ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.13
Committed: Sun Mar 24 17:22:23 2013 UTC (11 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +5 -2 lines
Log Message:
Make sure not to output less than diffuse minimum

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.13 static const char RCSid[] = "$Id: bsdfrep.c,v 2.12 2013/03/20 01:00:22 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12 greg 2.2 #include <string.h>
13 greg 2.1 #include <math.h>
14     #include "rtio.h"
15     #include "resolu.h"
16     #include "bsdfrep.h"
17 greg 2.5 /* active grid resolution */
18     int grid_res = GRIDRES;
19    
20 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
21 greg 2.1 int inp_coverage = 0;
22     /* all incident angles in-plane so far? */
23     int single_plane_incident = -1;
24    
25     /* input/output orientations */
26     int input_orient = 0;
27     int output_orient = 0;
28    
29 greg 2.12 /* BSDF histogram */
30     int bsdf_hist[HISTLEN];
31    
32     /* BSDF value for boundary regions */
33     double bsdf_min = 0;
34    
35 greg 2.1 /* processed incident DSF measurements */
36     RBFNODE *dsf_list = NULL;
37    
38     /* RBF-linking matrices (edges) */
39     MIGRATION *mig_list = NULL;
40    
41     /* current input direction */
42     double theta_in_deg, phi_in_deg;
43    
44     /* Register new input direction */
45     int
46     new_input_direction(double new_theta, double new_phi)
47     {
48     if (!input_orient) /* check input orientation */
49     input_orient = 1 - 2*(new_theta > 90.);
50     else if (input_orient > 0 ^ new_theta < 90.) {
51     fprintf(stderr,
52     "%s: Cannot handle input angles on both sides of surface\n",
53     progname);
54     return(0);
55     }
56     /* normalize angle ranges */
57     while (new_theta < -180.)
58     new_theta += 360.;
59     while (new_theta > 180.)
60     new_theta -= 360.;
61     if (new_theta < 0) {
62     new_theta = -new_theta;
63     new_phi += 180.;
64     }
65 greg 2.6 if ((theta_in_deg = new_theta) < 1.0)
66     return(1); /* don't rely on phi near normal */
67 greg 2.1 while (new_phi < 0)
68     new_phi += 360.;
69     while (new_phi >= 360.)
70     new_phi -= 360.;
71     if (single_plane_incident > 0) /* check input coverage */
72     single_plane_incident = (round(new_phi) == round(phi_in_deg));
73     else if (single_plane_incident < 0)
74     single_plane_incident = 1;
75     phi_in_deg = new_phi;
76     if ((1. < new_phi) & (new_phi < 89.))
77     inp_coverage |= INP_QUAD1;
78     else if ((91. < new_phi) & (new_phi < 179.))
79     inp_coverage |= INP_QUAD2;
80     else if ((181. < new_phi) & (new_phi < 269.))
81     inp_coverage |= INP_QUAD3;
82     else if ((271. < new_phi) & (new_phi < 359.))
83     inp_coverage |= INP_QUAD4;
84     return(1);
85     }
86    
87     /* Apply symmetry to the given vector based on distribution */
88     int
89     use_symmetry(FVECT vec)
90     {
91 greg 2.11 const double phi = get_phi360(vec);
92 greg 2.1
93     switch (inp_coverage) {
94     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
95     break;
96     case INP_QUAD1|INP_QUAD2:
97     if ((-FTINY > phi) | (phi > 180.+FTINY))
98     goto mir_y;
99     break;
100     case INP_QUAD2|INP_QUAD3:
101     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
102     goto mir_x;
103     break;
104     case INP_QUAD3|INP_QUAD4:
105     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
106     goto mir_y;
107     break;
108     case INP_QUAD4|INP_QUAD1:
109     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
110     goto mir_x;
111     break;
112     case INP_QUAD1:
113     if ((-FTINY > phi) | (phi > 90.+FTINY))
114     switch ((int)(phi*(1./90.))) {
115     case 1: goto mir_x;
116     case 2: goto mir_xy;
117     case 3: goto mir_y;
118     }
119     break;
120     case INP_QUAD2:
121     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
122     switch ((int)(phi*(1./90.))) {
123     case 0: goto mir_x;
124     case 2: goto mir_y;
125     case 3: goto mir_xy;
126     }
127     break;
128     case INP_QUAD3:
129     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
130     switch ((int)(phi*(1./90.))) {
131     case 0: goto mir_xy;
132     case 1: goto mir_y;
133     case 3: goto mir_x;
134     }
135     break;
136     case INP_QUAD4:
137     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
138     switch ((int)(phi*(1./90.))) {
139     case 0: goto mir_y;
140     case 1: goto mir_xy;
141     case 2: goto mir_x;
142     }
143     break;
144     default:
145     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
146     progname, inp_coverage);
147     exit(1);
148     }
149     return(0); /* in range */
150     mir_x:
151     vec[0] = -vec[0];
152     return(MIRROR_X);
153     mir_y:
154     vec[1] = -vec[1];
155     return(MIRROR_Y);
156     mir_xy:
157     vec[0] = -vec[0];
158     vec[1] = -vec[1];
159     return(MIRROR_X|MIRROR_Y);
160     }
161    
162     /* Reverse symmetry based on what was done before */
163     void
164     rev_symmetry(FVECT vec, int sym)
165     {
166     if (sym & MIRROR_X)
167     vec[0] = -vec[0];
168     if (sym & MIRROR_Y)
169     vec[1] = -vec[1];
170     }
171    
172     /* Reverse symmetry for an RBF distribution */
173     void
174     rev_rbf_symmetry(RBFNODE *rbf, int sym)
175     {
176     int n;
177    
178     rev_symmetry(rbf->invec, sym);
179     if (sym & MIRROR_X)
180     for (n = rbf->nrbf; n-- > 0; )
181 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
182 greg 2.1 if (sym & MIRROR_Y)
183     for (n = rbf->nrbf; n-- > 0; )
184 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
185 greg 2.1 }
186    
187 greg 2.6 /* Rotate RBF to correspond to given incident vector */
188     void
189     rotate_rbf(RBFNODE *rbf, const FVECT invec)
190     {
191     static const FVECT vnorm = {.0, .0, 1.};
192     const double phi = atan2(invec[1],invec[0]) -
193     atan2(rbf->invec[1],rbf->invec[0]);
194     FVECT outvec;
195     int pos[2];
196     int n;
197 greg 2.8
198 greg 2.10 for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) {
199 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
200     spinvector(outvec, outvec, vnorm, phi);
201     pos_from_vec(pos, outvec);
202     rbf->rbfa[n].gx = pos[0];
203     rbf->rbfa[n].gy = pos[1];
204     }
205     VCOPY(rbf->invec, invec);
206     }
207    
208 greg 2.1 /* Compute volume associated with Gaussian lobe */
209     double
210     rbf_volume(const RBFVAL *rbfp)
211     {
212     double rad = R2ANG(rbfp->crad);
213    
214     return((2.*M_PI) * rbfp->peak * rad*rad);
215     }
216    
217     /* Compute outgoing vector from grid position */
218     void
219     ovec_from_pos(FVECT vec, int xpos, int ypos)
220     {
221     double uv[2];
222     double r2;
223    
224 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
225 greg 2.1 /* uniform hemispherical projection */
226     r2 = uv[0]*uv[0] + uv[1]*uv[1];
227     vec[0] = vec[1] = sqrt(2. - r2);
228     vec[0] *= uv[0];
229     vec[1] *= uv[1];
230     vec[2] = output_orient*(1. - r2);
231     }
232    
233     /* Compute grid position from normalized input/output vector */
234     void
235     pos_from_vec(int pos[2], const FVECT vec)
236     {
237     double sq[2]; /* uniform hemispherical projection */
238     double norm = 1./sqrt(1. + fabs(vec[2]));
239    
240     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
241    
242 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
243     pos[1] = (int)(sq[1]*grid_res);
244 greg 2.1 }
245    
246     /* Evaluate RBF for DSF at the given normalized outgoing direction */
247     double
248     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
249     {
250 greg 2.13 double minval = bsdf_min*output_orient*outvec[2];
251 greg 2.8 double res = 0;
252 greg 2.1 const RBFVAL *rbfp;
253     FVECT odir;
254     double sig2;
255     int n;
256 greg 2.12 /* use minimum if no information avail. */
257     if (rp == NULL) {
258     if (outvec[2] > 0 ^ output_orient > 0)
259     return(.0);
260 greg 2.13 return(minval);
261 greg 2.12 }
262 greg 2.1 rbfp = rp->rbfa;
263     for (n = rp->nrbf; n--; rbfp++) {
264     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
265     sig2 = R2ANG(rbfp->crad);
266     sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
267     if (sig2 > -19.)
268     res += rbfp->peak * exp(sig2);
269     }
270 greg 2.13 if (res < minval) /* never return less than minval */
271     return(minval);
272 greg 2.1 return(res);
273     }
274    
275     /* Insert a new directional scattering function in our global list */
276     int
277     insert_dsf(RBFNODE *newrbf)
278     {
279     RBFNODE *rbf, *rbf_last;
280     int pos;
281     /* check for redundant meas. */
282     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
283     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
284     fprintf(stderr,
285     "%s: Duplicate incident measurement (ignored)\n",
286     progname);
287     free(newrbf);
288     return(-1);
289     }
290     /* keep in ascending theta order */
291     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
292     rbf_last = rbf, rbf = rbf->next)
293     if (single_plane_incident && input_orient*rbf->invec[2] <
294     input_orient*newrbf->invec[2])
295     break;
296     if (rbf_last == NULL) { /* insert new node in list */
297     newrbf->ord = 0;
298     newrbf->next = dsf_list;
299     dsf_list = newrbf;
300     } else {
301     newrbf->ord = rbf_last->ord + 1;
302     newrbf->next = rbf;
303     rbf_last->next = newrbf;
304     }
305     rbf_last = newrbf;
306     while (rbf != NULL) { /* update ordinal positions */
307     rbf->ord = rbf_last->ord + 1;
308     rbf_last = rbf;
309     rbf = rbf->next;
310     }
311     return(newrbf->ord);
312     }
313    
314     /* Get the DSF indicated by its ordinal position */
315     RBFNODE *
316     get_dsf(int ord)
317     {
318     RBFNODE *rbf;
319    
320     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
321 greg 2.3 if (rbf->ord == ord)
322 greg 2.1 return(rbf);
323     return(NULL);
324     }
325    
326     /* Get triangle surface orientation (unnormalized) */
327     void
328     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
329     {
330     FVECT v2minus1, v3minus2;
331    
332     VSUB(v2minus1, v2, v1);
333     VSUB(v3minus2, v3, v2);
334     VCROSS(vres, v2minus1, v3minus2);
335     }
336    
337     /* Determine if vertex order is reversed (inward normal) */
338     int
339     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
340     {
341     FVECT tor;
342    
343     tri_orient(tor, v1, v2, v3);
344    
345     return(DOT(tor, v2) < 0.);
346     }
347    
348     /* Find vertices completing triangles on either side of the given edge */
349     int
350     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
351     {
352 greg 2.4 const MIGRATION *ej1, *ej2;
353 greg 2.1 RBFNODE *tv;
354    
355     rbfv[0] = rbfv[1] = NULL;
356     if (mig == NULL)
357     return(0);
358 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
359     ej1 = nextedge(mig->rbfv[0],ej1)) {
360     if (ej1 == mig)
361 greg 2.1 continue;
362 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
363 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
364     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
365     rbfv[is_rev_tri(mig->rbfv[0]->invec,
366     mig->rbfv[1]->invec,
367     tv->invec)] = tv;
368     break;
369     }
370     }
371     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
372     }
373    
374 greg 2.4 /* Clear our BSDF representation and free memory */
375     void
376     clear_bsdf_rep(void)
377     {
378     while (mig_list != NULL) {
379     MIGRATION *mig = mig_list;
380     mig_list = mig->next;
381     free(mig);
382     }
383     while (dsf_list != NULL) {
384     RBFNODE *rbf = dsf_list;
385     dsf_list = rbf->next;
386     free(rbf);
387     }
388     inp_coverage = 0;
389     single_plane_incident = -1;
390     input_orient = output_orient = 0;
391 greg 2.5 grid_res = GRIDRES;
392 greg 2.4 }
393    
394 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
395     void
396     save_bsdf_rep(FILE *ofp)
397     {
398     RBFNODE *rbf;
399     MIGRATION *mig;
400     int i, n;
401     /* finish header */
402 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
403     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
404 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
405 greg 2.12 fprintf(ofp, "BSDFMIN=%g\n", bsdf_min);
406 greg 2.1 fputformat(BSDFREP_FMT, ofp);
407     fputc('\n', ofp);
408     /* write each DSF */
409     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
410     putint(rbf->ord, 4, ofp);
411     putflt(rbf->invec[0], ofp);
412     putflt(rbf->invec[1], ofp);
413     putflt(rbf->invec[2], ofp);
414     putflt(rbf->vtotal, ofp);
415     putint(rbf->nrbf, 4, ofp);
416     for (i = 0; i < rbf->nrbf; i++) {
417     putflt(rbf->rbfa[i].peak, ofp);
418     putint(rbf->rbfa[i].crad, 2, ofp);
419     putint(rbf->rbfa[i].gx, 1, ofp);
420     putint(rbf->rbfa[i].gy, 1, ofp);
421     }
422     }
423     putint(-1, 4, ofp); /* terminator */
424     /* write each migration matrix */
425 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
426     int zerocnt = 0;
427 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
428     putint(mig->rbfv[1]->ord, 4, ofp);
429 greg 2.2 /* write out as sparse data */
430 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
431 greg 2.2 for (i = 0; i < n; i++) {
432 greg 2.3 if (zerocnt == 0xff) {
433     putint(0xff, 1, ofp); zerocnt = 0;
434 greg 2.2 }
435     if (mig->mtx[i] != 0) {
436     putint(zerocnt, 1, ofp); zerocnt = 0;
437     putflt(mig->mtx[i], ofp);
438     } else
439     ++zerocnt;
440     }
441     putint(zerocnt, 1, ofp);
442 greg 2.1 }
443     putint(-1, 4, ofp); /* terminator */
444     putint(-1, 4, ofp);
445     if (fflush(ofp) == EOF) {
446     fprintf(stderr, "%s: error writing BSDF interpolant\n",
447     progname);
448     exit(1);
449     }
450     }
451    
452 greg 2.2 /* Check header line for critical information */
453     static int
454     headline(char *s, void *p)
455     {
456     char fmt[32];
457    
458     if (!strncmp(s, "SYMMETRY=", 9)) {
459     inp_coverage = atoi(s+9);
460     single_plane_incident = !inp_coverage;
461     return(0);
462     }
463     if (!strncmp(s, "IO_SIDES=", 9)) {
464     sscanf(s+9, "%d %d", &input_orient, &output_orient);
465     return(0);
466     }
467 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
468     sscanf(s+8, "%d", &grid_res);
469     return(0);
470     }
471 greg 2.12 if (!strncmp(s, "BSDFMIN=", 8)) {
472     sscanf(s+8, "%lf", &bsdf_min);
473     return(0);
474     }
475 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
476     return(-1);
477     return(0);
478     }
479    
480 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
481     int
482     load_bsdf_rep(FILE *ifp)
483     {
484     RBFNODE rbfh;
485     int from_ord, to_ord;
486     int i;
487 greg 2.4
488     clear_bsdf_rep();
489 greg 2.5 if (ifp == NULL)
490     return(0);
491 greg 2.2 if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 |
492     !input_orient | !output_orient) {
493 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
494     progname);
495     return(0);
496     }
497     rbfh.next = NULL; /* read each DSF */
498     rbfh.ejl = NULL;
499     while ((rbfh.ord = getint(4, ifp)) >= 0) {
500     RBFNODE *newrbf;
501    
502     rbfh.invec[0] = getflt(ifp);
503     rbfh.invec[1] = getflt(ifp);
504     rbfh.invec[2] = getflt(ifp);
505 greg 2.9 if (normalize(rbfh.invec) == 0) {
506     fprintf(stderr, "%s: zero incident vector\n", progname);
507     return(0);
508     }
509 greg 2.3 rbfh.vtotal = getflt(ifp);
510 greg 2.1 rbfh.nrbf = getint(4, ifp);
511     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
512     sizeof(RBFVAL)*(rbfh.nrbf-1));
513     if (newrbf == NULL)
514     goto memerr;
515 greg 2.8 memcpy(newrbf, &rbfh, sizeof(RBFNODE)-sizeof(RBFVAL));
516 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
517     newrbf->rbfa[i].peak = getflt(ifp);
518     newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
519     newrbf->rbfa[i].gx = getint(1, ifp) & 0xff;
520     newrbf->rbfa[i].gy = getint(1, ifp) & 0xff;
521     }
522     if (feof(ifp))
523     goto badEOF;
524     /* insert in global list */
525     if (insert_dsf(newrbf) != rbfh.ord) {
526     fprintf(stderr, "%s: error adding DSF\n", progname);
527     return(0);
528     }
529     }
530     /* read each migration matrix */
531     while ((from_ord = getint(4, ifp)) >= 0 &&
532     (to_ord = getint(4, ifp)) >= 0) {
533     RBFNODE *from_rbf = get_dsf(from_ord);
534     RBFNODE *to_rbf = get_dsf(to_ord);
535     MIGRATION *newmig;
536     int n;
537    
538     if ((from_rbf == NULL) | (to_rbf == NULL)) {
539     fprintf(stderr,
540     "%s: bad DSF reference in migration edge\n",
541     progname);
542     return(0);
543     }
544     n = from_rbf->nrbf * to_rbf->nrbf;
545     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
546     sizeof(float)*(n-1));
547     if (newmig == NULL)
548     goto memerr;
549     newmig->rbfv[0] = from_rbf;
550     newmig->rbfv[1] = to_rbf;
551 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
552     for (i = 0; ; ) { /* read sparse data */
553     int zc = getint(1, ifp) & 0xff;
554     if ((i += zc) >= n)
555     break;
556 greg 2.3 if (zc == 0xff)
557     continue;
558 greg 2.2 newmig->mtx[i++] = getflt(ifp);
559     }
560 greg 2.1 if (feof(ifp))
561     goto badEOF;
562     /* insert in edge lists */
563     newmig->enxt[0] = from_rbf->ejl;
564     from_rbf->ejl = newmig;
565     newmig->enxt[1] = to_rbf->ejl;
566     to_rbf->ejl = newmig;
567     /* push onto global list */
568     newmig->next = mig_list;
569     mig_list = newmig;
570     }
571     return(1); /* success! */
572     memerr:
573     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
574     exit(1);
575     badEOF:
576     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
577     return(0);
578     }