
295 greg 2.14 /* sum radial basis function */
296 greg 2.1 rbfp = rp->rbfa;
297     for (n = rp->nrbf; n--; rbfp++) {
298 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
299     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
300 greg 2.29 double val;
301 greg 2.16 rad2 = R2ANG(rbfp->crad);
302     rad2 *= rad2;
303 greg 2.17 if (d2 > rad2*rfact2)
304 greg 2.16 continue;
305 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
306 greg 2.29 val = rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
307     if (rbf_colorimetry == RBCtristimulus) {
308     usum += val * (rbfp->chroma & 0xff);
309     vsum += val * (rbfp->chroma>>8 & 0xff);
310     }
311     res += val;
312 greg 2.1 }
313 greg 2.31 sv->cieY = res / COSF(outvec[2]);
314     if (sv->cieY < bsdf_min) { /* never return less than bsdf_min */
315     sv->cieY = bsdf_min;
316     } else if (rbf_colorimetry == RBCtristimulus) {
317 greg 2.29 C_CHROMA cres = (int)(usum/res + frandom());
318     cres |= (int)(vsum/res + frandom()) << 8;
319     c_decodeChroma(&sv->spec, cres);
320     }
321     return(SDEnone);
322     }
323    
324     /* Evaluate BSDF at the given normalized outgoing direction in Y */
325     double
326     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
327     {
328     SDValue sv;
329    
330     if (eval_rbfcol(&sv, rp, outvec) == SDEnone)
331     return(sv.cieY);
332    
333     return(0.0);
334 greg 2.1 }
335    
336     /* Insert a new directional scattering function in our global list */
337     int
338     insert_dsf(RBFNODE *newrbf)
339     {
340     RBFNODE *rbf, *rbf_last;
341     int pos;
342     /* check for redundant meas. */
343     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
344     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
345     fprintf(stderr,
346 greg 2.22 "%s: Duplicate incident measurement ignored at (%.1f,%.1f)\n",
347     progname, get_theta180(newrbf->invec),
348     get_phi360(newrbf->invec));
349 greg 2.1 free(newrbf);
350     return(-1);
351     }
352     /* keep in ascending theta order */
353     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
354     rbf_last = rbf, rbf = rbf->next)
355     if (single_plane_incident && input_orient*rbf->invec[2] <
356     input_orient*newrbf->invec[2])
357     break;
358     if (rbf_last == NULL) { /* insert new node in list */
359     newrbf->ord = 0;
360     newrbf->next = dsf_list;
361     dsf_list = newrbf;
362     } else {
363     newrbf->ord = rbf_last->ord + 1;
364     newrbf->next = rbf;
365     rbf_last->next = newrbf;
366     }
367     rbf_last = newrbf;
368     while (rbf != NULL) { /* update ordinal positions */
369     rbf->ord = rbf_last->ord + 1;
370     rbf_last = rbf;
371     rbf = rbf->next;
372     }
373     return(newrbf->ord);
374     }
375    
376     /* Get the DSF indicated by its ordinal position */
377     RBFNODE *
378     get_dsf(int ord)
379     {
380     RBFNODE *rbf;
381    
382     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
383 greg 2.3 if (rbf->ord == ord)
384 greg 2.1 return(rbf);
385     return(NULL);
386     }
387    
388     /* Get triangle surface orientation (unnormalized) */
389     void
390     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
391     {
392     FVECT v2minus1, v3minus2;
393    
394     VSUB(v2minus1, v2, v1);
395     VSUB(v3minus2, v3, v2);
396     VCROSS(vres, v2minus1, v3minus2);
397     }
398    
399     /* Determine if vertex order is reversed (inward normal) */
400     int
401     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
402     {
403     FVECT tor;
404    
405     tri_orient(tor, v1, v2, v3);
406    
407     return(DOT(tor, v2) < 0.);
408     }
409    
410     /* Find vertices completing triangles on either side of the given edge */
411     int
412     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
413     {
414 greg 2.4 const MIGRATION *ej1, *ej2;
415 greg 2.1 RBFNODE *tv;
416    
417     rbfv[0] = rbfv[1] = NULL;
418     if (mig == NULL)
419     return(0);
420 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
421     ej1 = nextedge(mig->rbfv[0],ej1)) {
422     if (ej1 == mig)
423 greg 2.1 continue;
424 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
425 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
426     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
427     rbfv[is_rev_tri(mig->rbfv[0]->invec,
428     mig->rbfv[1]->invec,
429     tv->invec)] = tv;
430     break;
431     }
432     }
433     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
434     }
435    
436 greg 2.25 /* Return single-lobe specular RBF for the given incident direction */
437     RBFNODE *
438     def_rbf_spec(const FVECT invec)
439     {
440     RBFNODE *rbf;
441     FVECT ovec;
442     int pos[2];
443    
444     if (input_orient > 0 ^ invec[2] > 0) /* wrong side? */
445     return(NULL);
446 greg 2.30 if ((bsdf_spec_val <= bsdf_min) | (bsdf_spec_rad <= 0))
447 greg 2.25 return(NULL); /* nothing set */
448     rbf = (RBFNODE *)malloc(sizeof(RBFNODE));
449     if (rbf == NULL)
450     return(NULL);
451     ovec[0] = -invec[0];
452     ovec[1] = -invec[1];
453     ovec[2] = invec[2]*(2*(input_orient==output_orient) - 1);
454     pos_from_vec(pos, ovec);
455     rbf->ord = 0;
456     rbf->next = NULL;
457     rbf->ejl = NULL;
458     VCOPY(rbf->invec, invec);
459     rbf->nrbf = 1;
460 greg 2.30 rbf->rbfa[0].peak = bsdf_spec_val * COSF(ovec[2]);
461 greg 2.29 rbf->rbfa[0].chroma = c_dfchroma;
462 greg 2.26 rbf->rbfa[0].crad = ANG2R(bsdf_spec_rad);
463 greg 2.25 rbf->rbfa[0].gx = pos[0];
464     rbf->rbfa[0].gy = pos[1];
465     rbf->vtotal = rbf_volume(rbf->rbfa);
466     return(rbf);
467     }
468    
469 greg 2.20 /* Advect and allocate new RBF along edge (internal call) */
470     RBFNODE *
471     e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim)
472     {
473     double cthresh = FTINY;
474     RBFNODE *rbf;
475     int n, i, j;
476     double t, full_dist;
477     /* get relative position */
478     t = Acos(DOT(invec, mig->rbfv[0]->invec));
479     if (t < M_PI/grid_res) { /* near first DSF */
480     n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
481     rbf = (RBFNODE *)malloc(n);
482     if (rbf == NULL)
483     goto memerr;
484     memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
485     rbf->next = NULL; rbf->ejl = NULL;
486     return(rbf);
487     }
488     full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
489     if (t > full_dist-M_PI/grid_res) { /* near second DSF */
490     n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
491     rbf = (RBFNODE *)malloc(n);
492     if (rbf == NULL)
493     goto memerr;
494     memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
495     rbf->next = NULL; rbf->ejl = NULL;
496     return(rbf);
497     }
498     t /= full_dist;
499     tryagain:
500     n = 0; /* count migrating particles */
501     for (i = 0; i < mtx_nrows(mig); i++)
502     for (j = 0; j < mtx_ncols(mig); j++)
503     n += (mtx_coef(mig,i,j) > cthresh);
504     /* are we over our limit? */
505     if ((lobe_lim > 0) & (n > lobe_lim)) {
506     cthresh = cthresh*2. + 10.*FTINY;
507     goto tryagain;
508     }
509     #ifdef DEBUG
510     fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
511     mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
512     #endif
513     rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
514     if (rbf == NULL)
515     goto memerr;
516     rbf->next = NULL; rbf->ejl = NULL;
517     VCOPY(rbf->invec, invec);
518     rbf->nrbf = n;
519     rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
520     n = 0; /* advect RBF lobes */
521     for (i = 0; i < mtx_nrows(mig); i++) {
522     const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
523     const float peak0 = rbf0i->peak;
524     const double rad0 = R2ANG(rbf0i->crad);
525 greg 2.29 C_COLOR cc0;
526 greg 2.20 FVECT v0;
527     float mv;
528     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
529 greg 2.29 c_decodeChroma(&cc0, rbf0i->chroma);
530 greg 2.20 for (j = 0; j < mtx_ncols(mig); j++)
531     if ((mv = mtx_coef(mig,i,j)) > cthresh) {
532     const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
533     double rad2;
534     FVECT v;
535     int pos[2];
536     rad2 = R2ANG(rbf1j->crad);
537     rad2 = rad0*rad0*(1.-t) + rad2*rad2*t;
538     rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal *
539     rad0*rad0/rad2;
540 greg 2.29 if (rbf_colorimetry == RBCtristimulus) {
541     C_COLOR cres;
542     c_decodeChroma(&cres, rbf1j->chroma);
543     c_cmix(&cres, 1.-t, &cc0, t, &cres);
544     rbf->rbfa[n].chroma = c_encodeChroma(&cres);
545     } else
546     rbf->rbfa[n].chroma = c_dfchroma;
547 greg 2.20 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
548     ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
549     geodesic(v, v0, v, t, GEOD_REL);
550     pos_from_vec(pos, v);
551     rbf->rbfa[n].gx = pos[0];
552     rbf->rbfa[n].gy = pos[1];
553     ++n;
554     }
555     }
556     rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
557     return(rbf);
558     memerr:
559     fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
560     exit(1);
561     return(NULL); /* pro forma return */
562     }
563    
564 greg 2.4 /* Clear our BSDF representation and free memory */
565     void
566     clear_bsdf_rep(void)
567     {
568     while (mig_list != NULL) {
569     MIGRATION *mig = mig_list;
570     mig_list = mig->next;
571     free(mig);
572     }
573     while (dsf_list != NULL) {
574     RBFNODE *rbf = dsf_list;
575     dsf_list = rbf->next;
576     free(rbf);
577     }
578 greg 2.19 bsdf_name[0] = '\0';
579     bsdf_manuf[0] = '\0';
580 greg 2.4 inp_coverage = 0;
581     single_plane_incident = -1;
582     input_orient = output_orient = 0;
583 greg 2.29 rbf_colorimetry = RBCunknown;
584 greg 2.5 grid_res = GRIDRES;
585 greg 2.31 memset(bsdf_hist, 0, sizeof(bsdf_hist));
586 greg 2.25 bsdf_min = 0;
587 greg 2.30 bsdf_spec_val = 0;
588 greg 2.26 bsdf_spec_rad = 0;
589 greg 2.4 }
590    
591 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
592     void
593     save_bsdf_rep(FILE *ofp)
594     {
595     RBFNODE *rbf;
596     MIGRATION *mig;
597     int i, n;
598     /* finish header */
599 greg 2.19 if (bsdf_name[0])
600     fprintf(ofp, "NAME=%s\n", bsdf_name);
601     if (bsdf_manuf[0])
602     fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
603 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
604     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
605 greg 2.29 fprintf(ofp, "COLORIMETRY=%s\n", RBCident[rbf_colorimetry]);
606 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
607 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
608 greg 2.30 if ((bsdf_spec_val > bsdf_min) & (bsdf_spec_rad > 0))
609     fprintf(ofp, "BSDFSPEC= %f %f\n", bsdf_spec_val, bsdf_spec_rad);
610 greg 2.1 fputformat(BSDFREP_FMT, ofp);
611     fputc('\n', ofp);
612 greg 2.29 putint(BSDFREP_MAGIC, 2, ofp);
613 greg 2.1 /* write each DSF */
614     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
615     putint(rbf->ord, 4, ofp);
616     putflt(rbf->invec[0], ofp);
617     putflt(rbf->invec[1], ofp);
618     putflt(rbf->invec[2], ofp);
619     putflt(rbf->vtotal, ofp);
620     putint(rbf->nrbf, 4, ofp);
621     for (i = 0; i < rbf->nrbf; i++) {
622     putflt(rbf->rbfa[i].peak, ofp);
623 greg 2.29 putint(rbf->rbfa[i].chroma, 2, ofp);
624 greg 2.1 putint(rbf->rbfa[i].crad, 2, ofp);
625 greg 2.29 putint(rbf->rbfa[i].gx, 2, ofp);
626     putint(rbf->rbfa[i].gy, 2, ofp);
627 greg 2.1 }
628     }
629     putint(-1, 4, ofp); /* terminator */
630     /* write each migration matrix */
631 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
632     int zerocnt = 0;
633 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
634     putint(mig->rbfv[1]->ord, 4, ofp);
635 greg 2.2 /* write out as sparse data */
636 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
637 greg 2.2 for (i = 0; i < n; i++) {
638 greg 2.3 if (zerocnt == 0xff) {
639     putint(0xff, 1, ofp); zerocnt = 0;
640 greg 2.2 }
641     if (mig->mtx[i] != 0) {
642     putint(zerocnt, 1, ofp); zerocnt = 0;
643     putflt(mig->mtx[i], ofp);
644     } else
645     ++zerocnt;
646     }
647     putint(zerocnt, 1, ofp);
648 greg 2.1 }
649     putint(-1, 4, ofp); /* terminator */
650     putint(-1, 4, ofp);
651     if (fflush(ofp) == EOF) {
652     fprintf(stderr, "%s: error writing BSDF interpolant\n",
653     progname);
654     exit(1);
655     }
656     }
657    
658 greg 2.2 /* Check header line for critical information */
659     static int
660     headline(char *s, void *p)
661     {
662 greg 2.32 char fmt[MAXFMTLEN];
663 greg 2.29 int i;
664 greg 2.2
665 greg 2.19 if (!strncmp(s, "NAME=", 5)) {
666     strcpy(bsdf_name, s+5);
667     bsdf_name[strlen(bsdf_name)-1] = '\0';
668     }
669     if (!strncmp(s, "MANUFACT=", 9)) {
670     strcpy(bsdf_manuf, s+9);
671     bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
672     }
673 greg 2.2 if (!strncmp(s, "SYMMETRY=", 9)) {
674     inp_coverage = atoi(s+9);
675     single_plane_incident = !inp_coverage;
676     return(0);
677     }
678     if (!strncmp(s, "IO_SIDES=", 9)) {
679     sscanf(s+9, "%d %d", &input_orient, &output_orient);
680     return(0);
681     }
682 greg 2.29 if (!strncmp(s, "COLORIMETRY=", 12)) {
683     fmt[0] = '\0';
684     sscanf(s+12, "%s", fmt);
685     for (i = RBCunknown; i >= 0; i--)
686     if (!strcmp(fmt, RBCident[i]))
687     break;
688     if (i < 0)
689     return(-1);
690     rbf_colorimetry = i;
691     return(0);
692     }
693 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
694     sscanf(s+8, "%d", &grid_res);
695     return(0);
696     }
697 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
698     sscanf(s+8, "%lf", &bsdf_min);
699     return(0);
700     }
701 greg 2.25 if (!strncmp(s, "BSDFSPEC=", 9)) {
702 greg 2.30 sscanf(s+9, "%lf %lf", &bsdf_spec_val, &bsdf_spec_rad);
703 greg 2.25 return(0);
704     }
705 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
706     return(-1);
707     return(0);
708     }
709    
710 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
711     int
712     load_bsdf_rep(FILE *ifp)
713     {
714     RBFNODE rbfh;
715     int from_ord, to_ord;
716     int i;
717 greg 2.4
718     clear_bsdf_rep();
719 greg 2.5 if (ifp == NULL)
720     return(0);
721 greg 2.21 if (getheader(ifp, headline, NULL) < 0 || (single_plane_incident < 0) |
722 greg 2.23 !input_orient | !output_orient |
723 greg 2.29 (grid_res < 16) | (grid_res > 0xffff)) {
724 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
725     progname);
726     return(0);
727     }
728 greg 2.29 if (getint(2, ifp) != BSDFREP_MAGIC) {
729     fprintf(stderr, "%s: bad magic number for BSDF interpolant\n",
730     progname);
731     return(0);
732     }
733 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
734 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
735     RBFNODE *newrbf;
736    
737     rbfh.invec[0] = getflt(ifp);
738     rbfh.invec[1] = getflt(ifp);
739     rbfh.invec[2] = getflt(ifp);
740 greg 2.9 if (normalize(rbfh.invec) == 0) {
741     fprintf(stderr, "%s: zero incident vector\n", progname);
742     return(0);
743     }
744 greg 2.3 rbfh.vtotal = getflt(ifp);
745 greg 2.1 rbfh.nrbf = getint(4, ifp);
746     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
747     sizeof(RBFVAL)*(rbfh.nrbf-1));
748     if (newrbf == NULL)
749     goto memerr;
750 greg 2.18 *newrbf = rbfh;
751 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
752     newrbf->rbfa[i].peak = getflt(ifp);
753 greg 2.29 newrbf->rbfa[i].chroma = getint(2, ifp) & 0xffff;
754 greg 2.1 newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
755 greg 2.29 newrbf->rbfa[i].gx = getint(2, ifp) & 0xffff;
756     newrbf->rbfa[i].gy = getint(2, ifp) & 0xffff;
757 greg 2.1 }
758     if (feof(ifp))
759     goto badEOF;
760     /* insert in global list */
761     if (insert_dsf(newrbf) != rbfh.ord) {
762     fprintf(stderr, "%s: error adding DSF\n", progname);
763     return(0);
764     }
765     }
766     /* read each migration matrix */
767     while ((from_ord = getint(4, ifp)) >= 0 &&
768     (to_ord = getint(4, ifp)) >= 0) {
769     RBFNODE *from_rbf = get_dsf(from_ord);
770     RBFNODE *to_rbf = get_dsf(to_ord);
771     MIGRATION *newmig;
772     int n;
773    
774     if ((from_rbf == NULL) | (to_rbf == NULL)) {
775     fprintf(stderr,
776     "%s: bad DSF reference in migration edge\n",
777     progname);
778     return(0);
779     }
780     n = from_rbf->nrbf * to_rbf->nrbf;
781     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
782     sizeof(float)*(n-1));
783     if (newmig == NULL)
784     goto memerr;
785     newmig->rbfv[0] = from_rbf;
786     newmig->rbfv[1] = to_rbf;
787 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
788     for (i = 0; ; ) { /* read sparse data */
789     int zc = getint(1, ifp) & 0xff;
790     if ((i += zc) >= n)
791     break;
792 greg 2.3 if (zc == 0xff)
793     continue;
794 greg 2.2 newmig->mtx[i++] = getflt(ifp);
795     }
796 greg 2.1 if (feof(ifp))
797     goto badEOF;
798     /* insert in edge lists */
799     newmig->enxt[0] = from_rbf->ejl;
800     from_rbf->ejl = newmig;
801     newmig->enxt[1] = to_rbf->ejl;
802     to_rbf->ejl = newmig;
803     /* push onto global list */
804     newmig->next = mig_list;
805     mig_list = newmig;
806     }
807     return(1); /* success! */
808     memerr:
809     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
810     exit(1);
811     badEOF:
812     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
813     return(0);
814     }