ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrep.c
Revision: 2.11
Committed: Thu Nov 22 06:07:17 2012 UTC (11 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.10: +2 -2 lines
Log Message:
Bug fix in geodesic() and other minor improvements

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.11 static const char RCSid[] = "$Id: bsdfrep.c,v 2.10 2012/11/18 03:56:39 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Support BSDF representation as radial basis functions.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdlib.h>
12 greg 2.2 #include <string.h>
13 greg 2.1 #include <math.h>
14     #include "rtio.h"
15     #include "resolu.h"
16     #include "bsdfrep.h"
17 greg 2.5 /* active grid resolution */
18     int grid_res = GRIDRES;
19    
20 greg 2.4 /* coverage/symmetry using INP_QUAD? flags */
21 greg 2.1 int inp_coverage = 0;
22     /* all incident angles in-plane so far? */
23     int single_plane_incident = -1;
24    
25     /* input/output orientations */
26     int input_orient = 0;
27     int output_orient = 0;
28    
29     /* processed incident DSF measurements */
30     RBFNODE *dsf_list = NULL;
31    
32     /* RBF-linking matrices (edges) */
33     MIGRATION *mig_list = NULL;
34    
35     /* current input direction */
36     double theta_in_deg, phi_in_deg;
37    
38     /* Register new input direction */
39     int
40     new_input_direction(double new_theta, double new_phi)
41     {
42     if (!input_orient) /* check input orientation */
43     input_orient = 1 - 2*(new_theta > 90.);
44     else if (input_orient > 0 ^ new_theta < 90.) {
45     fprintf(stderr,
46     "%s: Cannot handle input angles on both sides of surface\n",
47     progname);
48     return(0);
49     }
50     /* normalize angle ranges */
51     while (new_theta < -180.)
52     new_theta += 360.;
53     while (new_theta > 180.)
54     new_theta -= 360.;
55     if (new_theta < 0) {
56     new_theta = -new_theta;
57     new_phi += 180.;
58     }
59 greg 2.6 if ((theta_in_deg = new_theta) < 1.0)
60     return(1); /* don't rely on phi near normal */
61 greg 2.1 while (new_phi < 0)
62     new_phi += 360.;
63     while (new_phi >= 360.)
64     new_phi -= 360.;
65     if (single_plane_incident > 0) /* check input coverage */
66     single_plane_incident = (round(new_phi) == round(phi_in_deg));
67     else if (single_plane_incident < 0)
68     single_plane_incident = 1;
69     phi_in_deg = new_phi;
70     if ((1. < new_phi) & (new_phi < 89.))
71     inp_coverage |= INP_QUAD1;
72     else if ((91. < new_phi) & (new_phi < 179.))
73     inp_coverage |= INP_QUAD2;
74     else if ((181. < new_phi) & (new_phi < 269.))
75     inp_coverage |= INP_QUAD3;
76     else if ((271. < new_phi) & (new_phi < 359.))
77     inp_coverage |= INP_QUAD4;
78     return(1);
79     }
80    
81     /* Apply symmetry to the given vector based on distribution */
82     int
83     use_symmetry(FVECT vec)
84     {
85 greg 2.11 const double phi = get_phi360(vec);
86 greg 2.1
87     switch (inp_coverage) {
88     case INP_QUAD1|INP_QUAD2|INP_QUAD3|INP_QUAD4:
89     break;
90     case INP_QUAD1|INP_QUAD2:
91     if ((-FTINY > phi) | (phi > 180.+FTINY))
92     goto mir_y;
93     break;
94     case INP_QUAD2|INP_QUAD3:
95     if ((90.-FTINY > phi) | (phi > 270.+FTINY))
96     goto mir_x;
97     break;
98     case INP_QUAD3|INP_QUAD4:
99     if ((180.-FTINY > phi) | (phi > 360.+FTINY))
100     goto mir_y;
101     break;
102     case INP_QUAD4|INP_QUAD1:
103     if ((270.-FTINY > phi) & (phi > 90.+FTINY))
104     goto mir_x;
105     break;
106     case INP_QUAD1:
107     if ((-FTINY > phi) | (phi > 90.+FTINY))
108     switch ((int)(phi*(1./90.))) {
109     case 1: goto mir_x;
110     case 2: goto mir_xy;
111     case 3: goto mir_y;
112     }
113     break;
114     case INP_QUAD2:
115     if ((90.-FTINY > phi) | (phi > 180.+FTINY))
116     switch ((int)(phi*(1./90.))) {
117     case 0: goto mir_x;
118     case 2: goto mir_y;
119     case 3: goto mir_xy;
120     }
121     break;
122     case INP_QUAD3:
123     if ((180.-FTINY > phi) | (phi > 270.+FTINY))
124     switch ((int)(phi*(1./90.))) {
125     case 0: goto mir_xy;
126     case 1: goto mir_y;
127     case 3: goto mir_x;
128     }
129     break;
130     case INP_QUAD4:
131     if ((270.-FTINY > phi) | (phi > 360.+FTINY))
132     switch ((int)(phi*(1./90.))) {
133     case 0: goto mir_y;
134     case 1: goto mir_xy;
135     case 2: goto mir_x;
136     }
137     break;
138     default:
139     fprintf(stderr, "%s: Illegal input coverage (%d)\n",
140     progname, inp_coverage);
141     exit(1);
142     }
143     return(0); /* in range */
144     mir_x:
145     vec[0] = -vec[0];
146     return(MIRROR_X);
147     mir_y:
148     vec[1] = -vec[1];
149     return(MIRROR_Y);
150     mir_xy:
151     vec[0] = -vec[0];
152     vec[1] = -vec[1];
153     return(MIRROR_X|MIRROR_Y);
154     }
155    
156     /* Reverse symmetry based on what was done before */
157     void
158     rev_symmetry(FVECT vec, int sym)
159     {
160     if (sym & MIRROR_X)
161     vec[0] = -vec[0];
162     if (sym & MIRROR_Y)
163     vec[1] = -vec[1];
164     }
165    
166     /* Reverse symmetry for an RBF distribution */
167     void
168     rev_rbf_symmetry(RBFNODE *rbf, int sym)
169     {
170     int n;
171    
172     rev_symmetry(rbf->invec, sym);
173     if (sym & MIRROR_X)
174     for (n = rbf->nrbf; n-- > 0; )
175 greg 2.5 rbf->rbfa[n].gx = grid_res-1 - rbf->rbfa[n].gx;
176 greg 2.1 if (sym & MIRROR_Y)
177     for (n = rbf->nrbf; n-- > 0; )
178 greg 2.5 rbf->rbfa[n].gy = grid_res-1 - rbf->rbfa[n].gy;
179 greg 2.1 }
180    
181 greg 2.6 /* Rotate RBF to correspond to given incident vector */
182     void
183     rotate_rbf(RBFNODE *rbf, const FVECT invec)
184     {
185     static const FVECT vnorm = {.0, .0, 1.};
186     const double phi = atan2(invec[1],invec[0]) -
187     atan2(rbf->invec[1],rbf->invec[0]);
188     FVECT outvec;
189     int pos[2];
190     int n;
191 greg 2.8
192 greg 2.10 for (n = ((-.01 > phi) | (phi > .01))*rbf->nrbf; n-- > 0; ) {
193 greg 2.6 ovec_from_pos(outvec, rbf->rbfa[n].gx, rbf->rbfa[n].gy);
194     spinvector(outvec, outvec, vnorm, phi);
195     pos_from_vec(pos, outvec);
196     rbf->rbfa[n].gx = pos[0];
197     rbf->rbfa[n].gy = pos[1];
198     }
199     VCOPY(rbf->invec, invec);
200     }
201    
202 greg 2.1 /* Compute volume associated with Gaussian lobe */
203     double
204     rbf_volume(const RBFVAL *rbfp)
205     {
206     double rad = R2ANG(rbfp->crad);
207    
208     return((2.*M_PI) * rbfp->peak * rad*rad);
209     }
210    
211     /* Compute outgoing vector from grid position */
212     void
213     ovec_from_pos(FVECT vec, int xpos, int ypos)
214     {
215     double uv[2];
216     double r2;
217    
218 greg 2.8 SDsquare2disk(uv, (xpos+.5)/grid_res, (ypos+.5)/grid_res);
219 greg 2.1 /* uniform hemispherical projection */
220     r2 = uv[0]*uv[0] + uv[1]*uv[1];
221     vec[0] = vec[1] = sqrt(2. - r2);
222     vec[0] *= uv[0];
223     vec[1] *= uv[1];
224     vec[2] = output_orient*(1. - r2);
225     }
226    
227     /* Compute grid position from normalized input/output vector */
228     void
229     pos_from_vec(int pos[2], const FVECT vec)
230     {
231     double sq[2]; /* uniform hemispherical projection */
232     double norm = 1./sqrt(1. + fabs(vec[2]));
233    
234     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
235    
236 greg 2.5 pos[0] = (int)(sq[0]*grid_res);
237     pos[1] = (int)(sq[1]*grid_res);
238 greg 2.1 }
239    
240     /* Evaluate RBF for DSF at the given normalized outgoing direction */
241     double
242     eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
243     {
244 greg 2.8 double res = 0;
245 greg 2.1 const RBFVAL *rbfp;
246     FVECT odir;
247     double sig2;
248     int n;
249    
250     if (rp == NULL)
251     return(.0);
252     rbfp = rp->rbfa;
253     for (n = rp->nrbf; n--; rbfp++) {
254     ovec_from_pos(odir, rbfp->gx, rbfp->gy);
255     sig2 = R2ANG(rbfp->crad);
256     sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
257     if (sig2 > -19.)
258     res += rbfp->peak * exp(sig2);
259     }
260     return(res);
261     }
262    
263     /* Insert a new directional scattering function in our global list */
264     int
265     insert_dsf(RBFNODE *newrbf)
266     {
267     RBFNODE *rbf, *rbf_last;
268     int pos;
269     /* check for redundant meas. */
270     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
271     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
272     fprintf(stderr,
273     "%s: Duplicate incident measurement (ignored)\n",
274     progname);
275     free(newrbf);
276     return(-1);
277     }
278     /* keep in ascending theta order */
279     for (rbf_last = NULL, rbf = dsf_list; rbf != NULL;
280     rbf_last = rbf, rbf = rbf->next)
281     if (single_plane_incident && input_orient*rbf->invec[2] <
282     input_orient*newrbf->invec[2])
283     break;
284     if (rbf_last == NULL) { /* insert new node in list */
285     newrbf->ord = 0;
286     newrbf->next = dsf_list;
287     dsf_list = newrbf;
288     } else {
289     newrbf->ord = rbf_last->ord + 1;
290     newrbf->next = rbf;
291     rbf_last->next = newrbf;
292     }
293     rbf_last = newrbf;
294     while (rbf != NULL) { /* update ordinal positions */
295     rbf->ord = rbf_last->ord + 1;
296     rbf_last = rbf;
297     rbf = rbf->next;
298     }
299     return(newrbf->ord);
300     }
301    
302     /* Get the DSF indicated by its ordinal position */
303     RBFNODE *
304     get_dsf(int ord)
305     {
306     RBFNODE *rbf;
307    
308     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
309 greg 2.3 if (rbf->ord == ord)
310 greg 2.1 return(rbf);
311     return(NULL);
312     }
313    
314     /* Get triangle surface orientation (unnormalized) */
315     void
316     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
317     {
318     FVECT v2minus1, v3minus2;
319    
320     VSUB(v2minus1, v2, v1);
321     VSUB(v3minus2, v3, v2);
322     VCROSS(vres, v2minus1, v3minus2);
323     }
324    
325     /* Determine if vertex order is reversed (inward normal) */
326     int
327     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
328     {
329     FVECT tor;
330    
331     tri_orient(tor, v1, v2, v3);
332    
333     return(DOT(tor, v2) < 0.);
334     }
335    
336     /* Find vertices completing triangles on either side of the given edge */
337     int
338     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
339     {
340 greg 2.4 const MIGRATION *ej1, *ej2;
341 greg 2.1 RBFNODE *tv;
342    
343     rbfv[0] = rbfv[1] = NULL;
344     if (mig == NULL)
345     return(0);
346 greg 2.4 for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
347     ej1 = nextedge(mig->rbfv[0],ej1)) {
348     if (ej1 == mig)
349 greg 2.1 continue;
350 greg 2.4 tv = opp_rbf(mig->rbfv[0],ej1);
351 greg 2.1 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
352     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
353     rbfv[is_rev_tri(mig->rbfv[0]->invec,
354     mig->rbfv[1]->invec,
355     tv->invec)] = tv;
356     break;
357     }
358     }
359     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
360     }
361    
362 greg 2.4 /* Clear our BSDF representation and free memory */
363     void
364     clear_bsdf_rep(void)
365     {
366     while (mig_list != NULL) {
367     MIGRATION *mig = mig_list;
368     mig_list = mig->next;
369     free(mig);
370     }
371     while (dsf_list != NULL) {
372     RBFNODE *rbf = dsf_list;
373     dsf_list = rbf->next;
374     free(rbf);
375     }
376     inp_coverage = 0;
377     single_plane_incident = -1;
378     input_orient = output_orient = 0;
379 greg 2.5 grid_res = GRIDRES;
380 greg 2.4 }
381    
382 greg 2.1 /* Write our BSDF mesh interpolant out to the given binary stream */
383     void
384     save_bsdf_rep(FILE *ofp)
385     {
386     RBFNODE *rbf;
387     MIGRATION *mig;
388     int i, n;
389     /* finish header */
390 greg 2.2 fprintf(ofp, "SYMMETRY=%d\n", !single_plane_incident * inp_coverage);
391     fprintf(ofp, "IO_SIDES= %d %d\n", input_orient, output_orient);
392 greg 2.5 fprintf(ofp, "GRIDRES=%d\n", grid_res);
393 greg 2.1 fputformat(BSDFREP_FMT, ofp);
394     fputc('\n', ofp);
395     /* write each DSF */
396     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
397     putint(rbf->ord, 4, ofp);
398     putflt(rbf->invec[0], ofp);
399     putflt(rbf->invec[1], ofp);
400     putflt(rbf->invec[2], ofp);
401     putflt(rbf->vtotal, ofp);
402     putint(rbf->nrbf, 4, ofp);
403     for (i = 0; i < rbf->nrbf; i++) {
404     putflt(rbf->rbfa[i].peak, ofp);
405     putint(rbf->rbfa[i].crad, 2, ofp);
406     putint(rbf->rbfa[i].gx, 1, ofp);
407     putint(rbf->rbfa[i].gy, 1, ofp);
408     }
409     }
410     putint(-1, 4, ofp); /* terminator */
411     /* write each migration matrix */
412 greg 2.2 for (mig = mig_list; mig != NULL; mig = mig->next) {
413     int zerocnt = 0;
414 greg 2.1 putint(mig->rbfv[0]->ord, 4, ofp);
415     putint(mig->rbfv[1]->ord, 4, ofp);
416 greg 2.2 /* write out as sparse data */
417 greg 2.1 n = mtx_nrows(mig) * mtx_ncols(mig);
418 greg 2.2 for (i = 0; i < n; i++) {
419 greg 2.3 if (zerocnt == 0xff) {
420     putint(0xff, 1, ofp); zerocnt = 0;
421 greg 2.2 }
422     if (mig->mtx[i] != 0) {
423     putint(zerocnt, 1, ofp); zerocnt = 0;
424     putflt(mig->mtx[i], ofp);
425     } else
426     ++zerocnt;
427     }
428     putint(zerocnt, 1, ofp);
429 greg 2.1 }
430     putint(-1, 4, ofp); /* terminator */
431     putint(-1, 4, ofp);
432     if (fflush(ofp) == EOF) {
433     fprintf(stderr, "%s: error writing BSDF interpolant\n",
434     progname);
435     exit(1);
436     }
437     }
438    
439 greg 2.2 /* Check header line for critical information */
440     static int
441     headline(char *s, void *p)
442     {
443     char fmt[32];
444    
445     if (!strncmp(s, "SYMMETRY=", 9)) {
446     inp_coverage = atoi(s+9);
447     single_plane_incident = !inp_coverage;
448     return(0);
449     }
450     if (!strncmp(s, "IO_SIDES=", 9)) {
451     sscanf(s+9, "%d %d", &input_orient, &output_orient);
452     return(0);
453     }
454 greg 2.5 if (!strncmp(s, "GRIDRES=", 8)) {
455     sscanf(s+8, "%d", &grid_res);
456     return(0);
457     }
458 greg 2.2 if (formatval(fmt, s) && strcmp(fmt, BSDFREP_FMT))
459     return(-1);
460     return(0);
461     }
462    
463 greg 2.1 /* Read a BSDF mesh interpolant from the given binary stream */
464     int
465     load_bsdf_rep(FILE *ifp)
466     {
467     RBFNODE rbfh;
468     int from_ord, to_ord;
469     int i;
470 greg 2.4
471     clear_bsdf_rep();
472 greg 2.5 if (ifp == NULL)
473     return(0);
474 greg 2.2 if (getheader(ifp, headline, NULL) < 0 || single_plane_incident < 0 |
475     !input_orient | !output_orient) {
476 greg 2.1 fprintf(stderr, "%s: missing/bad format for BSDF interpolant\n",
477     progname);
478     return(0);
479     }
480     rbfh.next = NULL; /* read each DSF */
481     rbfh.ejl = NULL;
482     while ((rbfh.ord = getint(4, ifp)) >= 0) {
483     RBFNODE *newrbf;
484    
485     rbfh.invec[0] = getflt(ifp);
486     rbfh.invec[1] = getflt(ifp);
487     rbfh.invec[2] = getflt(ifp);
488 greg 2.9 if (normalize(rbfh.invec) == 0) {
489     fprintf(stderr, "%s: zero incident vector\n", progname);
490     return(0);
491     }
492 greg 2.3 rbfh.vtotal = getflt(ifp);
493 greg 2.1 rbfh.nrbf = getint(4, ifp);
494     newrbf = (RBFNODE *)malloc(sizeof(RBFNODE) +
495     sizeof(RBFVAL)*(rbfh.nrbf-1));
496     if (newrbf == NULL)
497     goto memerr;
498 greg 2.8 memcpy(newrbf, &rbfh, sizeof(RBFNODE)-sizeof(RBFVAL));
499 greg 2.1 for (i = 0; i < rbfh.nrbf; i++) {
500     newrbf->rbfa[i].peak = getflt(ifp);
501     newrbf->rbfa[i].crad = getint(2, ifp) & 0xffff;
502     newrbf->rbfa[i].gx = getint(1, ifp) & 0xff;
503     newrbf->rbfa[i].gy = getint(1, ifp) & 0xff;
504     }
505     if (feof(ifp))
506     goto badEOF;
507     /* insert in global list */
508     if (insert_dsf(newrbf) != rbfh.ord) {
509     fprintf(stderr, "%s: error adding DSF\n", progname);
510     return(0);
511     }
512     }
513     /* read each migration matrix */
514     while ((from_ord = getint(4, ifp)) >= 0 &&
515     (to_ord = getint(4, ifp)) >= 0) {
516     RBFNODE *from_rbf = get_dsf(from_ord);
517     RBFNODE *to_rbf = get_dsf(to_ord);
518     MIGRATION *newmig;
519     int n;
520    
521     if ((from_rbf == NULL) | (to_rbf == NULL)) {
522     fprintf(stderr,
523     "%s: bad DSF reference in migration edge\n",
524     progname);
525     return(0);
526     }
527     n = from_rbf->nrbf * to_rbf->nrbf;
528     newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
529     sizeof(float)*(n-1));
530     if (newmig == NULL)
531     goto memerr;
532     newmig->rbfv[0] = from_rbf;
533     newmig->rbfv[1] = to_rbf;
534 greg 2.2 memset(newmig->mtx, 0, sizeof(float)*n);
535     for (i = 0; ; ) { /* read sparse data */
536     int zc = getint(1, ifp) & 0xff;
537     if ((i += zc) >= n)
538     break;
539 greg 2.3 if (zc == 0xff)
540     continue;
541 greg 2.2 newmig->mtx[i++] = getflt(ifp);
542     }
543 greg 2.1 if (feof(ifp))
544     goto badEOF;
545     /* insert in edge lists */
546     newmig->enxt[0] = from_rbf->ejl;
547     from_rbf->ejl = newmig;
548     newmig->enxt[1] = to_rbf->ejl;
549     to_rbf->ejl = newmig;
550     /* push onto global list */
551     newmig->next = mig_list;
552     mig_list = newmig;
553     }
554     return(1); /* success! */
555     memerr:
556     fprintf(stderr, "%s: Out of memory in load_bsdf_rep()\n", progname);
557     exit(1);
558     badEOF:
559     fprintf(stderr, "%s: Unexpected EOF in load_bsdf_rep()\n", progname);
560     return(0);
561     }