ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrbf.c
Revision: 2.5
Committed: Fri Jun 28 23:18:51 2013 UTC (10 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +25 -1 lines
Log Message:
Fixed calculation of bsdf_min

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfrbf.c,v 2.4 2013/03/20 01:00:22 greg Exp $";
3 #endif
4 /*
5 * Radial basis function representation for BSDF data.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <math.h>
15 #include "bsdfrep.h"
16
17 #ifndef RSCA
18 #define RSCA 2.7 /* radius scaling factor (empirical) */
19 #endif
20 /* our loaded grid for this incident angle */
21 GRIDVAL dsf_grid[GRIDRES][GRIDRES];
22
23 /* Start new DSF input grid */
24 void
25 new_bsdf_data(double new_theta, double new_phi)
26 {
27 if (!new_input_direction(new_theta, new_phi))
28 exit(1);
29 memset(dsf_grid, 0, sizeof(dsf_grid));
30 }
31
32 /* Add BSDF data point */
33 void
34 add_bsdf_data(double theta_out, double phi_out, double val, int isDSF)
35 {
36 FVECT ovec;
37 int pos[2];
38
39 if (!output_orient) /* check output orientation */
40 output_orient = 1 - 2*(theta_out > 90.);
41 else if (output_orient > 0 ^ theta_out < 90.) {
42 fputs("Cannot handle output angles on both sides of surface\n",
43 stderr);
44 exit(1);
45 }
46 ovec[2] = sin((M_PI/180.)*theta_out);
47 ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2];
48 ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2];
49 ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
50
51 if (!isDSF)
52 val *= ovec[2]; /* convert from BSDF to DSF */
53
54 /* update BSDF histogram */
55 if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2])
56 ++bsdf_hist[histndx(val/ovec[2])];
57
58 pos_from_vec(pos, ovec);
59
60 dsf_grid[pos[0]][pos[1]].vsum += val;
61 dsf_grid[pos[0]][pos[1]].nval++;
62 }
63
64 /* Compute radii for non-empty bins */
65 /* (distance to furthest empty bin for which non-empty bin is the closest) */
66 static void
67 compute_radii(void)
68 {
69 unsigned int fill_grid[GRIDRES][GRIDRES];
70 unsigned short fill_cnt[GRIDRES][GRIDRES];
71 FVECT ovec0, ovec1;
72 double ang2, lastang2;
73 int r, i, j, jn, ii, jj, inear, jnear;
74
75 r = GRIDRES/2; /* proceed in zig-zag */
76 for (i = 0; i < GRIDRES; i++)
77 for (jn = 0; jn < GRIDRES; jn++) {
78 j = (i&1) ? jn : GRIDRES-1-jn;
79 if (dsf_grid[i][j].nval) /* find empty grid pos. */
80 continue;
81 ovec_from_pos(ovec0, i, j);
82 inear = jnear = -1; /* find nearest non-empty */
83 lastang2 = M_PI*M_PI;
84 for (ii = i-r; ii <= i+r; ii++) {
85 if (ii < 0) continue;
86 if (ii >= GRIDRES) break;
87 for (jj = j-r; jj <= j+r; jj++) {
88 if (jj < 0) continue;
89 if (jj >= GRIDRES) break;
90 if (!dsf_grid[ii][jj].nval)
91 continue;
92 ovec_from_pos(ovec1, ii, jj);
93 ang2 = 2. - 2.*DOT(ovec0,ovec1);
94 if (ang2 >= lastang2)
95 continue;
96 lastang2 = ang2;
97 inear = ii; jnear = jj;
98 }
99 }
100 if (inear < 0) {
101 fprintf(stderr,
102 "%s: Could not find non-empty neighbor!\n",
103 progname);
104 exit(1);
105 }
106 ang2 = sqrt(lastang2);
107 r = ANG2R(ang2); /* record if > previous */
108 if (r > dsf_grid[inear][jnear].crad)
109 dsf_grid[inear][jnear].crad = r;
110 /* next search radius */
111 r = ang2*(2.*GRIDRES/M_PI) + 3;
112 }
113 /* blur radii over hemisphere */
114 memset(fill_grid, 0, sizeof(fill_grid));
115 memset(fill_cnt, 0, sizeof(fill_cnt));
116 for (i = 0; i < GRIDRES; i++)
117 for (j = 0; j < GRIDRES; j++) {
118 if (!dsf_grid[i][j].crad)
119 continue; /* missing distance */
120 r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI);
121 for (ii = i-r; ii <= i+r; ii++) {
122 if (ii < 0) continue;
123 if (ii >= GRIDRES) break;
124 for (jj = j-r; jj <= j+r; jj++) {
125 if (jj < 0) continue;
126 if (jj >= GRIDRES) break;
127 if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r)
128 continue;
129 fill_grid[ii][jj] += dsf_grid[i][j].crad;
130 fill_cnt[ii][jj]++;
131 }
132 }
133 }
134 /* copy back blurred radii */
135 for (i = 0; i < GRIDRES; i++)
136 for (j = 0; j < GRIDRES; j++)
137 if (fill_cnt[i][j])
138 dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j];
139 }
140
141 /* Cull points for more uniform distribution, leave all nval 0 or 1 */
142 static void
143 cull_values(void)
144 {
145 FVECT ovec0, ovec1;
146 double maxang, maxang2;
147 int i, j, ii, jj, r;
148 /* simple greedy algorithm */
149 for (i = 0; i < GRIDRES; i++)
150 for (j = 0; j < GRIDRES; j++) {
151 if (!dsf_grid[i][j].nval)
152 continue;
153 if (!dsf_grid[i][j].crad)
154 continue; /* shouldn't happen */
155 ovec_from_pos(ovec0, i, j);
156 maxang = 2.*R2ANG(dsf_grid[i][j].crad);
157 if (maxang > ovec0[2]) /* clamp near horizon */
158 maxang = ovec0[2];
159 r = maxang*(2.*GRIDRES/M_PI) + 1;
160 maxang2 = maxang*maxang;
161 for (ii = i-r; ii <= i+r; ii++) {
162 if (ii < 0) continue;
163 if (ii >= GRIDRES) break;
164 for (jj = j-r; jj <= j+r; jj++) {
165 if (jj < 0) continue;
166 if (jj >= GRIDRES) break;
167 if (!dsf_grid[ii][jj].nval)
168 continue;
169 if ((ii == i) & (jj == j))
170 continue; /* don't get self-absorbed */
171 ovec_from_pos(ovec1, ii, jj);
172 if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
173 continue;
174 /* absorb sum */
175 dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum;
176 dsf_grid[i][j].nval += dsf_grid[ii][jj].nval;
177 /* keep value, though */
178 dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval;
179 dsf_grid[ii][jj].nval = 0;
180 }
181 }
182 }
183 /* final averaging pass */
184 for (i = 0; i < GRIDRES; i++)
185 for (j = 0; j < GRIDRES; j++)
186 if (dsf_grid[i][j].nval > 1) {
187 dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval;
188 dsf_grid[i][j].nval = 1;
189 }
190 }
191
192 /* Compute minimum BSDF from histogram and clear it */
193 static void
194 comp_bsdf_min()
195 {
196 int cnt;
197 int i, target;
198
199 cnt = 0;
200 for (i = HISTLEN; i--; )
201 cnt += bsdf_hist[i];
202 if (!cnt) { /* shouldn't happen */
203 bsdf_min = 0;
204 return;
205 }
206 target = cnt/100; /* ignore bottom 1% */
207 cnt = 0;
208 for (i = 0; cnt <= target; i++)
209 cnt += bsdf_hist[i];
210 bsdf_min = histval(i-1);
211 memset(bsdf_hist, 0, sizeof(bsdf_hist));
212 }
213
214 /* Count up filled nodes and build RBF representation from current grid */
215 RBFNODE *
216 make_rbfrep(void)
217 {
218 int niter = 16;
219 double lastVar, thisVar = 100.;
220 int nn;
221 RBFNODE *newnode;
222 RBFVAL *itera;
223 int i, j;
224 /* compute RBF radii */
225 compute_radii();
226 /* coagulate lobes */
227 cull_values();
228 nn = 0; /* count selected bins */
229 for (i = 0; i < GRIDRES; i++)
230 for (j = 0; j < GRIDRES; j++)
231 nn += dsf_grid[i][j].nval;
232 /* compute minimum BSDF */
233 comp_bsdf_min();
234 /* allocate RBF array */
235 newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1));
236 if (newnode == NULL)
237 goto memerr;
238 newnode->ord = -1;
239 newnode->next = NULL;
240 newnode->ejl = NULL;
241 newnode->invec[2] = sin((M_PI/180.)*theta_in_deg);
242 newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2];
243 newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2];
244 newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]);
245 newnode->vtotal = 0;
246 newnode->nrbf = nn;
247 nn = 0; /* fill RBF array */
248 for (i = 0; i < GRIDRES; i++)
249 for (j = 0; j < GRIDRES; j++)
250 if (dsf_grid[i][j].nval) {
251 newnode->rbfa[nn].peak = dsf_grid[i][j].vsum;
252 newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5;
253 newnode->rbfa[nn].gx = i;
254 newnode->rbfa[nn].gy = j;
255 ++nn;
256 }
257 /* iterate to improve interpolation accuracy */
258 itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf);
259 if (itera == NULL)
260 goto memerr;
261 memcpy(itera, newnode->rbfa, sizeof(RBFVAL)*newnode->nrbf);
262 do {
263 double dsum = 0, dsum2 = 0;
264 nn = 0;
265 for (i = 0; i < GRIDRES; i++)
266 for (j = 0; j < GRIDRES; j++)
267 if (dsf_grid[i][j].nval) {
268 FVECT odir;
269 double corr;
270 ovec_from_pos(odir, i, j);
271 itera[nn++].peak *= corr =
272 dsf_grid[i][j].vsum /
273 eval_rbfrep(newnode, odir);
274 dsum += 1. - corr;
275 dsum2 += (1.-corr)*(1.-corr);
276 }
277 memcpy(newnode->rbfa, itera, sizeof(RBFVAL)*newnode->nrbf);
278 lastVar = thisVar;
279 thisVar = dsum2/(double)nn;
280 #ifdef DEBUG
281 fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n",
282 100.*dsum/(double)nn,
283 100.*sqrt(thisVar));
284 #endif
285 } while (--niter > 0 && lastVar-thisVar > 0.02*lastVar);
286
287 free(itera);
288 nn = 0; /* compute sum for normalization */
289 while (nn < newnode->nrbf)
290 newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]);
291 #ifdef DEBUG
292 fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n",
293 get_theta180(newnode->invec), get_phi360(newnode->invec),
294 newnode->vtotal);
295 #endif
296 insert_dsf(newnode);
297
298 return(newnode);
299 memerr:
300 fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname);
301 exit(1);
302 }