| 14 |
|
#include <math.h> |
| 15 |
|
#include "bsdfrep.h" |
| 16 |
|
|
| 17 |
< |
#ifndef RSCA |
| 18 |
< |
#define RSCA 2.7 /* radius scaling factor (empirical) */ |
| 17 |
> |
#ifndef MINRSCA |
| 18 |
> |
#define MINRSCA 0.15 /* minimum radius scaling factor */ |
| 19 |
|
#endif |
| 20 |
+ |
#ifndef MAXRSCA |
| 21 |
+ |
#define MAXRSCA 2.7 /* maximum radius scaling factor */ |
| 22 |
+ |
#endif |
| 23 |
|
#ifndef MAXFRAC |
| 24 |
|
#define MAXFRAC 0.5 /* maximum contribution to neighbor */ |
| 25 |
|
#endif |
| 73 |
|
} |
| 74 |
|
|
| 75 |
|
/* Compute radii for non-empty bins */ |
| 76 |
< |
/* (distance to furthest empty bin for which non-empty bin is the closest) */ |
| 76 |
> |
/* (distance to furthest empty bin for which non-empty test bin is closest) */ |
| 77 |
|
static void |
| 78 |
|
compute_radii(void) |
| 79 |
|
{ |
| 80 |
+ |
const int cradmin = ANG2R(.5*M_PI/GRIDRES); |
| 81 |
|
unsigned int fill_grid[GRIDRES][GRIDRES]; |
| 82 |
|
unsigned short fill_cnt[GRIDRES][GRIDRES]; |
| 83 |
|
FVECT ovec0, ovec1; |
| 84 |
|
double ang2, lastang2; |
| 85 |
|
int r, i, j, jn, ii, jj, inear, jnear; |
| 86 |
|
|
| 87 |
+ |
for (i = 0; i < GRIDRES; i++) /* initialize minimum radii */ |
| 88 |
+ |
for (j = 0; j < GRIDRES; j++) |
| 89 |
+ |
if (dsf_grid[i][j].nval) |
| 90 |
+ |
dsf_grid[i][j].crad = cradmin; |
| 91 |
+ |
|
| 92 |
|
r = GRIDRES/2; /* proceed in zig-zag */ |
| 93 |
|
for (i = 0; i < GRIDRES; i++) |
| 94 |
|
for (jn = 0; jn < GRIDRES; jn++) { |
| 132 |
|
memset(fill_cnt, 0, sizeof(fill_cnt)); |
| 133 |
|
for (i = 0; i < GRIDRES; i++) |
| 134 |
|
for (j = 0; j < GRIDRES; j++) { |
| 135 |
< |
if (!dsf_grid[i][j].crad) |
| 136 |
< |
continue; /* missing distance */ |
| 137 |
< |
r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI); |
| 135 |
> |
if (!dsf_grid[i][j].nval) |
| 136 |
> |
continue; /* not part of this */ |
| 137 |
> |
r = R2ANG(dsf_grid[i][j].crad)*(2.*MAXRSCA*GRIDRES/M_PI); |
| 138 |
|
for (ii = i-r; ii <= i+r; ii++) { |
| 139 |
|
if (ii < 0) continue; |
| 140 |
|
if (ii >= GRIDRES) break; |
| 179 |
|
if (ii < 0) continue; |
| 180 |
|
if (ii >= GRIDRES) break; |
| 181 |
|
for (jj = j-r; jj <= j+r; jj++) { |
| 182 |
+ |
if ((ii == i) & (jj == j)) |
| 183 |
+ |
continue; /* don't get self-absorbed */ |
| 184 |
|
if (jj < 0) continue; |
| 185 |
|
if (jj >= GRIDRES) break; |
| 186 |
|
if (!dsf_grid[ii][jj].nval) |
| 187 |
|
continue; |
| 177 |
– |
if ((ii == i) & (jj == j)) |
| 178 |
– |
continue; /* don't get self-absorbed */ |
| 188 |
|
ovec_from_pos(ovec1, ii, jj); |
| 189 |
|
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2) |
| 190 |
|
continue; |
| 263 |
|
adj_coded_radius(const int i, const int j) |
| 264 |
|
{ |
| 265 |
|
const double rad0 = R2ANG(dsf_grid[i][j].crad); |
| 266 |
< |
double currad = RSCA * rad0; |
| 266 |
> |
const double minrad = MINRSCA * rad0; |
| 267 |
> |
double currad = MAXRSCA * rad0; |
| 268 |
|
int neigh[NNEIGH][2]; |
| 269 |
|
int n; |
| 270 |
|
FVECT our_dir; |
| 284 |
|
if (rad_ok2 >= currad*currad) |
| 285 |
|
continue; /* value fraction OK */ |
| 286 |
|
currad = sqrt(rad_ok2); /* else reduce lobe radius */ |
| 287 |
< |
if (currad <= rad0) /* limit how small we'll go */ |
| 288 |
< |
return(dsf_grid[i][j].crad); |
| 287 |
> |
if (currad <= minrad) /* limit how small we'll go */ |
| 288 |
> |
return(ANG2R(minrad)); |
| 289 |
|
} |
| 290 |
|
return(ANG2R(currad)); /* encode selected radius */ |
| 291 |
|
} |
| 294 |
|
RBFNODE * |
| 295 |
|
make_rbfrep(void) |
| 296 |
|
{ |
| 297 |
+ |
long cradsum = 0, ocradsum = 0; |
| 298 |
|
int niter = 16; |
| 299 |
|
double lastVar, thisVar = 100.; |
| 300 |
|
int nn; |
| 301 |
|
RBFNODE *newnode; |
| 302 |
|
RBFVAL *itera; |
| 303 |
|
int i, j; |
| 304 |
+ |
|
| 305 |
+ |
#ifdef DEBUG |
| 306 |
+ |
{ |
| 307 |
+ |
int maxcnt = 0, nempty = 0; |
| 308 |
+ |
long cntsum = 0; |
| 309 |
+ |
for (i = 0; i < GRIDRES; i++) |
| 310 |
+ |
for (j = 0; j < GRIDRES; j++) |
| 311 |
+ |
if (!dsf_grid[i][j].nval) { |
| 312 |
+ |
++nempty; |
| 313 |
+ |
} else { |
| 314 |
+ |
if (dsf_grid[i][j].nval > maxcnt) |
| 315 |
+ |
maxcnt = dsf_grid[i][j].nval; |
| 316 |
+ |
cntsum += dsf_grid[i][j].nval; |
| 317 |
+ |
} |
| 318 |
+ |
fprintf(stderr, "Average, maximum bin count: %d, %d (%.1f%% empty)\n", |
| 319 |
+ |
(int)(cntsum/((GRIDRES*GRIDRES)-nempty)), maxcnt, |
| 320 |
+ |
100./(GRIDRES*GRIDRES)*nempty); |
| 321 |
+ |
} |
| 322 |
+ |
#endif |
| 323 |
|
/* compute RBF radii */ |
| 324 |
|
compute_radii(); |
| 325 |
|
/* coagulate lobes */ |
| 348 |
|
for (j = 0; j < GRIDRES; j++) |
| 349 |
|
if (dsf_grid[i][j].nval) { |
| 350 |
|
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum; |
| 351 |
+ |
ocradsum += dsf_grid[i][j].crad; |
| 352 |
+ |
cradsum += |
| 353 |
|
newnode->rbfa[nn].crad = adj_coded_radius(i, j); |
| 354 |
|
newnode->rbfa[nn].gx = i; |
| 355 |
|
newnode->rbfa[nn].gy = j; |
| 356 |
|
++nn; |
| 357 |
|
} |
| 358 |
+ |
#ifdef DEBUG |
| 359 |
+ |
fprintf(stderr, |
| 360 |
+ |
"Average radius reduced from %.2f to %.2f degrees for %d lobes\n", |
| 361 |
+ |
180./M_PI*MAXRSCA*R2ANG(ocradsum/newnode->nrbf), |
| 362 |
+ |
180./M_PI*R2ANG(cradsum/newnode->nrbf), newnode->nrbf); |
| 363 |
+ |
#endif |
| 364 |
|
/* iterate to improve interpolation accuracy */ |
| 365 |
|
itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf); |
| 366 |
|
if (itera == NULL) |