ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.18
Committed: Fri Nov 8 05:37:20 2013 UTC (10 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.17: +3 -4 lines
Log Message:
Minor change should not affect operation

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.18 static const char RCSid[] = "$Id: bsdfrep.c,v 2.17 2013/10/24 16:11:38 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12 greg 2.2 #include <string.h>
13 greg 2.1 #include <math.h>
14     #include "rtio.h"
15     #include "resolu.h"
16     #include "bsdfrep.h"
17 greg 2.5 /* active grid resolution */
18     int grid_res = GRIDRES;
19    
20 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
21 greg 2.1 int inp_coverage = 0;
22     /* all incident angles in-plane so far? */
23     int single_plane_incident = -1;
24    
25     /* input/output orientations */
26     int input_orient = 0;
27     int output_orient = 0;
28    
29 greg 2.12 /* BSDF histogram */
30 greg 2.15 unsigned long bsdf_hist[HISTLEN];
31 greg 2.12
32     /* BSDF value for boundary regions */
33     double bsdf_min = 0;
34    
35 greg 2.1 /* processed incident DSF measurements */
36     RBFNODE *dsf_list = NULL;
37    
38     /* RBF-linking matrices (edges) */
39     MIGRATION *mig_list = NULL;
40    
41     /* current input direction */
42     double theta_in_deg, phi_in_deg;
43    
44     /* Register new input direction */
45     int
46     new_input_direction(double new_theta, double new_phi)
47     {
48     if (!input_orient) /* check input orientation */
49     input_orient = 1 - 2*(new_theta > 90.);
50     else if (input_orient > 0 ^ new_theta < 90.) {
51     fprintf(stderr,
52     "%s: Cannot handle input angles on both sides of surface\n",
53     progname);
54     return(0);
55     }
56     /* normalize angle ranges */
57     while (new_theta < -180.)
58     new_theta += 360.;
59     while (new_theta > 180.)
60     new_theta -= 360.;
61     if (new_theta < 0) {
62     new_theta = -new_theta;
63     new_phi += 180.;
64     }
65 greg 2.6 if ((theta_in_deg = new_theta) < 1.0)
66     return(1); /* don't rely on phi near normal */
67 greg 2.1 while (new_phi < 0)
68     new_phi += 360.;
69     while (new_phi >= 360.)
70     new_phi -= 360.;
71     if (single_plane_incident > 0) /* check input coverage */
72     single_plane_incident = (round(new_phi) == round(phi_in_deg));
73     else if (single_plane_incident < 0)
74     single_plane_incident = 1;
75     phi_in_deg = new_phi;
76     if ((1. < new_phi) & (new_phi < 89.))
77     inp_coverage |= INP_QUAD1;
78     else if ((91. < new_phi) & (new_phi < 179.))
79     inp_coverage |= INP_QUAD2;
80     else if ((181. < new_phi) & (new_phi < 269.))
81     inp_coverage |= INP_QUAD3;
82     else if ((271. < new_phi) & (new_phi < 359.))
83     inp_coverage |= INP_QUAD4;
84     return(1);
85     }
86    
87     /* Apply symmetry to the given vector based on distribution */
88     int
89     use_symmetry(FVECT vec)
90     {
91 greg 2.11 const double phi = get_phi360(vec);
92 greg 2.1
93     switch (inp_coverage) {
94     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
95     break;
96     case INP_QUAD1|INP_QUAD2:
97     if ((-FTINY > phi) | (phi > 180.+FTINY))
98     goto mir_y;
99     break;
100     case INP_QUAD2|INP_QUAD3:
101     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
102     goto mir_x;
103     break;
104     case INP_QUAD3|INP_QUAD4:
105     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
106     goto mir_y;
107     break;
108     case INP_QUAD4|INP_QUAD1:
109     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
110     goto mir_x;
111     break;
112     case INP_QUAD1:
113     if ((-FTINY > phi) | (phi > 90.+FTINY))
114     switch ((int)(phi*(1./90.))) {
115     case 1: goto mir_x;
116     case 2: goto mir_xy;
117     case 3: goto mir_y;
118     }
119     break;
120     case INP_QUAD2:
121     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
122     switch ((int)(phi*(1./90.))) {
123     case 0: goto mir_x;
124     case 2: goto mir_y;
125     case 3: goto mir_xy;
126     }
127     break;
128     case INP_QUAD3:
129     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
130     switch ((int)(phi*(1./90.))) {
131     case 0: goto mir_xy;
132     case 1: goto mir_y;
133     case 3: goto mir_x;
134     }
135     break;
136     case INP_QUAD4:
137     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
138     switch ((int)(phi*(1./90.))) {
139     case 0: goto mir_y;
140     case 1: goto mir_xy;
141     case 2: goto mir_x;
142     }
143     break;
144     default:
145     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
146     progname, inp_coverage);
147     exit(1);
148     }
149     return(0); /* in range */
150     mir_x:
151     vec[0] = -vec[0];
152     return(MIRROR_X);
153     mir_y:
154     vec[1] = -vec[1];
155     return(MIRROR_Y);
156     mir_xy:
157     vec[0] = -vec[0];
158     vec[1] = -vec[1];
159     return(MIRROR_X|MIRROR_Y);
160     }
161    
162     /* Reverse symmetry based on what was done before */
163     void
164     rev_symmetry(FVECT vec, int sym)
165     {
166     if (sym & MIRROR_X)
167     vec[0] = -vec[0];
168     if (sym & MIRROR_Y)
169     vec[1] = -vec[1];
170     }
171    
172     /* Reverse symmetry for an RBF distribution */
173     void
174     rev_rbf_symmetry(RBFNODE *rbf, int sym)
175     {
176     int n;
177    
178     rev_symmetry(rbf->invec, sym);
179     if (sym & MIRROR_X)
180     for (n = rbf->nrbf; n-- > 0; )
181 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
182 greg 2.1 if (sym & MIRROR_Y)
183     for (n = rbf->nrbf; n-- > 0; )
184 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
185 greg 2.1 }
186    
187 greg 2.6 /* Rotate RBF to correspond to given incident vector */
188     void
189     rotate_rbf(RBFNODE *rbf, const FVECT invec)
190     {
191     static const FVECT vnorm = {.0, .0, 1.};
192     const double phi = atan2(invec[1],invec[0]) -
193     atan2(rbf->invec[1],rbf->invec[0]);
194     FVECT outvec;
195     int pos[2];
196     int n;
197 greg 2.8
198 greg 2.10 for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) {
199 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
200     spinvector(outvec, outvec, vnorm, phi);
201     pos_from_vec(pos, outvec);
202     rbf->rbfa[n].gx = pos[0];
203     rbf->rbfa[n].gy = pos[1];
204     }
205     VCOPY(rbf->invec, invec);
206     }
207    
208 greg 2.1 /* Compute outgoing vector from grid position */
209     void
210     ovec_from_pos(FVECT vec, int xpos, int ypos)
211     {
212     double uv[2];
213     double r2;
214    
215 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
216 greg 2.1 /* uniform hemispherical projection */
217     r2 = uv[0]*uv[0] + uv[1]*uv[1];
218     vec[0] = vec[1] = sqrt(2. - r2);
219     vec[0] *= uv[0];
220     vec[1] *= uv[1];
221     vec[2] = output_orient*(1. - r2);
222     }
223    
224     /* Compute grid position from normalized input/output vector */
225     void
226     pos_from_vec(int pos[2], const FVECT vec)
227     {
228     double sq[2]; /* uniform hemispherical projection */
229     double norm = 1./sqrt(1. + fabs(vec[2]));
230    
231     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
232    
233 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
234     pos[1] = (int)(sq[1]*grid_res);
235 greg 2.1 }
236    
237 greg 2.14 /* Compute volume associated with Gaussian lobe */
238     double
239     rbf_volume(const RBFVAL *rbfp)
240     {
241     double rad = R2ANG(rbfp->crad);
242     FVECT odir;
243     double elev, integ;
244     /* infinite integral approximation */
245     integ = (2.*M_PI) * rbfp->peak * rad*rad;
246     /* check if we're near horizon */
247     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
248     elev = output_orient*odir[2];
249     /* apply cut-off correction if > 1% */
250     if (elev < 2.8*rad) {
251     /* elev = asin(elev); /* this is so crude, anyway... */
252     integ *= 1. - .5*exp(-.5*elev*elev/(rad*rad));
253     }
254     return(integ);
255     }
256    
257 greg 2.1 /* Evaluate RBF for DSF at the given normalized outgoing direction */
258     double
259     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
260     {
261 greg 2.17 const double rfact2 = (38./M_PI/M_PI)*(grid_res*grid_res);
262 greg 2.13 double minval = bsdf_min*output_orient*outvec[2];
263 greg 2.16 int pos[2];
264 greg 2.8 double res = 0;
265 greg 2.1 const RBFVAL *rbfp;
266     FVECT odir;
267 greg 2.16 double rad2;
268 greg 2.1 int n;
269 greg 2.14 /* check for wrong side */
270     if (outvec[2] > 0 ^ output_orient > 0)
271     return(.0);
272 greg 2.12 /* use minimum if no information avail. */
273 greg 2.14 if (rp == NULL)
274 greg 2.13 return(minval);
275 greg 2.16 /* optimization for fast lobe culling */
276     pos_from_vec(pos, outvec);
277 greg 2.14 /* sum radial basis function */
278 greg 2.1 rbfp = rp->rbfa;
279     for (n = rp->nrbf; n--; rbfp++) {
280 greg 2.16 int d2 = (pos[0]-rbfp->gx)*(pos[0]-rbfp->gx) +
281     (pos[1]-rbfp->gy)*(pos[1]-rbfp->gy);
282     rad2 = R2ANG(rbfp->crad);
283     rad2 *= rad2;
284 greg 2.17 if (d2 > rad2*rfact2)
285 greg 2.16 continue;
286 greg 2.1 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
287 greg 2.16 res += rbfp->peak * exp((DOT(odir,outvec) - 1.) / rad2);
288 greg 2.1 }
289 greg 2.13 if (res < minval) /* never return less than minval */
290     return(minval);
291 greg 2.1 return(res);
292     }
293    
294     /* Insert a new directional scattering function in our global list */
295     int
296     insert_dsf(RBFNODE *newrbf)
297     {
298     RBFNODE *rbf, *rbf_last;
299     int pos;
300     /* check for redundant meas. */
301     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
302     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
303     fprintf(stderr,
304     "%s: Duplicate incident measurement (ignored)\n",
305     progname);
306     free(newrbf);
307     return(-1);
308     }
309     /* keep in ascending theta order */
310     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
311     rbf_last = rbf, rbf = rbf->next)
312     if (single_plane_incident && input_orient*rbf->invec[2] <
313     input_orient*newrbf->invec[2])
314     break;
315     if (rbf_last == NULL) { /* insert new node in list */
316     newrbf->ord = 0;
317     newrbf->next = dsf_list;
318     dsf_list = newrbf;
319     } else {
320     newrbf->ord = rbf_last->ord + 1;
321     newrbf->next = rbf;
322     rbf_last->next = newrbf;
323     }
324     rbf_last = newrbf;
325     while (rbf != NULL) { /* update ordinal positions */
326     rbf->ord = rbf_last->ord + 1;
327     rbf_last = rbf;
328     rbf = rbf->next;
329     }
330     return(newrbf->ord);
331     }
332    
333     /* Get the DSF indicated by its ordinal position */
334     RBFNODE *
335     get_dsf(int ord)
336     {
337     RBFNODE *rbf;
338    
339     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
340 greg 2.3 if (rbf->ord == ord)
341 greg 2.1 return(rbf);
342     return(NULL);
343     }
344    
345     /* Get triangle surface orientation (unnormalized) */
346     void
347     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
348     {
349     FVECT v2minus1, v3minus2;
350    
351     VSUB(v2minus1, v2, v1);
352     VSUB(v3minus2, v3, v2);
353     VCROSS(vres, v2minus1, v3minus2);
354     }
355    
356     /* Determine if vertex order is reversed (inward normal) */
357     int
358     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
359     {
360     FVECT tor;
361    
362     tri_orient(tor, v1, v2, v3);
363    
364     return(DOT(tor, v2) < 0.);
365     }
366    
367     /* Find vertices completing triangles on either side of the given edge */
368     int
369     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
370     {
371 greg 2.4 const MIGRATION *ej1, *ej2;
372 greg 2.1 RBFNODE *tv;
373    
374     rbfv[0] = rbfv[1] = NULL;
375     if (mig == NULL)
376     return(0);
377 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
378     ej1 = nextedge(mig->rbfv[0],ej1)) {
379     if (ej1 == mig)
380 greg 2.1 continue;
381 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
382 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
383     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
384     rbfv[is_rev_tri(mig->rbfv[0]->invec,
385     mig->rbfv[1]->invec,
386     tv->invec)] = tv;
387     break;
388     }
389     }
390     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
391     }
392    
393 greg 2.4 /* Clear our BSDF representation and free memory */
394     void
395     clear_bsdf_rep(void)
396     {
397     while (mig_list != NULL) {
398     MIGRATION *mig = mig_list;
399     mig_list = mig->next;
400     free(mig);
401     }
402     while (dsf_list != NULL) {
403     RBFNODE *rbf = dsf_list;
404     dsf_list = rbf->next;
405     free(rbf);
406     }
407     inp_coverage = 0;
408     single_plane_incident = -1;
409     input_orient = output_orient = 0;
410 greg 2.5 grid_res = GRIDRES;
411 greg 2.4 }
412    
413 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
414     void
415     save_bsdf_rep(FILE *ofp)
416     {
417     RBFNODE *rbf;
418     MIGRATION *mig;
419     int i, n;
420     /* finish header */
421 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
422     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
423 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
424 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
425 greg 2.1 fputformat(BSDFREP_FMT, ofp);
426     fputc('\n', ofp);
427     /* write each DSF */
428     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
429     putint(rbf->ord, 4, ofp);
430     putflt(rbf->invec[0], ofp);
431     putflt(rbf->invec[1], ofp);
432     putflt(rbf->invec[2], ofp);
433     putflt(rbf->vtotal, ofp);
434     putint(rbf->nrbf, 4, ofp);
435     for (i = 0; i < rbf->nrbf; i++) {
436     putflt(rbf->rbfa[i].peak, ofp);
437     putint(rbf->rbfa[i].crad, 2, ofp);
438     putint(rbf->rbfa[i].gx, 1, ofp);
439     putint(rbf->rbfa[i].gy, 1, ofp);
440     }
441     }
442     putint(-1, 4, ofp); /* terminator */
443     /* write each migration matrix */
444 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
445     int zerocnt = 0;
446 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
447     putint(mig->rbfv[1]->ord, 4, ofp);
448 greg 2.2 /* write out as sparse data */
449 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
450 greg 2.2 for (i = 0; i < n; i++) {
451 greg 2.3 if (zerocnt == 0xff) {
452     putint(0xff, 1, ofp); zerocnt = 0;
453 greg 2.2 }
454     if (mig->mtx[i] != 0) {
455     putint(zerocnt, 1, ofp); zerocnt = 0;
456     putflt(mig->mtx[i], ofp);
457     } else
458     ++zerocnt;
459     }
460     putint(zerocnt, 1, ofp);
461 greg 2.1 }
462     putint(-1, 4, ofp); /* terminator */
463     putint(-1, 4, ofp);
464     if (fflush(ofp) == EOF) {
465     fprintf(stderr, "%s: error writing BSDF interpolant\n",
466     progname);
467     exit(1);
468     }
469     }
470    
471 greg 2.2 /* Check header line for critical information */
472     static int
473     headline(char *s, void *p)
474     {
475     char fmt[32];
476    
477     if (!strncmp(s, "SYMMETRY=", 9)) {
478     inp_coverage = atoi(s+9);
479     single_plane_incident = !inp_coverage;
480     return(0);
481     }
482     if (!strncmp(s, "IO_SIDES=", 9)) {
483     sscanf(s+9, "%d %d", &input_orient, &output_orient);
484     return(0);
485     }
486 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
487     sscanf(s+8, "%d", &grid_res);
488     return(0);
489     }
490 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
491     sscanf(s+8, "%lf", &bsdf_min);
492     return(0);
493     }
494 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
495     return(-1);
496     return(0);
497     }
498    
499 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
500     int
501     load_bsdf_rep(FILE *ifp)
502     {
503     RBFNODE rbfh;
504     int from_ord, to_ord;
505     int i;
506 greg 2.4
507     clear_bsdf_rep();
508 greg 2.5 if (ifp == NULL)
509     return(0);
510 greg 2.2 if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 |
511     !input_orient | !output_orient) {
512 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
513     progname);
514     return(0);
515     }
516 greg 2.18 memset(&rbfh, 0, sizeof(rbfh)); /* read each DSF */
517 greg 2.1 while ((rbfh.ord = getint(4, ifp)) >= 0) {
518     RBFNODE *newrbf;
519    
520     rbfh.invec[0] = getflt(ifp);
521     rbfh.invec[1] = getflt(ifp);
522     rbfh.invec[2] = getflt(ifp);
523 greg 2.9 if (normalize(rbfh.invec) == 0) {
524     fprintf(stderr, "%s: zero incident vector\n", progname);
525     return(0);
526     }
527 greg 2.3 rbfh.vtotal = getflt(ifp);
528 greg 2.1 rbfh.nrbf = getint(4, ifp);
529     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
530     sizeof(RBFVAL)*(rbfh.nrbf-1));
531     if (newrbf == NULL)
532     goto memerr;
533 greg 2.18 *newrbf = rbfh;
534 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
535     newrbf->rbfa[i].peak = getflt(ifp);
536     newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
537     newrbf->rbfa[i].gx = getint(1, ifp) & 0xff;
538     newrbf->rbfa[i].gy = getint(1, ifp) & 0xff;
539     }
540     if (feof(ifp))
541     goto badEOF;
542     /* insert in global list */
543     if (insert_dsf(newrbf) != rbfh.ord) {
544     fprintf(stderr, "%s: error adding DSF\n", progname);
545     return(0);
546     }
547     }
548     /* read each migration matrix */
549     while ((from_ord = getint(4, ifp)) >= 0 &&
550     (to_ord = getint(4, ifp)) >= 0) {
551     RBFNODE *from_rbf = get_dsf(from_ord);
552     RBFNODE *to_rbf = get_dsf(to_ord);
553     MIGRATION *newmig;
554     int n;
555    
556     if ((from_rbf == NULL) | (to_rbf == NULL)) {
557     fprintf(stderr,
558     "%s: bad DSF reference in migration edge\n",
559     progname);
560     return(0);
561     }
562     n = from_rbf->nrbf * to_rbf->nrbf;
563     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
564     sizeof(float)*(n-1));
565     if (newmig == NULL)
566     goto memerr;
567     newmig->rbfv[0] = from_rbf;
568     newmig->rbfv[1] = to_rbf;
569 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
570     for (i = 0; ; ) { /* read sparse data */
571     int zc = getint(1, ifp) & 0xff;
572     if ((i += zc) >= n)
573     break;
574 greg 2.3 if (zc == 0xff)
575     continue;
576 greg 2.2 newmig->mtx[i++] = getflt(ifp);
577     }
578 greg 2.1 if (feof(ifp))
579     goto badEOF;
580     /* insert in edge lists */
581     newmig->enxt[0] = from_rbf->ejl;
582     from_rbf->ejl = newmig;
583     newmig->enxt[1] = to_rbf->ejl;
584     to_rbf->ejl = newmig;
585     /* push onto global list */
586     newmig->next = mig_list;
587     mig_list = newmig;
588     }
589     return(1); /* success! */
590     memerr:
591     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
592     exit(1);
593     badEOF:
594     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
595     return(0);
596     }