ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrbf.c
Revision: 2.7
Committed: Wed Sep 25 17:42:45 2013 UTC (10 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +10 -5 lines
Log Message:
Adjusted maximum fraction for neighbor contribution upwards a bit

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfrbf.c,v 2.6 2013/09/25 05:03:10 greg Exp $";
3 #endif
4 /*
5 * Radial basis function representation for BSDF data.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <math.h>
15 #include "bsdfrep.h"
16
17 #ifndef RSCA
18 #define RSCA 2.7 /* radius scaling factor (empirical) */
19 #endif
20 #ifndef MAXFRAC
21 #define MAXFRAC 0.5 /* maximum contribution to neighbor */
22 #endif
23 #ifndef NNEIGH
24 #define NNEIGH 10 /* number of neighbors to consider */
25 #endif
26 /* our loaded grid for this incident angle */
27 GRIDVAL dsf_grid[GRIDRES][GRIDRES];
28
29 /* Start new DSF input grid */
30 void
31 new_bsdf_data(double new_theta, double new_phi)
32 {
33 if (!new_input_direction(new_theta, new_phi))
34 exit(1);
35 memset(dsf_grid, 0, sizeof(dsf_grid));
36 }
37
38 /* Add BSDF data point */
39 void
40 add_bsdf_data(double theta_out, double phi_out, double val, int isDSF)
41 {
42 FVECT ovec;
43 int pos[2];
44
45 if (!output_orient) /* check output orientation */
46 output_orient = 1 - 2*(theta_out > 90.);
47 else if (output_orient > 0 ^ theta_out < 90.) {
48 fputs("Cannot handle output angles on both sides of surface\n",
49 stderr);
50 exit(1);
51 }
52 ovec[2] = sin((M_PI/180.)*theta_out);
53 ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2];
54 ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2];
55 ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
56
57 if (!isDSF)
58 val *= ovec[2]; /* convert from BSDF to DSF */
59
60 /* update BSDF histogram */
61 if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2])
62 ++bsdf_hist[histndx(val/ovec[2])];
63
64 pos_from_vec(pos, ovec);
65
66 dsf_grid[pos[0]][pos[1]].vsum += val;
67 dsf_grid[pos[0]][pos[1]].nval++;
68 }
69
70 /* Compute radii for non-empty bins */
71 /* (distance to furthest empty bin for which non-empty bin is the closest) */
72 static void
73 compute_radii(void)
74 {
75 unsigned int fill_grid[GRIDRES][GRIDRES];
76 unsigned short fill_cnt[GRIDRES][GRIDRES];
77 FVECT ovec0, ovec1;
78 double ang2, lastang2;
79 int r, i, j, jn, ii, jj, inear, jnear;
80
81 r = GRIDRES/2; /* proceed in zig-zag */
82 for (i = 0; i < GRIDRES; i++)
83 for (jn = 0; jn < GRIDRES; jn++) {
84 j = (i&1) ? jn : GRIDRES-1-jn;
85 if (dsf_grid[i][j].nval) /* find empty grid pos. */
86 continue;
87 ovec_from_pos(ovec0, i, j);
88 inear = jnear = -1; /* find nearest non-empty */
89 lastang2 = M_PI*M_PI;
90 for (ii = i-r; ii <= i+r; ii++) {
91 if (ii < 0) continue;
92 if (ii >= GRIDRES) break;
93 for (jj = j-r; jj <= j+r; jj++) {
94 if (jj < 0) continue;
95 if (jj >= GRIDRES) break;
96 if (!dsf_grid[ii][jj].nval)
97 continue;
98 ovec_from_pos(ovec1, ii, jj);
99 ang2 = 2. - 2.*DOT(ovec0,ovec1);
100 if (ang2 >= lastang2)
101 continue;
102 lastang2 = ang2;
103 inear = ii; jnear = jj;
104 }
105 }
106 if (inear < 0) {
107 fprintf(stderr,
108 "%s: Could not find non-empty neighbor!\n",
109 progname);
110 exit(1);
111 }
112 ang2 = sqrt(lastang2);
113 r = ANG2R(ang2); /* record if > previous */
114 if (r > dsf_grid[inear][jnear].crad)
115 dsf_grid[inear][jnear].crad = r;
116 /* next search radius */
117 r = ang2*(2.*GRIDRES/M_PI) + 3;
118 }
119 /* blur radii over hemisphere */
120 memset(fill_grid, 0, sizeof(fill_grid));
121 memset(fill_cnt, 0, sizeof(fill_cnt));
122 for (i = 0; i < GRIDRES; i++)
123 for (j = 0; j < GRIDRES; j++) {
124 if (!dsf_grid[i][j].crad)
125 continue; /* missing distance */
126 r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI);
127 for (ii = i-r; ii <= i+r; ii++) {
128 if (ii < 0) continue;
129 if (ii >= GRIDRES) break;
130 for (jj = j-r; jj <= j+r; jj++) {
131 if (jj < 0) continue;
132 if (jj >= GRIDRES) break;
133 if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r)
134 continue;
135 fill_grid[ii][jj] += dsf_grid[i][j].crad;
136 fill_cnt[ii][jj]++;
137 }
138 }
139 }
140 /* copy back blurred radii */
141 for (i = 0; i < GRIDRES; i++)
142 for (j = 0; j < GRIDRES; j++)
143 if (fill_cnt[i][j])
144 dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j];
145 }
146
147 /* Cull points for more uniform distribution, leave all nval 0 or 1 */
148 static void
149 cull_values(void)
150 {
151 FVECT ovec0, ovec1;
152 double maxang, maxang2;
153 int i, j, ii, jj, r;
154 /* simple greedy algorithm */
155 for (i = 0; i < GRIDRES; i++)
156 for (j = 0; j < GRIDRES; j++) {
157 if (!dsf_grid[i][j].nval)
158 continue;
159 if (!dsf_grid[i][j].crad)
160 continue; /* shouldn't happen */
161 ovec_from_pos(ovec0, i, j);
162 maxang = 2.*R2ANG(dsf_grid[i][j].crad);
163 if (maxang > ovec0[2]) /* clamp near horizon */
164 maxang = ovec0[2];
165 r = maxang*(2.*GRIDRES/M_PI) + 1;
166 maxang2 = maxang*maxang;
167 for (ii = i-r; ii <= i+r; ii++) {
168 if (ii < 0) continue;
169 if (ii >= GRIDRES) break;
170 for (jj = j-r; jj <= j+r; jj++) {
171 if (jj < 0) continue;
172 if (jj >= GRIDRES) break;
173 if (!dsf_grid[ii][jj].nval)
174 continue;
175 if ((ii == i) & (jj == j))
176 continue; /* don't get self-absorbed */
177 ovec_from_pos(ovec1, ii, jj);
178 if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
179 continue;
180 /* absorb sum */
181 dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum;
182 dsf_grid[i][j].nval += dsf_grid[ii][jj].nval;
183 /* keep value, though */
184 dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval;
185 dsf_grid[ii][jj].nval = 0;
186 }
187 }
188 }
189 /* final averaging pass */
190 for (i = 0; i < GRIDRES; i++)
191 for (j = 0; j < GRIDRES; j++)
192 if (dsf_grid[i][j].nval > 1) {
193 dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval;
194 dsf_grid[i][j].nval = 1;
195 }
196 }
197
198 /* Compute minimum BSDF from histogram and clear it */
199 static void
200 comp_bsdf_min()
201 {
202 int cnt;
203 int i, target;
204
205 cnt = 0;
206 for (i = HISTLEN; i--; )
207 cnt += bsdf_hist[i];
208 if (!cnt) { /* shouldn't happen */
209 bsdf_min = 0;
210 return;
211 }
212 target = cnt/100; /* ignore bottom 1% */
213 cnt = 0;
214 for (i = 0; cnt <= target; i++)
215 cnt += bsdf_hist[i];
216 bsdf_min = histval(i-1);
217 memset(bsdf_hist, 0, sizeof(bsdf_hist));
218 }
219
220 /* Find n nearest sub-sampled neighbors to the given grid position */
221 static int
222 get_neighbors(int neigh[][2], int n, const int i, const int j)
223 {
224 int k = 0;
225 int r;
226 /* search concentric squares */
227 for (r = 1; r < GRIDRES; r++) {
228 int ii, jj;
229 for (ii = i-r; ii <= i+r; ii++) {
230 int jstep = 1;
231 if (ii < 0) continue;
232 if (ii >= GRIDRES) break;
233 if ((i-r < ii) & (ii < i+r))
234 jstep = r<<1;
235 for (jj = j-r; jj <= j+r; jj += jstep) {
236 if (jj < 0) continue;
237 if (jj >= GRIDRES) break;
238 if (dsf_grid[ii][jj].nval) {
239 neigh[k][0] = ii;
240 neigh[k][1] = jj;
241 if (++k >= n)
242 return(n);
243 }
244 }
245 }
246 }
247 return(k);
248 }
249
250 /* Adjust coded radius for the given grid position based on neighborhood */
251 static int
252 adj_coded_radius(const int i, const int j)
253 {
254 const double rad0 = R2ANG(dsf_grid[i][j].crad);
255 double currad = RSCA * rad0;
256 int neigh[NNEIGH][2];
257 int n;
258 FVECT our_dir;
259
260 ovec_from_pos(our_dir, i, j);
261 n = get_neighbors(neigh, NNEIGH, i, j);
262 while (n--) {
263 FVECT their_dir;
264 double max_ratio, rad_ok2;
265 /* check our value at neighbor */
266 ovec_from_pos(their_dir, neigh[n][0], neigh[n][1]);
267 max_ratio = MAXFRAC * dsf_grid[neigh[n][0]][neigh[n][1]].vsum
268 / dsf_grid[i][j].vsum;
269 if (max_ratio >= 1)
270 continue;
271 rad_ok2 = (DOT(their_dir,our_dir) - 1.)/log(max_ratio);
272 if (rad_ok2 >= currad*currad)
273 continue; /* value fraction OK */
274 currad = sqrt(rad_ok2); /* else reduce lobe radius */
275 if (currad <= rad0) /* limit how small we'll go */
276 return(dsf_grid[i][j].crad);
277 }
278 return(ANG2R(currad)); /* encode selected radius */
279 }
280
281 /* Count up filled nodes and build RBF representation from current grid */
282 RBFNODE *
283 make_rbfrep(void)
284 {
285 int niter = 16;
286 double lastVar, thisVar = 100.;
287 int nn;
288 RBFNODE *newnode;
289 RBFVAL *itera;
290 int i, j;
291 /* compute RBF radii */
292 compute_radii();
293 /* coagulate lobes */
294 cull_values();
295 nn = 0; /* count selected bins */
296 for (i = 0; i < GRIDRES; i++)
297 for (j = 0; j < GRIDRES; j++)
298 nn += dsf_grid[i][j].nval;
299 /* compute minimum BSDF */
300 comp_bsdf_min();
301 /* allocate RBF array */
302 newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1));
303 if (newnode == NULL)
304 goto memerr;
305 newnode->ord = -1;
306 newnode->next = NULL;
307 newnode->ejl = NULL;
308 newnode->invec[2] = sin((M_PI/180.)*theta_in_deg);
309 newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2];
310 newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2];
311 newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]);
312 newnode->vtotal = 0;
313 newnode->nrbf = nn;
314 nn = 0; /* fill RBF array */
315 for (i = 0; i < GRIDRES; i++)
316 for (j = 0; j < GRIDRES; j++)
317 if (dsf_grid[i][j].nval) {
318 newnode->rbfa[nn].peak = dsf_grid[i][j].vsum;
319 newnode->rbfa[nn].crad = adj_coded_radius(i, j);
320 newnode->rbfa[nn].gx = i;
321 newnode->rbfa[nn].gy = j;
322 ++nn;
323 }
324 /* iterate to improve interpolation accuracy */
325 itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf);
326 if (itera == NULL)
327 goto memerr;
328 memcpy(itera, newnode->rbfa, sizeof(RBFVAL)*newnode->nrbf);
329 do {
330 double dsum = 0, dsum2 = 0;
331 nn = 0;
332 for (i = 0; i < GRIDRES; i++)
333 for (j = 0; j < GRIDRES; j++)
334 if (dsf_grid[i][j].nval) {
335 FVECT odir;
336 double corr;
337 ovec_from_pos(odir, i, j);
338 itera[nn++].peak *= corr =
339 dsf_grid[i][j].vsum /
340 eval_rbfrep(newnode, odir);
341 dsum += 1. - corr;
342 dsum2 += (1.-corr)*(1.-corr);
343 }
344 memcpy(newnode->rbfa, itera, sizeof(RBFVAL)*newnode->nrbf);
345 lastVar = thisVar;
346 thisVar = dsum2/(double)nn;
347 #ifdef DEBUG
348 fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n",
349 100.*dsum/(double)nn,
350 100.*sqrt(thisVar));
351 #endif
352 } while (--niter > 0 && lastVar-thisVar > 0.02*lastVar);
353
354 free(itera);
355 nn = 0; /* compute sum for normalization */
356 while (nn < newnode->nrbf)
357 newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]);
358 #ifdef DEBUG
359 fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n",
360 get_theta180(newnode->invec), get_phi360(newnode->invec),
361 newnode->vtotal);
362 #endif
363 insert_dsf(newnode);
364
365 return(newnode);
366 memerr:
367 fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname);
368 exit(1);
369 }