ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.19
Committed: Sat Nov 9 05:47:49 2013 UTC (10 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.18: +18 -1 lines
Log Message:
Added tracking of BSDF sample name

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.19 static const char RCSid[] = "$Id: bsdfrep.c,v 2.18 2013/11/08 05:37:20 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12 greg 2.2 #include <string.h>
13 greg 2.1 #include <math.h>
14     #include "rtio.h"
15     #include "resolu.h"
16     #include "bsdfrep.h"
17 greg 2.19 /* name and manufacturer if known */
18     char bsdf_name[256];
19     char bsdf_manuf[256];
20 greg 2.5 /* active grid resolution */
21     int grid_res = GRIDRES;
22    
23 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
24 greg 2.1 int inp_coverage = 0;
25     /* all incident angles in-plane so far? */
26     int single_plane_incident = -1;
27    
28     /* input/output orientations */
29     int input_orient = 0;
30     int output_orient = 0;
31    
32 greg 2.12 /* BSDF histogram */
33 greg 2.15 unsigned long bsdf_hist[HISTLEN];
34 greg 2.12
35     /* BSDF value for boundary regions */
36     double bsdf_min = 0;
37    
38 greg 2.1 /* processed incident DSF measurements */
39     RBFNODE *dsf_list = NULL;
40    
41     /* RBF-linking matrices (edges) */
42     MIGRATION *mig_list = NULL;
43    
44     /* current input direction */
45     double theta_in_deg, phi_in_deg;
46    
47     /* Register new input direction */
48     int
49     new_input_direction(double new_theta, double new_phi)
50     {
51     if (!input_orient) /* check input orientation */
52     input_orient = 1 - 2*(new_theta > 90.);
53     else if (input_orient > 0 ^ new_theta < 90.) {
54     fprintf(stderr,
55     "%s: Cannot handle input angles on both sides of surface\n",
56     progname);
57     return(0);
58     }
59     /* normalize angle ranges */
60     while (new_theta < -180.)
61     new_theta += 360.;
62     while (new_theta > 180.)
63     new_theta -= 360.;
64     if (new_theta < 0) {
65     new_theta = -new_theta;
66     new_phi += 180.;
67     }
68 greg 2.6 if ((theta_in_deg = new_theta) < 1.0)
69     return(1); /* don't rely on phi near normal */
70 greg 2.1 while (new_phi < 0)
71     new_phi += 360.;
72     while (new_phi >= 360.)
73     new_phi -= 360.;
74     if (single_plane_incident > 0) /* check input coverage */
75     single_plane_incident = (round(new_phi) == round(phi_in_deg));
76     else if (single_plane_incident < 0)
77     single_plane_incident = 1;
78     phi_in_deg = new_phi;
79     if ((1. < new_phi) & (new_phi < 89.))
80     inp_coverage |= INP_QUAD1;
81     else if ((91. < new_phi) & (new_phi < 179.))
82     inp_coverage |= INP_QUAD2;
83     else if ((181. < new_phi) & (new_phi < 269.))
84     inp_coverage |= INP_QUAD3;
85     else if ((271. < new_phi) & (new_phi < 359.))
86     inp_coverage |= INP_QUAD4;
87     return(1);
88     }
89    
90     /* Apply symmetry to the given vector based on distribution */
91     int
92     use_symmetry(FVECT vec)
93     {
94 greg 2.11 const double phi = get_phi360(vec);
95 greg 2.1
96     switch (inp_coverage) {
97     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
98     break;
99     case INP_QUAD1|INP_QUAD2:
100     if ((-FTINY > phi) | (phi > 180.+FTINY))
101     goto mir_y;
102     break;
103     case INP_QUAD2|INP_QUAD3:
104     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
105     goto mir_x;
106     break;
107     case INP_QUAD3|INP_QUAD4:
108     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
109     goto mir_y;
110     break;
111     case INP_QUAD4|INP_QUAD1:
112     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
113     goto mir_x;
114     break;
115     case INP_QUAD1:
116     if ((-FTINY > phi) | (phi > 90.+FTINY))
117     switch ((int)(phi*(1./90.))) {
118     case 1: goto mir_x;
119     case 2: goto mir_xy;
120     case 3: goto mir_y;
121     }
122     break;
123     case INP_QUAD2:
124     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
125     switch ((int)(phi*(1./90.))) {
126     case 0: goto mir_x;
127     case 2: goto mir_y;
128     case 3: goto mir_xy;
129     }
130     break;
131     case INP_QUAD3:
132     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
133     switch ((int)(phi*(1./90.))) {
134     case 0: goto mir_xy;
135     case 1: goto mir_y;
136     case 3: goto mir_x;
137     }
138     break;
139     case INP_QUAD4:
140     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
141     switch ((int)(phi*(1./90.))) {
142     case 0: goto mir_y;
143     case 1: goto mir_xy;
144     case 2: goto mir_x;
145     }
146     break;
147     default:
148     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
149     progname, inp_coverage);
150     exit(1);
151     }
152     return(0); /* in range */
153     mir_x:
154     vec[0] = -vec[0];
155     return(MIRROR_X);
156     mir_y:
157     vec[1] = -vec[1];
158     return(MIRROR_Y);
159     mir_xy:
160     vec[0] = -vec[0];
161     vec[1] = -vec[1];
162     return(MIRROR_X|MIRROR_Y);
163     }
164    
165     /* Reverse symmetry based on what was done before */
166     void
167     rev_symmetry(FVECT vec, int sym)
168     {
169     if (sym & MIRROR_X)
170     vec[0] = -vec[0];
171     if (sym & MIRROR_Y)
172     vec[1] = -vec[1];
173     }
174    
175     /* Reverse symmetry for an RBF distribution */
176     void
177     rev_rbf_symmetry(RBFNODE *rbf, int sym)
178     {
179     int n;
180    
181     rev_symmetry(rbf->invec, sym);
182     if (sym & MIRROR_X)
183     for (n = rbf->nrbf; n-- > 0; )
184 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
185 greg 2.1 if (sym & MIRROR_Y)
186     for (n = rbf->nrbf; n-- > 0; )
187 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
188 greg 2.1 }
189    
190 greg 2.6 /* Rotate RBF to correspond to given incident vector */
191     void
192     rotate_rbf(RBFNODE *rbf, const FVECT invec)
193     {
194     static const FVECT vnorm = {.0, .0, 1.};
195     const double phi = atan2(invec[1],invec[0]) -
196     atan2(rbf->invec[1],rbf->invec[0]);
197     FVECT outvec;
198     int pos[2];
199     int n;
200 greg 2.8
201 greg 2.10 for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) {
202 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
203     spinvector(outvec, outvec, vnorm, phi);
204     pos_from_vec(pos, outvec);
205     rbf->rbfa[n].gx = pos[0];
206     rbf->rbfa[n].gy = pos[1];
207     }
208     VCOPY(rbf->invec, invec);
209     }
210    
211 greg 2.1 /* Compute outgoing vector from grid position */
212     void
213     ovec_from_pos(FVECT vec, int xpos, int ypos)
214     {
215     double uv[2];
216     double r2;
217    
218 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
219 greg 2.1 /* uniform hemispherical projection */
220     r2 = uv[0]*uv[0] + uv[1]*uv[1];
221     vec[0] = vec[1] = sqrt(2. - r2);
222     vec[0] *= uv[0];
223     vec[1] *= uv[1];
224     vec[2] = output_orient*(1. - r2);
225     }
226    
227     /* Compute grid position from normalized input/output vector */
228     void
229     pos_from_vec(int pos[2], const FVECT vec)
230     {
231     double sq[2]; /* uniform hemispherical projection */
232     double norm = 1./sqrt(1. + fabs(vec[2]));
233    
234     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
235    
236 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
237     pos[1] = (int)(sq[1]*grid_res);
238 greg 2.1 }
239    
240 greg 2.14 /* Compute volume associated with Gaussian lobe */
241     double
242     rbf_volume(const RBFVAL *rbfp)
243     {
244     double rad = R2ANG(rbfp->crad);
245     FVECT odir;
246     double elev, integ;
247     /* infinite integral approximation */
248     integ = (2.*M_PI) * rbfp->peak * rad*rad;
249     /* check if we're near horizon */
250     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
251     elev = output_orient*odir[2];
252     /* apply cut-off correction if > 1% */
253     if (elev < 2.8*rad) {
254     /* elev = asin(elev); /* this is so crude, anyway... */
255     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
256     }
257     return(integ);
258     }
259    
260 greg 2.1 /* Evaluate RBF for DSF at the given normalized outgoing direction */
261     double
262     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
263     {
264 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
265 greg 2.13 double minval = bsdf_min*output_orient*outvec[2];
266 greg 2.16 int pos[2];
267 greg 2.8 double res = 0;
268 greg 2.1 const RBFVAL *rbfp;
269     FVECT odir;
270 greg 2.16 double rad2;
271 greg 2.1 int n;
272 greg 2.14 /* check for wrong side */
273     if (outvec[2] > 0 ^ output_orient > 0)
274     return(.0);
275 greg 2.12 /* use minimum if no information avail. */
276 greg 2.14 if (rp == NULL)
277 greg 2.13 return(minval);
278 greg 2.16 /* optimization for fast lobe culling */
279     pos_from_vec(pos, outvec);
280 greg 2.14 /* sum radial basis function */
281 greg 2.1 rbfp = rp->rbfa;
282     for (n = rp->nrbf; n--; rbfp++) {
283 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
284     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
285     rad2 = R2ANG(rbfp->crad);
286     rad2 *= rad2;
287 greg 2.17 if (d2 > rad2*rfact2)
288 greg 2.16 continue;
289 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
290 greg 2.16 res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
291 greg 2.1 }
292 greg 2.13 if (res < minval) /* never return less than minval */
293     return(minval);
294 greg 2.1 return(res);
295     }
296    
297     /* Insert a new directional scattering function in our global list */
298     int
299     insert_dsf(RBFNODE *newrbf)
300     {
301     RBFNODE *rbf, *rbf_last;
302     int pos;
303     /* check for redundant meas. */
304     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
305     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
306     fprintf(stderr,
307     "%s: Duplicate incident measurement (ignored)\n",
308     progname);
309     free(newrbf);
310     return(-1);
311     }
312     /* keep in ascending theta order */
313     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
314     rbf_last = rbf, rbf = rbf->next)
315     if (single_plane_incident && input_orient*rbf->invec[2] <
316     input_orient*newrbf->invec[2])
317     break;
318     if (rbf_last == NULL) { /* insert new node in list */
319     newrbf->ord = 0;
320     newrbf->next = dsf_list;
321     dsf_list = newrbf;
322     } else {
323     newrbf->ord = rbf_last->ord + 1;
324     newrbf->next = rbf;
325     rbf_last->next = newrbf;
326     }
327     rbf_last = newrbf;
328     while (rbf != NULL) { /* update ordinal positions */
329     rbf->ord = rbf_last->ord + 1;
330     rbf_last = rbf;
331     rbf = rbf->next;
332     }
333     return(newrbf->ord);
334     }
335    
336     /* Get the DSF indicated by its ordinal position */
337     RBFNODE *
338     get_dsf(int ord)
339     {
340     RBFNODE *rbf;
341    
342     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
343 greg 2.3 if (rbf->ord == ord)
344 greg 2.1 return(rbf);
345     return(NULL);
346     }
347    
348     /* Get triangle surface orientation (unnormalized) */
349     void
350     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
351     {
352     FVECT v2minus1, v3minus2;
353    
354     VSUB(v2minus1, v2, v1);
355     VSUB(v3minus2, v3, v2);
356     VCROSS(vres, v2minus1, v3minus2);
357     }
358    
359     /* Determine if vertex order is reversed (inward normal) */
360     int
361     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
362     {
363     FVECT tor;
364    
365     tri_orient(tor, v1, v2, v3);
366    
367     return(DOT(tor, v2) < 0.);
368     }
369    
370     /* Find vertices completing triangles on either side of the given edge */
371     int
372     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
373     {
374 greg 2.4 const MIGRATION *ej1, *ej2;
375 greg 2.1 RBFNODE *tv;
376    
377     rbfv[0] = rbfv[1] = NULL;
378     if (mig == NULL)
379     return(0);
380 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
381     ej1 = nextedge(mig->rbfv[0],ej1)) {
382     if (ej1 == mig)
383 greg 2.1 continue;
384 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
385 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
386     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
387     rbfv[is_rev_tri(mig->rbfv[0]->invec,
388     mig->rbfv[1]->invec,
389     tv->invec)] = tv;
390     break;
391     }
392     }
393     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
394     }
395    
396 greg 2.4 /* Clear our BSDF representation and free memory */
397     void
398     clear_bsdf_rep(void)
399     {
400     while (mig_list != NULL) {
401     MIGRATION *mig = mig_list;
402     mig_list = mig->next;
403     free(mig);
404     }
405     while (dsf_list != NULL) {
406     RBFNODE *rbf = dsf_list;
407     dsf_list = rbf->next;
408     free(rbf);
409     }
410 greg 2.19 bsdf_name[0] = '\0';
411     bsdf_manuf[0] = '\0';
412 greg 2.4 inp_coverage = 0;
413     single_plane_incident = -1;
414     input_orient = output_orient = 0;
415 greg 2.5 grid_res = GRIDRES;
416 greg 2.4 }
417    
418 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
419     void
420     save_bsdf_rep(FILE *ofp)
421     {
422     RBFNODE *rbf;
423     MIGRATION *mig;
424     int i, n;
425     /* finish header */
426 greg 2.19 if (bsdf_name[0])
427     fprintf(ofp, "NAME=%s\n", bsdf_name);
428     if (bsdf_manuf[0])
429     fprintf(ofp, "MANUFACT=%s\n", bsdf_manuf);
430 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
431     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
432 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
433 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
434 greg 2.1 fputformat(BSDFREP_FMT, ofp);
435     fputc('\n', ofp);
436     /* write each DSF */
437     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
438     putint(rbf->ord, 4, ofp);
439     putflt(rbf->invec[0], ofp);
440     putflt(rbf->invec[1], ofp);
441     putflt(rbf->invec[2], ofp);
442     putflt(rbf->vtotal, ofp);
443     putint(rbf->nrbf, 4, ofp);
444     for (i = 0; i < rbf->nrbf; i++) {
445     putflt(rbf->rbfa[i].peak, ofp);
446     putint(rbf->rbfa[i].crad, 2, ofp);
447     putint(rbf->rbfa[i].gx, 1, ofp);
448     putint(rbf->rbfa[i].gy, 1, ofp);
449     }
450     }
451     putint(-1, 4, ofp); /* terminator */
452     /* write each migration matrix */
453 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
454     int zerocnt = 0;
455 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
456     putint(mig->rbfv[1]->ord, 4, ofp);
457 greg 2.2 /* write out as sparse data */
458 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
459 greg 2.2 for (i = 0; i < n; i++) {
460 greg 2.3 if (zerocnt == 0xff) {
461     putint(0xff, 1, ofp); zerocnt = 0;
462 greg 2.2 }
463     if (mig->mtx[i] != 0) {
464     putint(zerocnt, 1, ofp); zerocnt = 0;
465     putflt(mig->mtx[i], ofp);
466     } else
467     ++zerocnt;
468     }
469     putint(zerocnt, 1, ofp);
470 greg 2.1 }
471     putint(-1, 4, ofp); /* terminator */
472     putint(-1, 4, ofp);
473     if (fflush(ofp) == EOF) {
474     fprintf(stderr, "%s: error writing BSDF interpolant\n",
475     progname);
476     exit(1);
477     }
478     }
479    
480 greg 2.2 /* Check header line for critical information */
481     static int
482     headline(char *s, void *p)
483     {
484     char fmt[32];
485    
486 greg 2.19 if (!strncmp(s, "NAME=", 5)) {
487     strcpy(bsdf_name, s+5);
488     bsdf_name[strlen(bsdf_name)-1] = '\0';
489     }
490     if (!strncmp(s, "MANUFACT=", 9)) {
491     strcpy(bsdf_manuf, s+9);
492     bsdf_manuf[strlen(bsdf_manuf)-1] = '\0';
493     }
494 greg 2.2 if (!strncmp(s, "SYMMETRY=", 9)) {
495     inp_coverage = atoi(s+9);
496     single_plane_incident = !inp_coverage;
497     return(0);
498     }
499     if (!strncmp(s, "IO_SIDES=", 9)) {
500     sscanf(s+9, "%d %d", &input_orient, &output_orient);
501     return(0);
502     }
503 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
504     sscanf(s+8, "%d", &grid_res);
505     return(0);
506     }
507 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
508     sscanf(s+8, "%lf", &bsdf_min);
509     return(0);
510     }
511 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
512     return(-1);
513     return(0);
514     }
515    
516 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
517     int
518     load_bsdf_rep(FILE *ifp)
519     {
520     RBFNODE rbfh;
521     int from_ord, to_ord;
522     int i;
523 greg 2.4
524     clear_bsdf_rep();
525 greg 2.5 if (ifp == NULL)
526     return(0);
527 greg 2.2 if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 |
528     !input_orient | !output_orient) {
529 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
530     progname);
531     return(0);
532     }
533 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
534 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
535     RBFNODE *newrbf;
536    
537     rbfh.invec[0] = getflt(ifp);
538     rbfh.invec[1] = getflt(ifp);
539     rbfh.invec[2] = getflt(ifp);
540 greg 2.9 if (normalize(rbfh.invec) == 0) {
541     fprintf(stderr, "%s: zero incident vector\n", progname);
542     return(0);
543     }
544 greg 2.3 rbfh.vtotal = getflt(ifp);
545 greg 2.1 rbfh.nrbf = getint(4, ifp);
546     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
547     sizeof(RBFVAL)*(rbfh.nrbf-1));
548     if (newrbf == NULL)
549     goto memerr;
550 greg 2.18 *newrbf = rbfh;
551 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
552     newrbf->rbfa[i].peak = getflt(ifp);
553     newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
554     newrbf->rbfa[i].gx = getint(1, ifp) & 0xff;
555     newrbf->rbfa[i].gy = getint(1, ifp) & 0xff;
556     }
557     if (feof(ifp))
558     goto badEOF;
559     /* insert in global list */
560     if (insert_dsf(newrbf) != rbfh.ord) {
561     fprintf(stderr, "%s: error adding DSF\n", progname);
562     return(0);
563     }
564     }
565     /* read each migration matrix */
566     while ((from_ord = getint(4, ifp)) >= 0 &&
567     (to_ord = getint(4, ifp)) >= 0) {
568     RBFNODE *from_rbf = get_dsf(from_ord);
569     RBFNODE *to_rbf = get_dsf(to_ord);
570     MIGRATION *newmig;
571     int n;
572    
573     if ((from_rbf == NULL) | (to_rbf == NULL)) {
574     fprintf(stderr,
575     "%s: bad DSF reference in migration edge\n",
576     progname);
577     return(0);
578     }
579     n = from_rbf->nrbf * to_rbf->nrbf;
580     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
581     sizeof(float)*(n-1));
582     if (newmig == NULL)
583     goto memerr;
584     newmig->rbfv[0] = from_rbf;
585     newmig->rbfv[1] = to_rbf;
586 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
587     for (i = 0; ; ) { /* read sparse data */
588     int zc = getint(1, ifp) & 0xff;
589     if ((i += zc) >= n)
590     break;
591 greg 2.3 if (zc == 0xff)
592     continue;
593 greg 2.2 newmig->mtx[i++] = getflt(ifp);
594     }
595 greg 2.1 if (feof(ifp))
596     goto badEOF;
597     /* insert in edge lists */
598     newmig->enxt[0] = from_rbf->ejl;
599     from_rbf->ejl = newmig;
600     newmig->enxt[1] = to_rbf->ejl;
601     to_rbf->ejl = newmig;
602     /* push onto global list */
603     newmig->next = mig_list;
604     mig_list = newmig;
605     }
606     return(1); /* success! */
607     memerr:
608     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
609     exit(1);
610     badEOF:
611     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
612     return(0);
613     }